1. Inverse roots

Suppose that $Q(x)=a x^{2}+b x+c$ satisfies $a c \neq 0$ and has roots (i.e. solutions of $Q(x)=0) \alpha$ and β.

Show that the quadratic $\tilde{Q}(x)=c x^{2}+b x+a$ has roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.
Hint Let $x=\frac{1}{t}$ in the definition of $Q(x)$.
Answer Following the hint, $Q(x)=Q\left(\frac{1}{t}\right)=\frac{a}{t^{2}}+\frac{b}{t}+c=\frac{\tilde{Q}(t)}{t^{2}}$. Since $a c \neq 0$ neither of the roots of Q are zero so

$$
\alpha^{2} \tilde{Q}\left(\frac{1}{\alpha}\right)=Q(\alpha)=0 \text { which implies that } \tilde{Q}\left(\frac{1}{\alpha}\right)=0
$$

Extensions

(1) Show that if $\alpha_{1}, \ldots, \alpha_{n}$ are the roots of the polynomial P, where

$$
P(x)=a_{0} x^{n}+\ldots+a_{n-1} x+a_{n} \text { with } a_{0} a_{n} \neq 0
$$

then the roots of \tilde{P} given by

$$
\tilde{P}(x)=a_{n} x^{n}+\ldots+a_{0}
$$

are $\frac{1}{\alpha_{1}} \ldots, \frac{1}{\alpha_{n}}$.
Answer Use the same trick as in the main question:

$$
P\left(\frac{1}{t}\right)=\frac{a_{n} t^{n}+\ldots+a_{0}}{t^{n}}=\frac{\tilde{P}(t)}{t^{n}}
$$

and, since none of the roots are zero,

$$
\tilde{P}\left(\frac{1}{\alpha_{i}}\right)=0
$$

(2) Show that the roots of

$$
P_{e}(x)=a_{0} x^{2 n}+a_{1} x^{2 n-1}+\ldots+a_{n-1} x^{n+1}+a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{0}\left(a_{0} \neq 0\right)
$$ are of the form $\alpha_{1}, \ldots, \alpha_{n}, \frac{1}{\alpha_{1}}, \ldots, \frac{1}{\alpha_{n}}$.

Answer First, notice that $\tilde{P}_{e}=P_{e}$. It follows that

$$
\left\{\frac{1}{\alpha_{1}}, \ldots, \frac{1}{\alpha_{2 n}}\right\}=\left\{\alpha_{1}, \ldots, \alpha_{2 n}\right\} .
$$

So every root is paired with its inverse (up to multiplicity, so if 2 is a double root then so is $\frac{1}{2}$).
(3) What can you say about the roots of

$$
P_{+}(x)=a_{0} x^{2 n+1}+a_{1} x^{2 n}+\ldots+a_{n} x^{n+1}+a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}
$$

and the roots of

$$
P_{-}(x)=a_{0} x^{2 n+1}+a_{1} x^{2 n}+\ldots+a_{n} x^{n+1}-a_{n} x^{n}-a_{n-1} x^{n-1}-\ldots-a_{0} ?
$$

Answer The same argument works in both cases (in the second case $\tilde{P}_{e}=-P_{e}$ but that doesn't affect the argument about the roots) but now there are $2 n+1$ roots. This means that one root (at least) must be its own inverse. The two solutions of $x=\frac{1}{x}$ are 1 and -1 . In the case of P_{+}it's clear that -1 is a root. In the case of $P_{-}, 1$ is a root! The other roots in both cases will come in reciprocal pairs.

2. Trigonometric polynomials

The angle sum formula tells us that

$$
\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1 .
$$

Find a similar expression involving powers of $\cos \theta$ for $\cos 3 \theta$.
Hint Write $3 x=2 x+x$!

Answer

$$
\begin{aligned}
\cos 3 \theta & =\cos (2 \theta+\theta) \\
& =\cos 2 \theta \cos \theta-\sin 2 \theta \sin \theta \\
& =2 \cos ^{3} \theta-2 \cos \theta-2 \sin ^{2} \theta \cos \theta \\
& =2 \cos ^{3} \theta-2 \cos \theta-2\left(1-\cos ^{2} \theta\right) \cos \theta \\
& =4 \cos ^{3} \theta-3 \cos \theta
\end{aligned}
$$

Extensions

(1) Find the roots of $4 \sqrt{2} x^{3}-3 \sqrt{2} x=1$.

Hint Set $x=\cos \theta$. What is $\cos \frac{3 \pi}{4}$?
Answer Following the first hint we get

$$
4 \sqrt{2} \cos ^{3} \theta-3 \sqrt{2} \cos \theta=1
$$

or

$$
\cos 3 \theta=\frac{1}{\sqrt{2}} .
$$

So

$$
3 \theta=\frac{\pi}{4}+2 n \pi
$$

and so

$$
\theta=\frac{\pi}{12}+\frac{2 n}{3} \pi
$$

The three corresponding values for $\cos \theta$ are $\cos \frac{\pi}{12}, \cos \frac{3 \pi}{4}$ and $\cos \frac{17 \pi}{12}$. The middle value is $-\frac{1}{\sqrt{2}}$ Now if we divide $4 \sqrt{2} x^{3}-3 \sqrt{2} x-1$ by $x+\frac{1}{\sqrt{2}}$ we get the quadratic $Q(x)=4 \sqrt{2} x^{2}-4 x-\sqrt{2}$. Then Q has roots $\frac{\sqrt{2} \pm \sqrt{6}}{4}$, so these are the other two roots of the equation.
(2) What is $\cos \frac{\pi}{12}$?

Answer Since $0 \leq \frac{\pi}{12}<\frac{\pi}{2}, \cos \frac{\pi}{12}$ is positive, so it must be the positive root of Q, $\frac{\sqrt{2}+\sqrt{6}}{4}$.

