Triangle mosaic

Question:

Select a starting point P_0 and draw a 1cm long line c_1 ending in P_1 .

From P_1 , make a 1cm line perpendicular to $\overline{P_0P_1}$. Connect its other end point P_2 with P_0 to obtain a triangle and call the hypotenuse c_2 .

From P_2 , make a 1cm line perpendicular to $\overline{P_0P_2}$ (away from the triangle). Connect its other end point P_3 with P_0 to obtain a triangle and call the hypotenuse c_3 .

Keep going. Step k looks like this:

From P_{k-1} , make a 1cm line perpendicular to $\overline{P_0P_{k-1}}$ (away from the previous triangle). Connect its other end point P_k with P_0 to obtain a triangle and call the hypotenuse c_k .

Denote the angles between c_k and c_{k+1} with α_k for $k = 1, 2, 3, \dots$

Let c_n be the first line to be more than one complete turn away from the starting line c_1 .

What is n? Derive formulas for c_k and α_k for k = 1, 2, 3, ...

Hints:

Construct the first few triangles on pencil and paper. Here is a start:

To find a formula for c_k you could derive this for k = 1, 2, and 3, guess it for a general k, and then prove your conjecture using the technique of *induction*. If you have not learned this or you can not remember it, here are some resources:

- Section 2 in a proof technique handout from Dartmouth: https://math.dartmouth.edu/~m22x17/misc/LaLonde2012_proof_techniques.pdf
- Video tutorial by Kimberly Brehm: https://www.youtube.com/watch?v=TqpNDiqsz7k
- Guidance for Year 11 and Year 12 (Australian) teachers with many examples including *Tower of Hanoi* and a two-colour problem: https://www.amsi.org.au/teacher_modules/pdfs/Maths_delivers/Induction5.pdf

To find a formula for α_k use trigonometry and the formula for c_k .

Solution:

Using Pythagoras' theorem, $c_2^2 = c_1^2 + 1^2 = 2$, so $c_2 = \sqrt{2}$. By the same token, $c_3^2 = c_2^2 + 1^2 = 3$, so $c_3 = \sqrt{3}$, $c_4 = c_3^2 + 1^2 = 3 + 1 = 4$, so $c^4 = \sqrt{4}$, and so on, leading to the claim that for any $k = 1, 2, 3, \ldots$,

(Claim(k))
$$c_k = \sqrt{k}$$

To prove that formally, we use the technique of *induction*. The base case k = 1 is true by construction: $c_1 = 1 = \sqrt{1}$. For the *induction step*, we need to show that, for any $k = 1, 2, 3, \ldots$, if ((I(k))) is true then (I(k+1)) is also true.

Assume that (Claim(k)) is true and show that

$$(\operatorname{Claim}(k+1)) \qquad c_{k+1} = \sqrt{k+1}.$$

To do that, we proceed just as in the examples above, but for the general case. Using first Pythagoras' theorem and then (Claim(k)), $c_{k+1}^2 = c_k^2 + 1^2 = \sqrt{k^2 + 1} = k + 1$, which implies (Claim(k+1)).

To obtain the angles note that for any $k=1,2,3,\ldots,$ $\sin\alpha_k=1/c_{k+1},$ so $\alpha_k=\arcsin 1/c_{k+1}=1/\sqrt{k}.$

To find the first line c_n that is more than one turn away from c_1 , find the smallest n such that

$$\sum_{k=1}^{n-1} \alpha_k > 2\pi.$$

(That means, keep adding α_k until their sum is larger than 2π .)

At this stage you may use a calculator to find the answer. You can also write a short programme in R, Python or some other programming language. See below for sample code in R to do that.

You will find it needs 17 triangles. Te first line to be more than one complete round away from the starting line is therefore c_{18} , so n = 18.

If your 18th birthday is around this time: **Happy birthday to you!**

Sample R code:

```
c <- c()
alpha <- c()
n = 1
c[1] = 1
repeat{
        c[n+1] <- n+1
        alpha[n] <- asin(1/sqrt(c[n+1]))
        n <- n+1
        print("_")
        if ( sum(alpha) >= 2*pi ){break}
}
```