:2ioo Warwick \%izo Statistics

Risk and Predictability — Where Might Modern Mathematics Take Me?

Offer-holder Visit Day, March 2015
(Prof Mark Steel, Dr Vicky Henderson, Dr Julia Brettschneider)

Welcome to...

Offer-holders for these 3 degree courses:

- Data Science
- Mathematics and Statistics
- MORSE
...and parents or other accompanying persons!

The purpose of today

A varied programme of events, which we hope will:

- inform you
- inspire you
- help you to make the decision that is right for you, about which university offer to accept

11:15-12:00 Talk "Risk and Predictability - Where Might Modern Mathematics Take Me?"
12:00-13:00 Lunch
Undergraduate Research Project Poster Exhibition Information about Careers, Accommodations, Funding, Admissions and Student-Staff Liaison
13:00-13:45 Talk "How to solve it? Examples from STEP and A-level papers"
14:00-15:00 Campus tour led by current students / Small group meetings with lecturers and professors
from 15:00 Tea, and more information

Where might modern mathematics take me?

Some things to know:

- Mathematics - and especially Statistics - becomes much more interesting at university level.
- The demand for well-rounded maths graduates remains absolutely buoyant, everywhere in the world.
- Demand for our kind of maths, especially so!

Our kind of maths?
Probability, statistics, operational research, mathematical finance, machine learning,
These are the most sought after areas of mathematics in the world at large

In this talk we mention just a few of the exciting application areas for modern mathematics.

Where might modern mathematics take me?

Some things to know:

- Mathematics - and especially Statistics - becomes much more interesting at university level.
- The demand for well-rounded maths graduates remains absolutely buoyant, everywhere in the world.
- Demand for our kind of maths, especially so!

Our kind of maths?

Probability, statistics, operational research, mathematical finance, machine learning, ...
These are the most sought after areas of mathematics in the world at large.

In this talk we mention just a few of the exciting application areas for modern mathematics.

Destinations of our recent graduates

A wide range of

- management consultancy
- investment banking
- medical research
- market research
- 'big data' in commerce, science, government, ...
- insurance and actuarial work
- software engineering
- social or economic research
- engineering consultancy
- sport, entertainment

More details on employment statistics and careers in the flyer in your pack

Some recent student projects

A few illustrative examples of what will be presented at lunch today:

- Behavioural bias in financial decision making
- Statistical inference of stochastic differential equations
- Does having the right name bring more success?
- Comparison of population based Monte Carlo methods
- The transition density function of a genetic diffusion process
- Modelling of driver performance data
- Erdös-Kac theory and Mod-Poisson convergence
- Exponential random graphs modelling
- On the complexity and behaviour of crypto currencies compared to other markets

Explaining the growth of countries

- Statistics: dealing with uncertainty.
- Setting: few countries with reliable growth data (n, usually less than 100) and many possible determinants of growth (p, often more than 30).
Q: any thoughts on what could contribute to growth?
- Hard statistical problem: choose model among many.

Q: how many different models if $p=41$ and models are characterized by inclusion or exclusion of each covariate? A: $J=2^{41}=2.2 \times 10^{12}$.

- In the face of model uncertainty, a formal Bayesian approach is to treat the model index as a random variable (unknown)

Models $M_{j}, j=1, \ldots, J$ in model space \mathcal{M}
Prior $P\left(M_{j}\right)$ on M and data lead to posterior $P\left(M_{j} \mid y\right)$ where y represents data

Explaining the growth of countries

- Statistics: dealing with uncertainty.
- Setting: few countries with reliable growth data (n, usually less than 100) and many possible determinants of growth (p, often more than 30).
Q: any thoughts on what could contribute to growth?
- Hard statistical problem: choose model among many.

