2. Expanding Base II

What is

$$
c_{n}=\sum_{k=n+1}^{\infty} \frac{k-1}{k!} ?
$$

Hint What is $c_{1}=\sum_{k=2}^{\infty} \frac{k-1}{k!}$?

Extensions

(1) Show that every rational x in $(0,1)$ can be written as

$$
\sum_{k=2}^{\infty} \frac{y_{k}}{k!}
$$

with $y_{k} \in\{0,1, \ldots, k-1\}$ for each k, in exactly two ways: one in which all but finitely many of the y_{k} 's are 0 and the other in which all but finitely many of the y_{k} 's take the value $k-1$.

Hint Prove this by contradiction: so suppose that $x=\frac{m}{n!}=\sum_{k=2}^{\infty} \frac{y_{k}}{k!}$, with infinitely many of the y_{k} 's not being zero and infinitely many not being $\dot{k}-1$ and deduce that x cannot be of the form $\frac{m}{n!}$

Answer Clearly we can write each x in the two ways described. The terminating version follows from our previous results so

$$
\begin{equation*}
x=\frac{x_{2}}{2!}+\ldots+\frac{x_{n}}{n!}, \tag{2.1}
\end{equation*}
$$

with x_{n} strictly positive (if not, then $x=\frac{m^{\prime}}{(n-1)!}$ so just replace n by $n-1$ in the argument and repeat if necessary).

Then define y_{k} as follows:

$$
y_{k}= \begin{cases}x_{k} & : k<n \tag{2.2}\\ x_{n}-1 & : k=n \\ k-1 & : k>n\end{cases}
$$

This is a non-terminating representation of x.
Uniqueness of these representations follows from uniqueness of the terminating versions: as we saw in Expanding Base I, there are precisely n ! representations of the form (2.1) and n ! distinct rationals in $[0,1)$ of the form $\frac{m}{n!}$.
For the contradiction, suppose that $x=\frac{m}{n!}=\sum_{k=2}^{\infty} \frac{y_{k}}{k!}$, with infinitely many of the y_{k} 's not being 0 and infinitely many not being $k-1$. Now define x^{\prime} as follows:

$$
x^{\prime}=\sum_{k=2}^{n} \frac{y_{k}}{k!} .
$$

We see that x^{\prime} is a multiple of $\frac{1}{n!}$ in the interval $[0,1)$ (each y_{k} is non-negative so $0 \leq x^{\prime}$, and $x^{\prime} \leq x \leq a_{n}<1$). Moreover, since $y_{k}>0$ for some $k>n$ we see that $x^{\prime}<x$. It follows that

$$
x^{\prime}=\frac{m^{\prime}}{n!}
$$

for some $m^{\prime} \leq n!-2$. But

$$
\sum_{k=n+1}^{\infty} \frac{y_{k}}{k!} \in\left(0, \frac{1}{n!}\right)
$$

since there are is a $y_{k}<k-1$ for some $k>n$ by assumption. So $\sum_{k=n+1}^{\infty} \frac{y_{k}}{k!}<$ $c_{k}=\frac{1}{n!}$ and thus

$$
x-x^{\prime} \in\left(0, \frac{1}{n!}\right),
$$

which contradicts the assumption that $x=\frac{m}{n!}$.
(2) Show that $e-2$ is not a rational number (and hence e is not rational).

Hint What is the power series for e^{x} ?
Answer Since $e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$,

$$
e-2=\sum_{k=2}^{\infty} \frac{1}{k!}
$$

and is in $[0,1)$ (since $e \approx 2.71828$), so, using the previous part we can see that it is not a fraction of the form $\frac{m}{n!}$ for any n, so cannot be rational. If e were rational then $e-2$ would be, so e cannot be rational either.

