1. Expanding Base I

Recall that the number of ways n distinct objects can be put in order is $n!=1 \times 2 \times$...n.

Let

$$
a_{k}=\frac{1}{2!}+\frac{2}{3!}+\ldots+\frac{k-1}{k!} .
$$

What is a_{k} as a simple fraction?
Hint Consider $b_{k}=a_{k}+\frac{1}{k!}=\frac{1}{2!}+\frac{2}{3!}+\ldots+\frac{k-2}{(k-1)!}+\frac{k}{k!}$ and cancel the obvious common factor in the last fraction.

Answer Following the hint, $b_{k}=\frac{1}{2!}+\frac{2}{3!}+\ldots+\frac{k-2}{(k-1)!}+\frac{k}{k!}=\frac{1}{2!}+\frac{2}{3!}+\ldots+\frac{k-1}{(k-1)!}=$ $\ldots=\frac{1}{2!}+\frac{3}{3!}=\frac{1}{2!}+\frac{1}{2!}=1$, so

$$
a_{k}=1-\frac{1}{k!} .
$$

Extensions

(1) Find N_{k}, the number of sequences $x_{2}, \ldots x_{k}$ with $x_{2}=0$ or $1, x_{3}=0$ or 1 or $2, \ldots, x_{k}=0,1, \ldots$ or $k-1$.

Hint How many values can x_{2} take? For each of these, how many values can x_{3} take?

Answer Using the hint, for each choice of the sequence $x_{2}, \ldots, x_{k}, x_{k}+1$ can take $k+1$ values, so, by induction

$$
N_{k}=k!
$$

(2) Deduce that every fraction in the interval $[0,1)$ of the form $x=\frac{m}{n!}$ (with m and n integers) can be written as

$$
\begin{equation*}
\frac{x_{2}}{2!}+\ldots \frac{x_{n}}{n!} \tag{1.1}
\end{equation*}
$$

with $x_{2}=0$ or $1, x_{3}=0$ or 1 or $2, \ldots, x_{n}=0,1, \ldots$ or $n-1$.
Hint Use (1).
Answer Suppose x has a representation as in (2.1). Since m ! is a factor of n ! for every choice of $m<n$, we know we can write $x=\frac{m}{n!}$ for some non-negative integer m. Then by the original question, we know that, since $0 \leq x \leq a_{n}$, $0 \leq m \leq n!-1$, so x is a fraction in $[0,1)$ of the right form. There are $n!$ of these and there are n ! distinct sequences of the right form so we must be able to represent all of the required fractions in this way.
(3) Remember that a number x is said to be rational if it can be written as a (possibly improper) fraction $\frac{m}{n}$ for some pair of integers m and n.

Show that every rational, x, in $[0,1)$ can be written

$$
\frac{x_{2}}{2!}+\ldots+\frac{x_{n}}{n!}
$$

with $x_{2}=0$ or $1, x_{3}=0$ or 1 or $2, \ldots, x_{n}=0,1, \ldots$ or $n-1$ for some value of n.

Hint Use the previous part!
Answer If x is a rational in $[0,1)$ then it can be written as $\frac{a}{b}$ for two integers with $0 \leq a<b$. Taking $n=b$ and $m=a \times(b-1)$! we see that $x=\frac{m}{n!}$ and so the representation holds.

