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Welcome to...

Offer-holders for these 3 degree courses:

I Data Science

I Mathematics and Statistics

I MORSE

...and parents or other accompanying persons!



The purpose of today

A varied programme of events, which we hope will:

I inform you

I inspire you

I help you to make the decision that is right for you, about
which university offer to accept



11:15–12:00 Talk “Risk and Predictability — Where Might
Modern Mathematics Take Me?”

12:00–13:00 Lunch
Undergraduate Research Project Poster Exhibition
Information about Careers, Accommodations,
Funding, Admissions and Student-Staff Liaison

13:00–13:45 Talk “How to solve it? Examples from STEP and
A-level papers”

14:00–15:00 Campus tour led by current students / Small group
meetings with lecturers and professors

from 15:00 Tea, and more information



Where might modern mathematics take me?

Some things to know:

I Mathematics — and especially Statistics — becomes much
more interesting at university level.

I The demand for well-rounded maths graduates remains
absolutely buoyant, everywhere in the world.

I Demand for our kind of maths, especially so!

Our kind of maths?
Probability, statistics, operational research, mathematical finance,
machine learning, . . .
These are the most sought after areas of mathematics in the world
at large.

In this talk we mention just a few of the exciting application areas
for modern mathematics.
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Destinations of our recent graduates

A wide range of

I management consultancy

I investment banking

I medical research

I market research

I ‘big data’ in commerce, science, government, . . .

I insurance and actuarial work

I software engineering

I social or economic research

I engineering consultancy

I sport, entertainment

More details on employment statistics and careers in the flyer in
your pack



Some recent student projects

A few illustrative examples of what will be presented at lunch
today:

I Behavioural bias in financial decision making

I Statistical inference of stochastic differential equations

I Does having the right name bring more success?

I Comparison of population based Monte Carlo methods

I The transition density function of a genetic diffusion process

I Modelling of driver performance data

I Erdös-Kac theory and Mod-Poisson convergence

I Exponential random graphs modelling

I On the complexity and behaviour of crypto currencies
compared to other markets



Explaining the growth of countries

I Statistics: dealing with uncertainty.

I Setting: few countries with reliable growth data (n, usually
less than 100) and many possible determinants of growth (p,
often more than 30).
Q: any thoughts on what could contribute to growth?

I Hard statistical problem: choose model among many.
Q: how many different models if p=41 and models are
characterized by inclusion or exclusion of each covariate?
A: J = 241 = 2.2× 1012.

I In the face of model uncertainty, a formal Bayesian approach
is to treat the model index as a random variable (unknown)

Models Mj , j = 1, . . . , J in model space M

Prior P(Mj) on M and data lead to posterior P(Mj | y) where
y represents data
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Bayesian Model Averaging (BMA)

Or do you really have to choose? Can use BMA:

Inference on quantity of interest, ∆, through mixing

P∆ | y =
J∑

j=1

P∆ | y ,Mj
P(Mj | y)

Probabilistic treatment of model uncertainty (like parameter
uncertainty)

Use Bayes rule for inference given each model and inference on
model space.

Typically J is huge: simulation over M using Markov chain Monte
Carlo, which only tends to visit the most interesting models.
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Some results

We used a sample of average growth data for n = 72 countries and
p = 41 possible covariates. We average over 150,000 models and
the best model only has a probability of 1.24% assigned to it.
Important regressors:

I GDP level in 1960 (neg. effect, so convergence)

I Equipment investment (pos. effect)

I Life expectancy

surprising important ones:

I Fraction Confucian (Chinese indicator)

some surprising absences of strong effects:

I Primary school enrollment

I Higher educ. enrollment

I Revolutions and coups
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How you really make financial decisions

Psychologists have uncovered a wealth of behavioural biases in
the way we make decisions under uncertainty.
We are not rational !

I BBC2 Horizon programme “How you really make decisions”

I Thinking Fast and Slow, D Kahneman (Nobel Prize, 2002)

I Government has a Behavioural Insights Team to provide
policy recommendations



How do Mathematics, Statistics and Probability
contribute?