Q: how many different models if $p=41$ and models are characterized by inclusion or exclusion of each covariate? A: $J=2^{41}=2.2 \times 10^{12}$

- In the face of model uncertainty, a formal Bayesian approach is to treat the model index as a random variable (unknown)

Models $M_{j}, j=1, \ldots, J$ in model space \mathcal{M}
Prior $P\left(M_{j}\right)$ on \mathcal{M} and data lead to posterior $P\left(M_{j} \mid y\right)$ where y represents data

Explaining the growth of countries

- Statistics: dealing with uncertainty.
- Setting: few countries with reliable growth data (n, usually less than 100) and many possible determinants of growth (p, often more than 30).
Q: any thoughts on what could contribute to growth?
- Hard statistical problem: choose model among many. Q: how many different models if $p=41$ and models are characterized by inclusion or exclusion of each covariate?
- In the face of model uncertainty, a formal Bayesian approach is to treat the model index as a random variable (unknown)

Models $M_{j}, j=1, \ldots, J$ in model space \mathcal{M}
Prior $P\left(M_{j}\right)$ on M and data lead to posterior $P\left(M_{j} \mid y\right)$ where y represents data

Explaining the growth of countries

- Statistics: dealing with uncertainty.
- Setting: few countries with reliable growth data (n, usually less than 100) and many possible determinants of growth (p, often more than 30).
Q: any thoughts on what could contribute to growth?
- Hard statistical problem: choose model among many. Q: how many different models if $p=41$ and models are characterized by inclusion or exclusion of each covariate? A: $J=2^{41}=2.2 \times 10^{12}$.
- In the face of model uncertainty, a formal Bayesian approach is to treat the model index as a random variable (unknown) Models $M_{j}, j=1, \ldots, j$ in model space M Prior $P\left(M_{j}\right)$ on \mathcal{M} and data lead to posterior $P\left(M_{j} \mid y\right)$ where y represents data

Explaining the growth of countries

- Statistics: dealing with uncertainty.
- Setting: few countries with reliable growth data (n, usually less than 100) and many possible determinants of growth (p, often more than 30).
Q: any thoughts on what could contribute to growth?
- Hard statistical problem: choose model among many. Q: how many different models if $p=41$ and models are characterized by inclusion or exclusion of each covariate? A: $J=2^{41}=2.2 \times 10^{12}$.
- In the face of model uncertainty, a formal Bayesian approach is to treat the model index as a random variable (unknown)

Models $M_{j}, j=1, \ldots, J$ in model space \mathcal{M}
Prior $P\left(M_{j}\right)$ on \mathcal{M} and data lead to posterior $P\left(M_{j} \mid y\right)$ where y represents data

Bayesian Model Averaging (BMA)

Or do you really have to choose? Can use BMA: Inference on quantity of interest, Δ, through mixing

$$
P_{\Delta \mid y}=\sum_{j=1}^{J} P_{\Delta \mid y, M_{j}} P\left(M_{j} \mid y\right)
$$

Probabilistic treatment of model uncertainty (like parameter uncertainty)

Use Baves rule for inference given each model and inference on model space.

Typically J is huge: simulation over \mathcal{M} using Markov chain Monte Carlo, which only tends to visit the most interesting models.

Bayesian Model Averaging (BMA)

Or do you really have to choose? Can use BMA:
Inference on quantity of interest, Δ, through mixing

$$
P_{\Delta \mid y}=\sum_{j=1}^{J} P_{\Delta \mid y, M_{j}} P\left(M_{j} \mid y\right)
$$

Probabilistic treatment of model uncertainty (like parameter uncertainty)

Use Bayes rule for inference given each model and inference on model space.

Typically J is huge: simulation over \mathcal{M} using Markov chain Monte Carlo, which only tends to visit the most interesting models.

Bayesian Model Averaging (BMA)

Or do you really have to choose? Can use BMA:
Inference on quantity of interest, Δ, through mixing

$$
P_{\Delta \mid y}=\sum_{j=1}^{J} P_{\Delta \mid y, M_{j}} P\left(M_{j} \mid y\right)
$$

Probabilistic treatment of model uncertainty (like parameter uncertainty)

Use Bayes rule for inference given each model and inference on model space.

Typically J is huge: simulation over \mathcal{M} using Markov chain Monte Carlo, which only tends to visit the most interesting models.

