2. Expanding Base II

What is

$$c_n = \sum_{k=n+1}^{\infty} \frac{k-1}{k!}?$$

Hint What is $c_1 = \sum_{k=2}^{\infty} \frac{k-1}{k!}$?

Extensions

(1) Show that every rational x in (0,1) can be written as

$$\sum_{k=2}^{\infty} \frac{y_k}{k!},$$

with $y_k \in \{0, 1, \ldots, k-1\}$ for each k, in exactly *two* ways: one in which all but finitely many of the y_k 's are 0 and the other in which all but finitely many of the y_k 's take the value k - 1.

- **Hint** Prove this by contradiction: so suppose that $x = \frac{m}{n!} = \sum_{k=2}^{\infty} \frac{y_k}{k!}$, with infinitely many of the y_k 's not being zero and infinitely many not being k-1 and deduce that x cannot be of the form $\frac{m}{n!}$
 - (2) Show that e 2 is not a rational number (and hence e is not rational).

Hint What is the power series for e^x ?