1. Inverse roots

Suppose that $Q(x)=a x^{2}+b x+c$ satisfies $a c \neq 0$ and has roots (i.e. solutions of $Q(x)=0) \alpha$ and β.

Show that the quadratic $\tilde{Q}(x)=c x^{2}+b x+a$ has roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.
Hint Let $x=\frac{1}{t}$ in the definition of $Q(x)$.

Extensions

(1) Show that if $\alpha_{1}, \ldots, \alpha_{n}$ are the roots of the polynomial P, where

$$
P(x)=a_{0} x^{n}+\ldots+a_{n-1} x+a_{n} \text { with } a_{0} a_{n} \neq 0
$$

then the roots of \tilde{P} given by

$$
\tilde{P}(x)=a_{n} x^{n}+\ldots+a_{0}
$$

are $\frac{1}{\alpha_{1}} \ldots, \frac{1}{\alpha_{n}}$.
(2) Show that the roots of
$P_{e}(x)=a_{0} x^{2 n}+a_{1} x^{2 n-1}+\ldots+a_{n-1} x^{n+1}+a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{0}\left(a_{0} \neq 0\right)$ are of the form $\alpha_{1}, \ldots, \alpha_{n}, \frac{1}{\alpha_{1}}, \ldots, \frac{1}{\alpha_{n}}$.
(3) What can you say about the roots of

$$
P_{+}(x)=a_{0} x^{2 n+1}+a_{1} x^{2 n}+\ldots+a_{n} x^{n+1}+a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}
$$

and the roots of
$P_{-}(x)=a_{0} x^{2 n+1}+a_{1} x^{2 n}+\ldots+a_{n} x^{n+1}-a_{n} x^{n}-a_{n-1} x^{n-1}-\ldots-a_{0}$?

2. Trigonometric polynomials

The angle sum formula tells us that

$$
\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1
$$

Find a similar expression involving powers of $\cos \theta$ for $\cos 3 \theta$.
Hint Write $3 x=2 x+x$!

Extensions

(1) Find the roots of $4 \sqrt{2} x^{3}-3 \sqrt{2} x=1$.

Hint Set $x=\cos \theta$. What is $\cos \frac{3 \pi}{4}$?
(2) What is $\cos \frac{\pi}{12}$?

