What is

$$c_n = \sum_{k=+1}^{\infty} \frac{k-1}{k!}?$$

Hint What is $c_1 = \sum_{k=2}^{\infty} \frac{k-1}{k!}$?

Extensions

(1) Show that every rational x in (0,1) can be written as

$$\sum_{k=0}^{\infty} \frac{y_k}{k!},$$

with $y_k \in \{0, 1, \ldots, k-1\}$ for each k, in exactly *two* ways: one in which all but finitely many of the y_k 's are 0 and the other in which all but finitely many of the y_k 's take the value k-1.

Hint Prove this by contradiction: so suppose that $x = \frac{m}{n!} = \sum_{k=2}^{\infty} \frac{y_k}{k!}$, with infinitely many of the y_k 's not being zero and infinitely many not being k-1 and deduce that x cannot be of the form $\frac{m}{n!}$

Answer Clearly we can write each x in the two ways described. The terminating version follows from our previous results so

$$(2.1) x = \frac{x_2}{2!} + \ldots + \frac{x_n}{n!},$$

with x_n strictly positive (if not, then $x = \frac{m'}{(n-1)!}$ so just replace n by n-1 in the argument and repeat if necessary).

Then define y_k as follows:

(2.2)
$$y_k = \begin{cases} x_k & : k < n \\ x_n - 1 & : k = n \\ k - 1 & : k > n. \end{cases}$$

This is a non-terminating representation of x.

Uniqueness of these representations follows from uniqueness of the terminating versions: as we saw in Expanding Base I, there are precisely n! representations of the form (2.1) and n! distinct rationals in [0,1) of the form $\frac{m}{1}$.

For the contradiction, suppose that $x = \frac{m}{n!} = \sum_{k=2}^{\infty} \frac{y_k}{k!}$, with infinitely many of the y_k 's not being 0 and infinitely many not being k-1. Now define x' as follows:

$$x' = \sum_{k=0}^{n} \frac{y_k}{k!}.$$

We see that x' is a multiple of $\frac{1}{n!}$ in the interval [0,1) (each y_k is non-negative so $0 \le x'$, and $x' \le x \le a_n < 1$). Moreover, since $y_k > 0$ for some k > n we see that x' < x. It follows that

$$x' = \frac{m'}{n!}$$

for some m' < n! - 2. But

$$\sum_{k=n+1}^{\infty} \frac{y_k}{k!} \in (0, \frac{1}{n!})$$

since there are is a $y_k < k-1$ for some k>n by assumption. So $\sum_{k=n+1}^\infty \frac{y_k}{k!} < c_k = \frac{1}{n!}$ and thus

$$x - x' \in (0, \frac{1}{n!}),$$

which contradicts the assumption that $x = \frac{m}{n!}$.

(2) Show that e-2 is not a rational number (and hence e is not rational).

Hint What is the power series for e^x ?

Answer Since $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$,

$$e - 2 = \sum_{k=2}^{\infty} \frac{1}{k!}$$

and is in [0,1) (since $e \approx 2.71828$), so, using the previous part we can see that it is not a fraction of the form $\frac{m}{n!}$ for any n, so cannot be rational. If e were rational then e-2 would be, so e cannot be rational either.