I Identify potential biases — Analyze data & design statistical
tests

I Develop stochastic models to capture human behaviour under
biases: to explain and predict how we might behave — in
particular, in a dynamic setting



Experimental and Empirical Evidence suggests....

Tend to prefer a certain £500
to a 50% chance of £1000
risk averse over gains
But prefer a 50% chance of
losing £1000 to a certain loss
of £500 risk seeking over losses

Averse to gambles such as (£110,
50%; −£100, 50% ) loss averse
Use reference points, mental accounts, framing
Delay realization of losses (relative to gains) - disposition effect



Why do people buy lottery tickets and insurance?

Tend to prefer a
1

1000 chance of £5000 to a certain £5

But prefer a certain loss of
£5 to a 1

1000 chance of losing £5000

We tend
to over-weight small probabilities



How can students get involved? PhD level research
PhD student Alex Tse
is incorporating probability weighting
into stochastic trading models.
Time-inconsistent behaviour emerges.
Casino gambling.



What Research can I do as an Undergraduate?

Fourth year MMORSE student Nikesh Lad
is analyzing individual investor behaviour
with a very large dataset of trades - 158,000
accounts over a five year period.

Third year student Rosie Ferguson will
be doing an 8 week URSS project with
me this summer.



Behavioural Biases in Financial Decision Making 
NIKESH LAD  |  DEPARTMENT OF STATISTICS  |  SUPERVISORS: DR J. BRETTSCHNEIDER, DR V. HENDERSON 

Traditional economic theory postulates that investors are “wealth 
maximisers”. However, emotion and psychological factors influence 
our decisions. Behavioural finance attempts to fill the void of       
phenomena in stock markets that cannot be described plausibly in    
models based on rationality. 

Project aim: 

 Investigate individual investor behaviour using real trading data. 

 Explore whether the propensity to sell a stock is positively related 
to whether the stock has attained its historical high price.  

A representation of a typical investor. 

Figure 7: illustrative stock price trajectory 
 

Propensity to sell seems to be higher if the investor observed a         
historical high price of the stock price trajectory and is dependent on 
a number of factors: 

 Whether the stock is making a positive or negative return. 

 Selling occurs at a prompter rate for positive returns. 

 If the maximum price occurs at a time which is not close to when 
the stock was purchased (Figure 5). 

 The longer the investor waits to realise a maximum price, the 
higher the median return – greater chance of experiencing       
maxima of greater magnitudes (Figure 6). 

 The type of investor. 

 On average, active traders have shorter buy-to-sell holding times 
and yield lower returns. 

 Consistent with idea that active investment strategies can        
underperform passive strategies. 

Is this behaviour time consistent? 

 Not in the classical sense – large proportion of investors are selling 
stocks just below the maximum price and not the first time the 
price reaches some pre-determined level. 

Introduction 

             

      

      

        
      

       

Descriptive theory 

 Heuristics: a mechanism or strategy which people use (often un-
consciously) to reduce the complexity of tasks.  

 Often leads to biases, e.g. framing and availability. 

 Loss aversion: refers to the asymmetric motives people have to 
strongly prefer avoiding losses to acquiring gains.  

 Disposition effect: a paradox where investors tend to “sell winners 
too early and rise losers too long.” 

Theoretical models 

 Prospect theory: value function on the domain of gains and losses.  

 Replaces expected utility with probability weighting function. 

 Reflects the human tendency to overweight small probabilities 
and underweight high probabilities. 

 

 

 

 

 
 

Figure 1: (a) value function (b) probability weighting function 
 

Literature describes two broad categories of investor behaviour. 

1. Time-consistent models 

Threshold models: optimal strategy is to sell the stock the first time 
it reaches a threshold level; property known as time-consistency.  

 Example – realization utility. 

2. Non time-consistent models 

Regret models: investors observe the maximum price of a stock and 
‘gamble for resurrection.’ Wait until the stock price reaches this his-
torical high price again before selling – will not sell below this price. 

Literature 

Use trading data from a US discount brokerage firm (Odean, 1998). 

 January 1991 to December 1996. 

