1. Inverse roots

Suppose that $Q(x) = ax^2 + bx + c$ satisfies $ac \neq 0$ and has roots (i.e. solutions of Q(x) = 0) α and β .

Show that the quadratic $\tilde{Q}(x) = cx^2 + bx + a$ has roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.

Extensions

(1) Show that if $\alpha_1, \ldots, \alpha_n$ are the roots of the polynomial P, where

$$P(x) = a_0 x^n + \ldots + a_{n-1} x + a_n$$
 with $a_0 a_n \neq 0$,

then the roots of \tilde{P} given by

$$\tilde{P}(x) = a_n x^n + \ldots + a_0$$

are $\frac{1}{\alpha_1}$, $\frac{1}{\alpha_n}$.

(2) Show that the roots of

$$P_e(x) = a_0 x^{2n} + a_1 x^{2n-1} + \ldots + a_{n-1} x^{n+1} + a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \ldots + a_0 \ (a_0 \neq 0)$$

are of the form $\alpha_1, \ldots, \alpha_n, \frac{1}{\alpha_1}, \ldots, \frac{1}{\alpha_n}$.

(3) What can you say about the roots of $P_{+}(x) = a_{0}x^{2n+1} + a_{1}x^{2n} + \ldots + a_{n}x^{n+1} + a_{n}x^{n} + a_{n-1}x^{n-1} + \ldots + a_{0}$ and the roots of $P_{-}(x) = a_{0}x^{2n+1} + a_{1}x^{2n} + \ldots + a_{n}x^{n+1} - a_{n}x^{n} - a_{n-1}x^{n-1} - \ldots - a_{0}?$

2. TRIGONOMETRIC POLYNOMIALS

The angle sum formula tells us that

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1.$$

Find a similar expression involving powers of $\cos \theta$ for $\cos 3\theta$.

Extensions

- (1) Find the roots of $4\sqrt{2}x^3 3\sqrt{2}x = 1$.
- (2) What is $\cos \frac{\pi}{12}$?