
AEA 2013 Extended Solutions

These extended solutions for Advanced Extension Awards in Mathematics are intended to sup-
plement the original mark schemes, which are available on the Edexcel website.

1. (a) Formally, the binomial expansion of (1 + a)n is given by

(1 + a)n =

∞∑
k=0

(
n

k

)
ak,

where the generalized binomial coefficients are given by(
n

k

)
:=

n(n− 1) . . . (n− k + 1)

k!
.

Note that n need not be an integer for this to make sense. Probably, though, the
question should have included more information about the possible range of n and x,
because otherwise there might be an issue with the (non-)convergence of the infinite
sum (as is illustrated in the later part of the question). Putting these considerations
aside, however, taking a = 12n

5 x, we see that the ‘x2 term’ in this binomial expansion
will come from k = 2, whilst the ‘x3 term’ from k = 3. Moreover, the coefficient in
front of x2 is

a2(n) :=

(
n

2

)(
12n

5

)2

=
n(n− 1)

2!

(
12n

5

)2

,

while the coefficient in front of x3 is

a3(n) :=

(
n

3

)(
12n

5

)2

=
n(n− 1)(n− 2)

3!

(
12n

5

)3

.

The possible values of n, then, are given precisely by the solutions to the equation
a2(n) = a3(n) for which a2(n) (hence a3(n)) does not equal zero. We see from this
last requirement that n must not be equal to either 0 or 1. Hence, if we start from
the equation a2(n) = a3(n), then we can cancel the non-zero term

(
12n
5

)2
n(n − 1)

appearing on both sides to obtain the equivalent statement:

1

2!
=

(n− 2)

3!

(
12n

5

)
.

(This is a nicer way to proceed than multiplying everything out, which would yield
an algebraic equation in n of degree 6.) This equation is easily rearranged to give

4n2 − 8n− 5 = 0,

which can be factorised to
(2n+ 1)(2n− 5) = 0.

Hence we find that

n = −1

2
or n =

5

2
.

(We note that for these two values of n both a2(n) and a3(n) are indeed non-zero.)
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(b) We now know x = 1/2 and we wish to establish for which of the two values of n from
part (1a) the binomial series converges. Now, with n = −1/2, we obtain

a =
12n

5
x = −3

5
.

Since |a| < 1, it follows that the series converges, and hence gives a valid expansion.
(If you have not seen a proof of this, then you can look forward to doing so by taking
a maths course at university!) On the other hand, for n = 5/2,

a =
12n

5
x = 3.

consecutive terms in the series ultimately grow larger and larger in absolute value,
meaning the series cannot converge. Indeed, in this case, the quotient of the absolute
values of the (k + 1)-th and k-th term of the binomial expansion is equal to∣∣∣∣∣

( 5/2
k+1

)
3k+1(5/2

k

)
3k

∣∣∣∣∣ = 3
|52 − k|
k + 1

,

which is strictly larger than 2 for all k ≥ 10. In conclusion, a valid expansion (i.e. a
convergent series) transpires when n = −1/2, but not when n = 5/2.

2. (a) We are told to use the formula

sin(A−B) = sin(A) cos(−B) + cos(A) sin(−B) = sin(A) cos(B)− cos(A) sin(B)

Applying this with A = 90◦ and B = x, we have that

sin(90◦ − x) = sin(90◦) cos(x)− cos(90◦) sin(x).

Since sin(90◦) = 1 and cos(90◦) = 0, we obtain

sin(90◦ − x) = cos(x).

(b) Note that for the question to make sense we must have cos(θ+ 17◦) 6= 0 and we shall
have to be careful in the end to check this condition. Under this provision, however,
for 0◦ < θ < 360◦, the given equation is equivalent to

2 sin(θ + 17◦) cos(θ + 17◦) = cos(θ + 8◦).

We now recognise that the left-hand side looks like what appears in the double-angle
formula sin(2u) = 2 sin(u) cos(u) with u = θ + 17◦. In particular, applying this
observation we can write

sin(2θ + 34◦) = cos(θ + 8◦).