Some results

We used a sample of average growth data for $n=72$ countries and $p=41$ possible covariates. We average over 150,000 models and the best model only has a probability of 1.24% assigned to it.
Important regressors:

- GDP level in 1960 (neg. effect, so convergence)
- Equipment investment (pos. effect)
- Life expectancy
surprising important ones:
- Fraction Confucian (Chinese indicator)
some surprising absences of strong effects:
- Primary school enrollment
- Higher educ. enrollment
- Revolutions and coups

Some results

We used a sample of average growth data for $n=72$ countries and $p=41$ possible covariates. We average over 150,000 models and the best model only has a probability of 1.24% assigned to it. Important regressors:

- GDP level in 1960 (neg. effect, so convergence)
- Equipment investment (pos. effect)
- Life expectancy
surprising important ones:
- Fraction Confucian (Chinese indicator)
some surprising absences of strong effects:
- Primary school enrollment
- Higher educ. enrollment
- Revolutions and coups

Some results

We used a sample of average growth data for $n=72$ countries and $p=41$ possible covariates. We average over 150,000 models and the best model only has a probability of 1.24% assigned to it. Important regressors:

- GDP level in 1960 (neg. effect, so convergence)
- Equipment investment (pos. effect)
- Life expectancy
surprising important ones:
- Fraction Confucian (Chinese indicator)
some surprising absences of strong effects:
- Primary school enrollment
- Higher educ. enrollment
- Revolutions and coups

Some results

We used a sample of average growth data for $n=72$ countries and $p=41$ possible covariates. We average over 150,000 models and the best model only has a probability of 1.24% assigned to it. Important regressors:

- GDP level in 1960 (neg. effect, so convergence)
- Equipment investment (pos. effect)
- Life expectancy
surprising important ones:
- Fraction Confucian (Chinese indicator)
some surprising absences of strong effects:
- Primary school enrollment
- Higher educ. enrollment
- Revolutions and coups

How you really make financial decisions

Psychologists have uncovered a wealth of behavioural biases in the way we make decisions under uncertainty.
We are not rational !

- BBC2 Horizon programme "How you really make decisions"
- Thinking Fast and Slow, D Kahneman (Nobel Prize, 2002)
- Government has a Behavioural Insights Team to provide policy recommendations

How do Mathematics, Statistics and Probability contribute?

- Identify potential biases - Analyze data \& design statistical tests
- Develop stochastic models to capture human behaviour under biases: to explain and predict how we might behave - in particular, in a dynamic setting

Experimental and Empirical Evidence suggests....

Tend to prefer a certain $£ 500$ to a 50% chance of $£ 1000$ risk averse over gains
But prefer a 50\% chance of losing $£ 1000$ to a certain loss of $£ 500$ risk seeking over losses

Averse to gambles such as (£110, 50%; - £ $100,50 \%$) loss averse
Use reference points, mental accounts, framing
Delay realization of losses (relative to gains) - disposition effect

Why do people buy lottery tickets and insurance?

Tend to prefer a
$\frac{1}{1000}$ chance of $£ 5000$ to a certain $£ 5$
But prefer a certain loss of $£ 5$ to a $\frac{1}{1000}$ chance of losing $£ 5000$

We tend
to over-weight small probabilities

How can students get involved? PhD level research
PhD student Alex Tse
is incorporating probability weighting into stochastic trading models.
Time-inconsistent behaviour emerges.
Casino gambling.

What Research can I do as an Undergraduate?

Fourth year MMORSE student Nikesh Lad is analyzing individual investor behaviour with a very large dataset of trades - 158,000 accounts over a five year period.

Third year student Rosie Ferguson will be doing an 8 week URSS project with me this summer.

Behavioural Biases in Financial Decision Making

Introduction Traditional economic theory postulates that investors are "wealth maximisers". However, emotion and psychologital factors influence our decisions. Behavioural finance attempts to fill the void of phenomena in stock markets that cannot be described plausibly in models based an rationality. Project aim: - Investigate individual investor behawiour using real trading data.

to whether the stock has attained its historical high price.

Literature

Descriptive theory
-Heuristic: a mechanism or strategy which people use (often unconsciously) to reduce the complesity of taks.
-Often leads to biases, e.g. framing and availability.
Loss aversion: refers to the asymmetric motives people have to strongly prefer awoiding losses to acquiring gains.
strongly preter awoiding losses to acquiring gains.
Disposition effect: a paradox where irmestors tend to "sell winners
too early and rise losers too long, "
Theoretical models
-Prospect theory: value function on the domain of gains and losses -Replaces expected utility with probability weighting function. - Reflects the human tendency to cverweight small probabiities and underweight high probabilities.

terature describes two broad categories of investor behaviour.