 78,000 unique households collectively with 158,034 accounts. 

 Filter data for trades common stocks; leaves 10,373 stocks.  

 A random sample of 10,000 households is taken for analysis. 

Data has three main demographic categories: active trader,  affluent 
households and general households. 

Data 

Analysis Conclusions 

 Aparicio, F. and J. Estrada, “Empirical distributions of stock returns: 
European securities markets, 1990-95”, The European Journal of 
Finance, (2001), 7(1): 1-21. 

 Barberis, N. and W. Xiong, “Realization utility,” Journal of Financial 
Economics, (2012), 104: 251-271. 

 Kahneman, D. and A. Tversky, “Prospect Theory: An Analysis of   
Decision under Risk,” Econometrica, (1979), 47(2): 263-292. 

 Odean, T., “Are Investors Reluctant to Realise Their Losses?”, The 
American Economic Review, (1998), 55(5): 1775-1798. 

 Shefrin, H. and M. Statman, “The Disposition to Sell Winners Too 
Early and Ride Losers Too Long: Theory and Evidence,” The Journal 
of Finance, (1985), 40(3): 777-790. 

 Strack, P. and P. Viefers, “A bird in the hand is worth two in the 
bush: On choice behaviour in an optimal stopping task.” (2014) 
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Return analysis 

Analyse the returns of a stock trade, defined as 

 

 

 Large proportion of investors making small gains or losses, with 
30.2% of trades with returns between –0.1% and 0.1%. 

 Distribution of returns is leptokurtic with a large positive skew,   
distribution is not Normally distributed. 

 

 

 A scaled-t distribution is found to provide an adequate fit. 

 

 

 

 

 

 
 

Figure 4: histogram and q-q plot for returns 

 

Difference between maximum and sell price 

Define the maximum price as the highest price that occurs since the 
stock was purchased and until the stock was sold (note that the  
maximum price can occur at the sell time itself). 

 Investors typically observed to sell at a price just below the       
maximum price of the stock trajectory, since the stock was bought. 

 61.1% of stock trades sold within a price range of $0 to $5 below 
the maximum price. 

 12.6% of stock trades sold at the maximum price itself. 
 

Relationships between returns and holding times 

 Positive returns are best realised when the investor observes the 
maximum price and reacts promptly. 

 

 

 

 

 

 
 

Figure 5: boxplots of returns versus scaled maximum-to-sell holding time 

 Median return is negative if the investor waits roughly less than 20 
days to observe the maximum price. 

 

 

 

 

 

 
 

Figure 6: boxplots of returns versus buy-to-maximum holding time 

Buy-to-sell holding time
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Holding times 

Investigate three different holding times to develop a picture of in-
vestor behaviour. 

Buy-to-sell  – how long does an investor hold a stock for? 

 Gamma curve fits the features of distribution well, verified by 
goodness-of-fit tests. Represents waiting time until the rth event.  

 Event: the investor faces a sell versus hold decision.  

 Interpret the shape parameter as characterising the investors level 
of patience which determines their waiting time. 

 Would expect the shape parameter for active traders to be less 
than for affluent or general households. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: histogram of buy-to-sell holding time with demographic densities 
 

Maximum-to-sell – does the observance of a maximum price                  
increase propensity to sell? 

 42.1% of stock trades have maximum-to-sell holding time of less 
than 28 days. 

Consider holding time relative to the buy-to-sell holding time. 

 

 

 

 

 

 
 

Figure 3: histogram of the distribution of scaled maximum-to-sell holding time 
 

Produces interesting result, after noticing maximum price investors: 

 Found to be selling stocks very promptly 

 Found to be waiting a long time to sell; here maximum price     
happens very shortly after stock purchase.  

 

Buy-to-maximum – how long does the investor wait to observe a  
historical high price? 

 The longer the investor waits to realise a maximum price, the  
higher the median return, see Figure 6. 

