Triangle mosaic

Question:

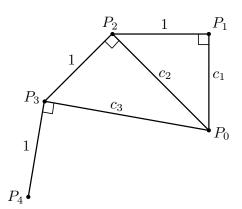
Select a starting point P_0 and draw a 1cm long line c_1 ending in P_1 .

From P_1 , make a 1cm line perpendicular to $\overline{P_0P_1}$. Connect its other end point P_2 with P_0 to obtain a triangle and call the hypotenuse c_2 .

From P_2 , make a 1cm line perpendicular to $\overline{P_0P_2}$ (away from the triangle). Connect its other end point P_3 with P_0 to obtain a triangle and call the hypotenuse c_3 .

Keep going. Step k looks like this:

From P_{k-1} , make a 1cm line perpendicular to $\overline{P_0P_{k-1}}$ (away from the previous triangle). Connect its other end point P_k with P_0 to obtain a triangle and call the hypotenuse c_k .


Denote the angles between c_k and c_{k+1} with α_k for $k = 1, 2, 3, \dots$

Let c_n be the first line to be more than one complete turn away from the starting line c_1 .

What is n? Derive formulas for c_k and α_k for k = 1, 2, 3, ...

Hints:

Construct the first few triangles on pencil and paper. Here is a start:

To find a formula for c_k you could derive this for k = 1, 2, and 3, guess it for a general k, and then prove your conjecture using the technique of *induction*. If you have not learned this or you can not remember it, here are some resources:

- Section 2 in a proof technique handout from Dartmouth: https://math.dartmouth.edu/~m22x17/misc/LaLonde2012_proof_techniques.pdf
- Video tutorial by Kimberly Brehm: https://www.youtube.com/watch?v=TqpNDiqsz7k
- Guidance for Year 11 and Year 12 (Australian) teachers with many examples including *Tower of Hanoi* and a two-colour problem: https://www.amsi.org.au/teacher_modules/pdfs/Maths_delivers/Induction5.pdf

To find a formula for α_k use trigonometry and the formula for c_k .