1. Time-consistent models

Threshold models: optimal strategy is to sell the stock the first time treaches a threshold leverl; property known as time-consistency. -Example-realization utility.
2. Non time-consistent models
egree models: irvestors observe the maximum price of a stock and Gamble for resurrection'. Wait untill the stock price reaches this historical high price again before selling - will not sell below this price.

Data

Use trading data from a US discount brokerage firm (Odean, 1998).

- January 1991 to December 1996.
- 78,000 unique households collectively with 158,034 accounts. - Fitter data for trades common stacks; leaves 10,373 stocks. A random sample of 10,000 households is taken for analysis. ata has three main demographic categaries: active trader, affluen ouseholds and general households.

Nikesh Lad | Department of Statistics | Supervisors: Dr J. Brettschneider, Dr V. Henderson

Analysis			
Holding times Investigate three different holding times to develop a picture of investor behaviour.			
Buy-to-sell - how long does an imestor hald a stack for? - Gamma curve fits the features of distribution well, verified by goodness-of-fit tests. Represents waiting time untit the the event. - Event: the irvestor faces a sell versus hold decision. - Interpret the shape parameter as characterising the investors level of patience which determines their waiting time. - Would expect the shape parameter for active traders to be less than for affluent or general households.			
Holding time	Median \|ides)	Mean lappt	Shape
Buy to sodl	169	${ }^{342}$	0.76
Active trader	163	312	0.707
General howsehold	218	356	0.81
Afluent housetold	298	427	1.02
Maximum-to.sell	49	167	0.428
Buy to-maximum	63	175	0.486

Maximum-to-sell - does the abservance of a maximum price
increase propensity to sell?

- 42.1% of stack trades have maximum-to-sell holding time of less than 28 days.
Consider holding time relative to the buy-to-sell holding time.

temacenaturey

Produces interesting result, after noticing maximum price investors - Found to be selling stocks very promptly - Found to be waiting a long time to sell; here maximum price happens very shortly after stock purchase.
Suy-to-maximum - how long does the investor wait to observe a historital high price?
-The longer the investor waits to realise a maximum price, the higher the median return, see Figure 6

Return analysis

Analyse the returns of a stock trade, defined as

$$
\text { return }=\frac{\text { sell price }- \text {-buy price }}{\text { buy price }}
$$

Large proportion of investors making sman gains or losses, with 30.2% of trades with returns between -0.1% and 0.1%, - Distribution of returns is leptakurtic with a large positive skew,

dietribution is not Normally distrituted Demoraphic Adive | Demagraphic | Active | General | Aflluent |
| :--- | :---: | :---: | :---: |
| Median retum ((\$) | 0.035 | 0.056 | 0.049 | - Ascaled-t distribution is found to provide an adequate fit.

 $$
\text { Figure } 4 \text { Histragam and } q \text {-q plof for reteums }
$$

Difference between maximum and sell price Define the maximum price as the highest price that occurs since the stock was purchassed and until the stock was soldd (note that the maximum price can accur at the sell time itself).

- Investors typically observed to sell at a price just below the maximum price of the stock trajectory, since the stack was bought. 1.1\% of stork urades sold will ins price range of $\$ 0$ to $\$ 5$ below the maximum price.
- 12.6% of stock trades sold at the maximum price itself.

Relationships between returns and holding times - Positive returns are best realised when the investor observes the maximum price and reatts promply,

Mrancumanamanaly
 \square

 Median return is negative if the imestor waits roughly less than 20 days to observe the maximum price
44:
i'

Conclusions

Fgure 7 : illustration sloa prike trapoctory.
ropensity to sell seems to be highes if the investor observed a istorical high price of the stock price trajectory and is dependent on number of factors
Whether the stock is making a positive or negative return - Selling occurs at a prompter rate for positive returns. If the maximum price occurs at a time which is not close to when the stock was purchased (Figure 5)
The longer the investor waits to realise a maximum price, the higher the median return - greater chance of experiencing higher the median eturnitures (Figure 6).
maxima of greater magnitud The type of investar:
-On average, active traders have shorter buy-to-sell holding time and yield lower returns.

解 underperform passive strategies.
this behaviour time consistent?
Not in the dassical sense - large proportion of irvestors are seling stocks just below the maximum price and
price reashes some pre-determined level.