Holding time Median (days) Mean (days) Shape 

Buy-to-sell 169 342 0.768 

     Active trader 163 312 0.707 

     General household 218 356 0.819 

     Affluent household 298 427 1.027 

Maximum-to-sell 49 167 0.428 

Buy-to-maximum 63 175 0.486 
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Median return (%) 0.035 0.056 0.049 



Big	  data	  in	  genomics	  and	  medicine

‣ Novel	  high-‐throughput	  molecular	  measurement	  technologies

‣ Genome-‐wide	  perspec8ve

‣ Hope:	  New	  avenues	  for	  scien8fic	  research
‣Medical	  applica8ons	  in	  complex	  gene8c	  diseases:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
e8ology,	  prognosis,	  treatment

‣ Challenges	  for	  mathema/cal	  sciences:	  

• Extract	  informa(on	  from	  data

• Ensure	  reproducible	  results

•Model	  biological	  processes



Example:	  Microarray	  Gene	  Expression	  Data

proteinRNADNA
Transcription Translation

Replication

‣ DNA	  is	  the	  blueprint	  of	  the	  organism
‣ Your	  liver	  and	  your	  brain?
‣ Gene	  expression:

‣Microarray:	  Expression	  of	  tens	  of	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
thousands	  of	  genes	  simultaneously	  

‣Mathema8cal	  and	  sta8s8cal	  challenges:	  
• High-‐dimensional	  noisy	  data
•Models	  (e.g.	  preprocessing,	  networks)
•Methodology	  to	  scaled	  up	  (e.g.	  mul8ple	  tes8ng)-0.6
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	  Example:	  Decision	  making	  in	  Cancer	  Recurrence	  Preven8on
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	  Example:	  Chronotherapy

‣ Adjuvant	  treatment?	  

‣ Recurrence	  risk	  
based	  on	  gene	  
expression	  panel
‣ Complex	  decision	  
under	  uncertainty

‣ Bayesian	  networks

Inference on periodicity of circadian time series 799
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Fig. 3. Simulation study. Boxplots of log10(SqE) for period estimates obtained from non-sinusoidal synthetic mRNA
dynamics for both the SR and FFT-NLLS (FFT) methods based on 200 replications. (a) Asymmetric cycles. (b) Cycles
with shoulder pattern. (c) Cycles with noise. For all plots crosses represent values of log10(SqE) associated with non-
circadian period estimates.

remaining periods, p2, . . . , pN , correspond to smaller scale oscillations that may be present in the process.
For a set of observations {xt }n

t=1, the model in (4.1) can be written in matrix form as x = ZN βN + ε,
with x = (x1, . . . , xn)

T and ε = (ε1, . . . , εn)
T being n-dimensional vectors, βN = (a1, b1, . . . , aN , bN )T a

2N -dimensional vector, and ZN the (n × 2N ) matrix with elements Zt,2 j−1
N = sin (2π t/p j ) and Zt,2 j

N =
cos (2π t/p j ), t = 1, . . . , n, j = 1, . . . , N . Given a set of period estimates p̂1, . . . , p̂N , the model in (4.1)
is linear in βN and thus an unbiased estimate β̂N can be obtained via least squares (Brillinger, 2001).
The number of terms N in (4.1) can be determined by minimizing some information criterion such as the
Akaike criterion, say J (N ). Let N̂ = arg minN J (N ). The fitted oscillation is then

x̂t =
N̂∑

j=1

â N̂
j sin (2π t/ p̂ j ) + b̂N̂

j cos (2π t/ p̂ j ), t = 1, . . . , n, (4.2)

 by guest on M
arch 15, 2015

http://biostatistics.oxfordjournals.org/
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‣Maximising	  treatment	  efficacy	  while	  minimising	  side	  effects

‣Medica8on	  aligned	  with	  circadian	  clock	  (8me	  series	  analysis)

