1. EXPANDING BASE I

Recall that the number of ways n distinct objects can be put in order is $n! = 1 \times 2 \times \dots n$.

Let

$$a_k = \frac{1}{2!} + \frac{2}{3!} + \ldots + \frac{k-1}{k!}.$$

What is a_k as a simple fraction?

Extensions

- (1) Find N_k , the number of sequences $x_2, ..., x_k$ with $x_2 = 0$ or 1, $x_3 = 0$ or 1 or 2, ..., $x_k = 0, 1, ...$ or k 1.
- (2) Deduce that every fraction in the interval [0,1) of the form $x = \frac{m}{n!}$ can be written as (with *n* and *m* integers)
- (1.1) $\frac{x_2}{2!} + \dots \frac{x_n}{n!},$ with $x_2 = 0$ or 1, $x_3 = 0$ or 1 or 2, ..., $x_n = 0, 1, \dots$ or n 1.
 - (3) Remember that a number x is called *rational* if it can be written as a (possibly improper) fraction $\frac{m}{n}$ for some pair of integers m and n.

Show that every rational, x, in [0, 1) can be written

$$\frac{x_2}{2!} + \dots \frac{x_n}{n!},$$

with $x_2 = 0$ or 1, $x_3 = 0$ or 1 or 2, ..., $x_n = 0, 1, ...$ or n - 1 for some value of n.