Bibliography

Aparicio, F. and 1. Estrada, "Empirical distributions of stock returns: European securities markets, 1990-95", The European Journal of Finance, (2001), 7(1): 1-21
Esiberis, N. and W. . Cong, "Realization utility", Journal of Financial Economics, (2012), 104: 251-271
Kahneman, D. and A. Tversky, "Prospect Theory: An Analysis of Decision under Risk," Econometric, (1979), 47| (2): 263-292. Odean, T, "Are Investors Reluctant to Realse Their Losseš", The Americon Economic Review, (1998), 55(5): 1775-1799. - Sherrin, H. and M. Statman, "The Disposition to Sell Winners Too Early and Ride Losers Too Long: Theory and Evidence," The Journa of Finance, (1985), 4, 377.750.
hand is worth two in the bush: On choice behawiour in an optimal stopping task." [2014)

Big data in genomics and medicine

- Novel high-throughput molecular measurement technologies
- Genome-wide perspective
- Hope: New avenues for scientific research
- Medical applications in complex genetic diseases: etiology, prognosis, treatment
- Challenges for mathematical sciences:
- Extract information from data
- Ensure reproducible results
- Model biological processes

Example: Microarray Gene Expression Data

- DNA is the blueprint of the organism

Your liver and your brain?

- Gene expression:

- Microarray: Expression of tens of thousands of genes simultaneously
- Mathematical and statistical challenges:
- High-dimensional noisy data
- Models (e.g. preprocessing, networks)

- Methodology to scaled up (e.g. multiple testing)

Example: Decision making in Cancer Recurrence Prevention

- Adjuvant treatment?
- Recurrence risk based on gene expression panel
- Complex decision under uncertainty
- Bayesian networks

Example: Chronotherapy

- Maximising treatment efficacy while minimising side effects
- Medication aligned with circadian clock (time series analysis)
$\hat{x}_{t}=\sum_{j=1}^{\hat{N}} \hat{a}_{j}^{\hat{N}} \sin \left(2 \pi t / \hat{p}_{j}\right)+\hat{b}_{j}^{\hat{N}} \cos \left(2 \pi t / \hat{p}_{j}\right)$

Mathematics as language of sciences and social sciences

"The instrument that mediates
between theory and practice, between thought and observation, is mathematics;
it builds the connecting bridge and
David Hilbert Mathematician 1862-1943
23 Problems at ICM Paris 1900

Mathematics as language of sciences and social sciences

> "The instrument that mediates between theory and practice, between thought and observation, is mathematics;
> it builds the connecting bridge and makes it stronger and stronger."

David Hilbert
Mathematician
1862-1943
23 Problems at
ICM Paris 1900

- Seen today: economics, finance, genomics/medicine.
- More: sociology, psychology, demography, actuarial sciences, epidemiology, physics, chemistry, geology, geography, agriculture, engineering, communication, traffic, music, sports, astronomy, business analytics and more
- Brochure in your pack: Warwick Statistics Research Spotlights

Studying at Warwick Statistics

- Medium size department, still growing
- Design of interdisciplinary degrees, teaching committee, student staff liaison committee (SSLC), personal tutor system
- Senior scholarship, Prizes (4 graduation, 4 UG, STEP)
- Learning happens in lectures, exercise classes, tutorials, labs, projects, library study, problem solving, student teams
- Diverse student body

What else happen's in a day?

- 270+ student societies such as Argentine Tango, Science Fiction, Debating, Hindu, Music ensembles... - or set up your own!
- 73 sports clubs, 100+ competitive teams,
 world class facilities
- Art Centre (2 theatres, cinema, concert hall, art gallery)
- Employability skills: communication,
 problem solving, planning \& organisation, time management, team work
- Also: Enjoy performances, parties \& relax
- Sample schedule (UG websites)

Questions?

What next?

now Lunch: Undergraduate Research Project Poster Exhibition, Careers, Funding, Accommodation, Admissions, Student-Staff Liaison (Daniel Wison-Nunn \& Pieris Christofi)
1pm Talk by Dr Jon Warren: "How to solve it!" (for students only) (Alternative event for accompanying persons: campus tour)
2pm Campus tour and small group meetings (for students only)
3pm Tea