This was the crucial step. We may now use the result of part (2a) (remembering
what we proved in earlier parts of questions is often helpful in exams!), so as to make
both sides of the equation be evaluations of the sine function:

sin(2θ + 34◦) = sin(82◦ − θ).

There are various ways to solve this equation, but we will use that

sin(α)− sin(β) = 2 sin

(
α− β

2

)
cos

(
α+ β

2

)
,
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taking α = 2θ + 34◦ and β = 82◦ − θ. In particular, this implies that

2 sin

(
3θ − 48◦

2

)
cos

(
θ + 116◦

2

)
= 0.

The latter is then further equivalent to:

sin

(
3θ − 48◦

2

)
= 0 or cos

(
θ + 116◦

2

)
= 0.

Finally,

sin

(
3θ − 48◦

2

)
= 0⇔ 3θ − 48◦

2
= k180◦, k ∈ Z⇔ θ = 16◦ + k120◦, k ∈ Z;

whilst

cos

(
θ + 116◦

2

)
= 0⇔ θ + 116◦

2
= 90◦ + l180◦, l ∈ Z⇔ θ = 64◦ + l360◦, l ∈ Z.

Together with the requirement that 0◦ < θ < 360◦ we obtain solutions for k = 0,
k = 1, k = 2 and l = 0 of θ = 16◦, θ = 136◦, θ = 256◦ and θ = 64◦, respectively. We
note that for each of these values, cos(θ + 17◦) 6= 0.

3. For typographical convenience we will write vectors as rows. Let

rL1(λ) = (−7, 7, 1) + λ(2, 0,−3), λ ∈ R,

and
rL2(µ) = (7, p,−6) + µ(10,−4,−1), µ ∈ R,

be equations of the two lines. Further, for a point X, we will let rX denote its position
vector.

(a) (i) For the lines to intersect at the point rL1(λ) = rL2(µ), we need each of the
components to be equal, i.e.

−7 + 2λ = 7 + 10µ

7 = p− 4µ

1− 3λ = −6− µ

We note that the first and last equations only feature λ and µ, and so we will
try to use them to find the values of these parameters. In particular, adding
to the first equation a multiple of 10 of the third, we conclude 3 − 28λ = −53,
which implies λ = 2. From either the first or third equation, we then deduce
that µ = −1. Finally, from the second one, we find p = 3.

(ii) The position vector of C is given by rL1(2) = rL2(−1) = (−3, 7,−5).

(b) In order to show that B lies on L2, we need to show that there exists a µ ∈ R with
(−13, 11,−4) = rL2(µ), i.e. to find a solution to the system:

−13 = 7 + 10µ

11 = 3− 4µ

−4 = −6− µ

(where we have taken into account p = 3 from part (3a)). We conclude from the third
equation, say, that such a µ must equal −2, and then check the remaining equations
are indeed satisfied with µ = −2.
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(c) To compute the cosine, we will use the scalar product via the formula:

cos(∠ACB) =
~CA · ~CB
|CA||CB|

.

The relevant vectors are given by

~CA = rA − rC = (−7, 7, 1)− (−3, 7,−5) = (−4, 0, 6)

and
~CB = rB − rC = (−13, 11,−4)− (−3, 7,−5) = (−10, 4, 1).

Thus
~CA · ~CB = (−4) · (−10) + 0 · 4 + 6 · 1 = 46.

Furthermore,

|CA| =
√

(−4)2 + 02 + 62 =
√

52 and |CB| =
√

(−10)2 + 42 + 12 =
√

117.

Altogether this yields:

cos(∠ACB) =
46√

52
√

117
=

46

2 ·
√

13 · 3 ·
√

13
=

23

39
.

(d) To start a question like this, a sketch always helps. To begin with, we note from
the computation in (3c) that |CA| = 2

√
13 = 2

3 |CB|. So, if we let A′ be the point

with position vector rA′ = rC + 3
2
~CA, then C, B and A′ will form three of the four

vertices of a rhombus:

If D is the fourth vertex of the rhombus, then the line through C and D bisects the
angle ∠ACB. Since

~CD = ~CB + ~CA′ = ~CB +
3

2
~CA = (−10, 4, 1) +

3

2
(−4, 0, 6) = (−16, 4, 10),

a vector equation for L3 is given by

rL3(t) = rC + t ~CD = (−3, 7,−5) + t(−16, 4, 10), t ∈ R.

