1. Expanding Base I

Recall that the number of ways n distinct objects can be put in order is $n!=1 \times 2 \times$...n.

Let

$$
a_{k}=\frac{1}{2!}+\frac{2}{3!}+\ldots+\frac{k-1}{k!} .
$$

What is a_{k} as a simple fraction?

Extensions

(1) Find N_{k}, the number of sequences $x_{2}, \ldots x_{k}$ with $x_{2}=0$ or $1, x_{3}=0$ or 1 or $2, \ldots, x_{k}=0,1, \ldots$ or $k-1$.
(2) Deduce that every fraction in the interval $[0,1)$ of the form $x=\frac{m}{n!}$ can be written as (with n and m integers)

$$
\begin{equation*}
\frac{x_{2}}{2!}+\ldots \frac{x_{n}}{n!} \tag{1.1}
\end{equation*}
$$

with $x_{2}=0$ or $1, x_{3}=0$ or 1 or $2, \ldots, x_{n}=0,1, \ldots$ or $n-1$.
(3) Remember that a number x is called rational if it can be written as a (possibly improper) fraction $\frac{m}{n}$ for some pair of integers m and n.

Show that every rational, x, in $[0,1)$ can be written

$$
\frac{x_{2}}{2!}+\ldots \frac{x_{n}}{n!}
$$

with $x_{2}=0$ or $1, x_{3}=0$ or 1 or $2, \ldots, x_{n}=0,1, \ldots$ or $n-1$ for some value of n.