802 M. J. COSTA AND OTHERS
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Fig. 4. Applications. (a) Detrended smoothed observed skin temperature time series recorded from replicate 2 (dotted
line) and fitted theoretical oscillation (solid line). (b) SR period estimates for each replicate and each treatment stage
in the chronotherapy study (B, Before; D, During; A, After). (c) Detrended observed averaged PER2:LUC normalized
luminescence (Norm. lum.) for treatments G1, G2, and control (dashed lines) together with fitted theoretical oscilla-
tions (solid line). (d) Relative error plot for individual replicates of PER2:LUC expression for treatments G1, G2, and
control using the SR method. (e) Detrended observed average CCA1:LUC and TOC1:LUC normalized luminescence
(dashed lines) together with fitted theoretical oscillations (solid line). (f) Relative error plot for individual replicates
of the CCA1:LUC and TOC1:LUC constructs using the SR method. In (c) and (e) markers correspond to positions of
observed values.
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David	  Hilbert	  
Mathema8cian	  
1862-‐1943
23	  Problems	  at
ICM	  Paris	  1900

Mathema8cs	  as	  language	  of	  sciences	  and	  social	  sciences

‣Mathema8cs	  and	  sta8s8cs	  are	  everywhere

‣ Seen	  today:	  economics,	  finance,	  genomics/medicine.	  

‣More:	  physics,	  chemistry,	  geology,	  sociology,	  engineering,	  
actuarial	  sciences,	  

“The	  instrument	  that	  mediates	  
between	  theory	  and	  prac(ce,	  
between	  thought	  and	  observa(on,	  
is	  mathema(cs;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
it	  builds	  the	  connec(ng	  bridge	  and	  
makes	  it	  stronger	  and	  stronger.”
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Mathema8cs	  as	  language	  of	  sciences	  and	  social	  sciences

‣ Seen	  today:	  economics,	  finance,	  genomics/medicine.	  

‣More:	  sociology,	  psychology,	  demography,	  actuarial	  sciences,	  
epidemiology,	  physics,	  chemistry,	  geology,	  geography,	  
agriculture,	  engineering,	  communica8on,	  traffic,	  music,	  sports,	  
astronomy,	  business	  analy8cs	  and	  more

‣ Brochure	  in	  your	  pack:	  Warwick	  Sta(s(cs	  Research	  Spotlights	  

“The	  instrument	  that	  mediates	  
between	  theory	  and	  prac(ce,	  
between	  thought	  and	  observa(on,	  
is	  mathema(cs;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
it	  builds	  the	  connec(ng	  bridge	  and	  
makes	  it	  stronger	  and	  stronger.”



Studying	  at	  Warwick	  Sta8s8cs

‣Medium	  size	  department,	  s8ll	  growing

‣ Design	  of	  interdisciplinary	  degrees,	  teaching	  commiaee,	  
student	  staff	  liaison	  commiaee	  (SSLC),	  personal	  tutor	  system

‣ Senior	  scholarship,	  Prizes	  (4	  gradua8on,	  4	  UG,	  STEP)
‣ Learning	  happens	  in	  lectures,	  exercise	  classes,	  tutorials,	  labs,	  
projects,	  library	  study,	  problem	  solving,	  student	  teams

‣ Diverse	  student	  body	  



What	  else	  happen’s	  in	  a	  day?

‣ 270+	  student	  socie8es	  such	  as	  Argen8ne	  
Tango,	  	  Science	  Fic8on,	  Deba8ng,	  Hindu,	  
Music	  ensembles...	  -‐	  or	  set	  up	  your	  own!

‣ 73	  sports	  clubs,	  100+	  compe88ve	  teams,	  
world	  class	  facili8es

‣ Art	  Centre	  (2	  theatres,	  cinema,	  concert	  hall,	  
art	  gallery)

‣ Employability	  skills:	  communica8on,	  	  
problem	  solving,	  planning	  &	  organisa8on,	  
8me	  management,	  team	  work

‣ Also:	  Enjoy	  performances,	  par8es	  &	  relax

‣ Sample	  schedule	  (UG	  websites)



Questions?



What next?

now Lunch: Undergraduate Research Project Poster Exhibition,
Careers, Funding, Accommodation, Admissions, Student-Staff
Liaison (Daniel Wison-Nunn & Pieris Christofi)

1pm Talk by Dr Jon Warren: “How to solve it!” (for students only)
(Alternative event for accompanying persons: campus tour)

2pm Campus tour and small group meetings (for students only)

3pm Tea