4. (a) One calculates in a straightforward way

a1 = 1, a2 = 3, a3 = 7, a4 = 15, a5 = 31, a6 = 63.
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(b) We have

ar+1 = 2r+1 − 1 = 2 · (2r − 1 + 1)− 1 = 2 · (2r − 1) + 2− 1 = 2ar + 1.

(c) For each natural number n:

n∑
r=1

ar =
n∑

r=1

(2r − 1)

=
n∑

r=1

2r −
n∑

r=1

1.

Using the geometric series formula (i.e.
∑n

k=1 x
k = x

∑n−1
k=0 x

k = xxn−1
x−1 ) for the first

term, we find that

n∑
r=1

ar = 2
2n − 1

2− 1
− n

= 2(2n − 1)− n.

(d) From part (4b), we know that
2ar < ar+1.

Hence dividing through by 2ar and ar+1 (note that (ar)
∞
r=1 is a sequence of positive

terms and so doing this does not change the direction of the inequality) yields

1

ar+1
<

1

2
× 1

ar
.

(e) By a repeated use of the inequality found in part (4d), we find that, for all k ∈ N,

1

a3+k
<

1
2

a3+(k−1)
<

(12)2

a3+(k−2)
< · · · <

(12)k

a3
.

(This can be rigorously argued via mathematical induction.) Applying this bound
term-by-term, it follows that

S∞ :=
∞∑
r=1

1

ar
<

1

a1
+

1

a2
+

1

a3

( ∞∑
k=0

1

2k

)
.

Plugging in the values from part (4a), we obtain the desired conclusion. (Note that it
is essential to make this argument with infinite series, since this is how the question
is set up and moreover this is what is later used in part (4f). It is not sufficient to
make the argument just for truncated series as was indicated in the mark scheme.)

(f) To find a strict lower limit we need only sum a sufficient number of the (positive!)
terms of the series. Were this number to be very large then this would of course not
be a viable strategy, however three terms suffice;

S∞ > 1 +
1

3
+

1

7
=

31

21
.

For the strict upper bound use the conclusion of (4e),

S∞ < 1 +
1

3
+

1

7

∞∑
k=0

1

2k
= 1 +

1

3
+

1

7

1

1− 1
2

=
34

21
,

where now we have benefited from the geometric series progression formula
∑∞

k=0 x
k =

(1− x)−1 (with x = 1/2).
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5. Write
∫
u =

∫
udx,

∫
v =

∫
vdx,

∫
uv =

∫
uvdx for short. As directed in the question, we

will assume the relation
∫
uv =

∫
u
∫
v holds for the indefinite integrals appearing therein.

(In fact, it should have been made clearer in the question what the range of integration
is, as the following computations are extremely sensitive to this.)

(a) To recover a function from its integral, we differentiate. By differentiating both sides
of
∫
uv =

∫
u
∫
v, using the product rule for the right-hand side ((fg)′ = f ′g + fg′,

where f =
∫
u and g =

∫
v), we obtain

uv = u

∫
v + v

∫
u

(since (
∫
uv)′ = uv, (

∫
u)′ = u and (

∫
v)′ = v). Since uv 6= 0 by assumption, we can

divide by it to obtain the desired equality.

(b) From part (5a), ∫
v

v
= 1−

∫
u

u
= 1− sin2(x) = cos2(x).

(c) We could try differentiating
∫
u
u = sin2(x) directly, but this involves the quotient

rule. Instead we will try to use the easier product rule on the right-hand side of∫
u = u sin2(x). Doing this, we conclude

u(x) = u′(x) sin2(x) + u(x)2 sin(x) cos(x). (1)

Hence
u(x)(1− 2 sin(x) cos(x)) = u′(x) sin2(x).

Now from (1) and the assumption that u(x) 6= 0, we know that sin(x) 6= 0. (Note
that this puts a restriction on the domain of the functions u and v!) Thus we can
divide by the non-zero sin2(x)u(x) to obtain

u′

u
=

1− 2 sin(x) cos(x)

sin2(x)
. (2)

(d) Separation of variables in (2) gives up to an additive constant,∫
du

u
=

∫
1− 2 sin(x) cos(x)

sin2(x)
dx.

Now the left-hand side equals (up to an additive constant) ln(u), while the right
hand-side (again, up to an additive constant) is∫

dx

sin2(x)
−
∫

(sin2(x))′

sin2(x)
dx = − cot(x)− ln sin2(x) = − cot(x)− 2 ln sin(x).

Taking exponentials of both sides gives

u(x) = Ae− cot(x)cosec2(x),

where A is a constant.
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(e) We have, using the chain rule for the derivative of a composition of two functions
(g ◦ f)′ = (g′ ◦ f)f ′,

d

dx
etan(x) = etan(x)

1

cos2(x)
,

i.e.
etan(x)

d
dxe

tan(x)
= cos2(x).

Thus we recognize at once from part (5b) it is possible to obtain a solution for v
by setting

∫
v = Betan(x) for some multiplicative constant B. This implies that

v(x) = Betan(x) sec2(x).

6. (a) Expanding (f(x)− λg(x))2 (which is clearly non-negative) gives

g(x)2λ2 − 2f(x)g(x)λ+ f(x)2 ≥ 0.

Upon definite integration, this becomes:(∫ b

a
g(x)2dx

)
λ2 − 2

(∫ b

a
f(x)g(x)dx

)
λ+

∫ b

a
f(x)2dx ≥ 0.

The two facts we have used here are that:

• for a nonnegative function h,
∫ b
a h(x)dx ≥ 0 for every a ≤ b;

• for any functions h1, h2, constants c1, c2, and a ≤ b,∫ b

a
(c1h1(x) + c2h2(x))dx = c1

∫ b

a
h1(x)dx+ c2

∫ b

a
h2(x)dx.

(b) In part (6a) we have produced a quadratic in λ, which is always nonnegative. If
its discriminant (recall, if aλ2 + bλ + c is a quadratic, its discriminant is b2 − 4ac)
was strictly positive, then it would have two real roots. This clearly contradicts the
nonnegativity of the quadratic function – draw a sketch if you are unsure why! Thus
the discriminant must be less than or equal to 0. Hence(

−2

(∫ b

a
f(x)g(x)dx

))2

− 4

(∫ b

a
g(x)2dx

)(∫ b

a
f(x)2dx

)
≤ 0,

from which the desired conclusion easily follows.

(c) Let

E :=

∫ 2

−1
(1 + x3)1/3 · 1dx.

From part (6b) (as applied to the functions f(x) = (1+x3)1/3 and g(x) = 1, a = −1,
b = 2), we have

E2 ≤
∫ 2

−1
12dx

∫ 2

−1
((1 + x3)1/2)2dx.

Integration yields∫ 2

−1
(1 + x3)dx =

[
x+

x4

4

]2
−1

= (2 + 4)−
(
−1 +

1

4

)
=

27

4
,

AEA Extended Solutions produced by the University of Warwick Department of Statistics 7



while, of course,
∫ 2
−1 1dx = 2− (−1) = 3. It follows that

E2 ≤ 81

4
,

and so

E ≤ 9

2
.

(d) Here it is beneficial to ‘spot’ x2 as the derivative of x3 (up to a multiplicative con-
stant), which then leads us to use the change of variables u = 1 + x3, du = 3x2dx.
Using this approach, we find that∫ 2

−1
x2(1 + x3)1/4dx =

1

3

∫ 9

0
u1/4du =

1

3

[
u5/4

5/4

]9
0

=
4

15
95/4 =

4

15
× 9×

√
3 =

12
√

3

5
,

as requested.

(e) A sensible thing to be doing here is thinking about how to use the previous parts
of the question to deduce the required inequality. We will start by applying the
conclusion of part (6b) to the functions f(x) = (1 + x3)1/4 and g(x) = x2 on the
interval [−1, 2], which appeared in (6d). This gives(∫ 2

−1
x2(1 + x3)1/4dx

)2

≤
∫ 2

−1
x4dx

∫ 2

−1
(1 + x3)1/2dx.

From (6d), we know that the left-hand side is equal to(
12
√

3

5

)2

=
144× 3

25
.

Calculating ∫ 2

−1
x4dx =

[
x5

5

]2
−1

=
33

5
,

we conclude ∫ 2

−1
(1 + x3)1/2dx ≥ 144× 3

25

/33

5
=

144

55
.

7. (a) A and B are a local minimum and maximum of C1, respectively. (Note that the
‘local’ part of this description was missed in the instructions to the problem.) Their
x-coordinates may be obtained by differentiating f and setting the derivative equal
to 0. In particular,

f ′(x) =
1

3
− 12

x2
= 0 ⇒ x2 = 36 ⇒ x ∈ {−6, 6}.

We conclude from the sketch (or by investigating the second derivative) that A has
coordinates

(6, f(6)) = (6, 4)

and B has coordinates
(−6, f(−6)) = (−6,−4).
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(b) The equation x = k gives a line that is perpendicular to the x-axis. For the normal
to be perpendicular to the x-axis, the tangent at that point must be parallel to it,
i.e. have a gradient of 0. It thus follows from part (7a) that k = 6 (since k > 0).

(c) Investigating the sketch, we see that the normal to C1 at the point (x, f(x)) for x > 6
will intersect C1 at some point (x′, f(x′)) with x′ ∈ (0, 6). Similarly, if x ∈ (0, 6) and
the gradient of the normal at (x, f(x)) is different from 1/3, then the normal from
this point will intersect C1 at some point (x′, f(x′)) with x′ > 6.

On the other hand the normal to the point (x, f(x)) on C1 with x-coordinate in (0, 6)
and gradient of the normal 1/3, will never meet C1 again. This is equivalent to the
gradient of tangent being equal to −3. Therefore the point P has x-coordinate given
by the solution to

f ′(x) = −3,

i.e.
1

3
− 12

α2
= −3,

so

α =
6√
10

(since α > 0).

(d) First,

β = f(α) = f(6/
√

10) =

√
10

5
+ 2
√

10 =
11

5

√
10.

Also, we know the gradient of the normal is p := 1/3. Therefore the equation for the
normal is given by y − β = p(x− α), which after some rearrangement yields

y =
1

3
x+ 2

√
10.

(e) We first observe that f is positive (resp. negative) on the positive (resp. negative)
half-line. It follows that |f | is given by mirroring the negative-valued branch of f
over the x-axis, as is shown in the following sketch:

The two turning points of C2 are clearly its two global minima, and their coordinates
are then (6, 4) and (−6, 4). (These facts may be rigorously verified by inspecting the
first and second derivatives of |f |, or else by inferring them from the properties of the
curve C1.) Finally, as regards asymptotes, the vertical axis, given by the equation
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x = 0, is one. The other two are ‘inherited’ from the y = x/3 asymptote of C1 and
have equations y = x/3 and y = −x/3.

(f) The condition that the line with equation y = mx+ 1 does not intersect or touch C2

is equivalent to there not being a real-valued solution to the equation

mx+ 1 = |f(x)|.

For positive x, the above equation is equivalent to

mx+ 1 =
x

3
+

12

x
.

After multiplying on both sides by 3x and rearranging, this is in turn equivalent to

(3m− 1)x2 + 3x− 36 = 0.

Similarly to the observation made in the answer to (6b), a necessary and sufficient
condition for there not being a real-valued solution to the latter equation is that the
discriminant is negative, i.e. 32 − 4(3m− 1)(−36) < 0. This is equivalent to

48m < 15 ⇔ m <
5

16
.

Now, we could repeat a similar analytic argument for the negative half-line, but it is
easier to use symmetry to deduce that, for there not to be any solutions to

mx+ 1 = |f(x)|

with x < 0, it is necessary and sufficient that

− 5

16
< m.

In conclusion, the set of possible values for m is the open symmetric interval(
− 5

16
,

5

16

)
.
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