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Upcrossing-rate dynamics for a minimal neuron model receiving spatially distributed synaptic drive
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The spatiotemporal stochastic dynamics of the voltage, as well as the upcrossing rate, are derived for a model
neuron comprising a long dendrite with uniformly distributed filtered excitatory and inhibitory synaptic drive.
A cascade of ordinary and partial differential equations is obtained describing the evolution of first-order means
and second-order spatial covariances of the voltage and its rate of change. These quantities provide an analytical
form for the general, steady-state, and linear response of the upcrossing rate to dynamic synaptic input. It is
demonstrated that this minimal dendritic model has an unexpectedly sustained high-frequency response despite
synaptic, membrane, and spatial filtering.
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I. INTRODUCTION

Neurons are spatially extended cells receiving a high den-
sity of synapses on their dendrites [1] and can be modeled as
threshold devices that integrate filtered stochastic input from
presynaptic populations. Over the last few decades there have
been significant advances in the mathematical analysis of neu-
ronal input-output functions, typically in an approximation in
which the cell is treated as isopotential [2]. Simultaneously,
there has been growing interest in how spatially induced
voltage differences throughout the dendritic arbour might
support computational capacities beyond the isopotential ap-
proximation. These latter studies have been overwhelmingly
simulational [3] due to the difficulty in accounting for spatial
structure and nonlinear filtering.

There is a relative sparsity of results for stochastic synaptic
integration in neurons with explicit spatial structure [4–9].
However, earlier studies of isopotential neurons demonstrate
that analytical statements derived from reduced models pro-
vide a general and enduring framework that are an important
guide for biophysically detailed but particular simulational
studies. With this in mind, here a minimal model of spa-
tiotemporal integration is considered and solved for both the
stochastic voltage and firing-rate dynamics.

We first derive a set of partial differential equations that de-
scribe the spatiotemporal voltage fluctuations under dendritic
integration of stochastic synaptic drive. We then adapt Rice’s
level-crossing approximation [10], widely used for isopoten-
tial models [11–18], to demonstrate that the high-frequency
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response of the upcrossing rate exhibits a much weaker effect
of the cascade of synaptic, membrane, and spatial filtering
than might naively be expected.

II. MODEL

The voltage V (x, t ) of an infinite dendrite, with a threshold
crossing Vth tested at x = 0 only, obeys

∂tV = α�(E� − V ) + He(Ee − V ) + Hi(Ei − V ) + D∂2
x V, (1)

where the leak and synaptic conductances per unit area have
been divided by capacitance per unit area to give ratelike
quantities α�, Hs(x, t ) and where E�, Es are the associated re-
versal potentials. We will use the notation s = e, i throughout
to denote excitation or inhibition, respectively. The diffusive
term of constant strength D = λ2

�α�, where λ� is the electro-
tonic length, captures the effect of axial-current flow through
the dendritic core. Structurally, the model can be interpreted
as a neuron with two long dendrites stemming from a small
soma that has no additional conductance load.

The response to an isolated excitatory synaptic input
τeḢe + He ∝ δ(x)δ(t ), where τe is the excitatory synaptic time
constant, is plotted in Figs. 1(a) and 1(b). In the latter panel the
temporal profiles at different distances are compared to that
of an isopotential model where D = 0 and τeḢe + He ∝ δ(t ).
The time to peak for nearby input is shorter than for the
isopotential model and so the cross-over behavior [see the
inset of Fig. 1(b)] suggests that the minimal dendritic model
might have a more rapid response to synaptic drive than the
isopotential model, despite the additional spatial filtering.

To examine whether this is or is not the case, we de-
veloped a model of spatially distributed synaptic drive with
the arrival of presynaptic spikes approximated as space-time
Gaussian white-noise processes ηs(x, t ) filtered at physiologi-
cal timescales τe = 3 ms and τi = 10 ms. Therefore,

τsḢs = αs − Hs +
√

αsλs ηs(x, t ), (2)
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(a) (b)

(c) (d)

FIG. 1. Spatiotemporal voltage profiles for a single synap-
tic pulse (a) and (b), and widespread stochastic synaptic drive
(c) and (d). (a) Spatial profiles for a synaptic pulse at the ori-
gin at times marked. (b) Temporal profiles at distances marked
(corresponding isopotential neuron form, dotted line). Inset shows
time-to-peak is shorter than the isopotential case (dotted line) for
nearby inputs. (c) Spatial profiles of three snapshots separated
by 20 ms during widespread stochastic synaptic input (threshold
Vth = −50 mV, dotted line). (d) Temporal voltage profile at x = 0.
Labeled symbols correspond to those in panel 1(c). An upcross-
ing event passing Vth from below is marked (arrow). Parameters
used were (E�, Ee, Ei ) = (−60,−80, 0) mV, (τe, τi ) = (3, 10) ms,
(α�, ᾱe, ᾱi ) = (25, 5.6, 11) Hz, and (λ�, λe, λi ) = (224, 19, 64) µm.
All simulations were written in Julia [19] with details provided in
Appendix D and code in the Supplemental Material [31].

where αs(t ) is proportional to the presynaptic rate and λs

a length constant. The zero-mean white noise has autoco-
variance 〈ηs(x1, t1)ηs(x2, t2)〉 = δ(x1 − x2)δ(t1 − t2). Excita-
tion and inhibition are considered statistically uncorrelated,
though this can be accommodated within the calculational
framework to be presented. The model [Eqs. (1) and (2)] is
closely related to Tuckwell’s [6] but includes multiple synap-
tic timescales and dynamic conductances.

The voltage and synaptic state-variables are now resolved
into deterministic (mean) and fluctuating (zero mean) com-
ponents, for example V (x, t ) = 〈V 〉(t ) + v(x, t ), where the
deterministic parts are temporally dependent but spatially in-
dependent and obey

∂t 〈V 〉 = α�(E� − 〈V 〉) + 〈He〉(Ee − 〈V 〉) + 〈Hi〉(Ei − 〈V 〉),

τe∂t 〈He〉 = αe − 〈He〉, and τi∂t 〈Hi〉 = αi − 〈Hi〉. (3)

The fluctuating components v, he, hi are functions of space
and time and obey the partial-differential equations

∂tv = heEe + hiEi − Hv + D∂2
x v,

τe∂t he =
√

αeλe ηe − he, and τi∂t hi =
√

αiλi ηi − hi, (4)

where Es(t ) = (Es − 〈V 〉) and H(t ) = α� + 〈He〉 + 〈Hi〉 are
spatially independent, though generally time dependent. Note
that in deriving Eqs. (3) and (4) we have dropped relatively
less significant terms like 〈vhe〉 [5,20] so the voltage has
Gaussian statistics. Figures 1(c) and 1(d) provide examples
of the spatiotemporal dynamics and an upcrossing event.

The upcrossing rate [10] is a nonlinear function of
two first-order and three second-order voltage moments
ruc(〈V 〉, 〈V̇ 〉, 〈v2〉, 〈vv̇〉, 〈v̇2〉) with the full form provided in
Appendix A. The first-order moments are given by Eqs. (3).
To obtain the second-order moments we derive partial dif-
ferential equations for the same-time space-separated covari-
ances. Introducing the shorthand 〈h2

s 〉x = 〈hs(x1, t )hs(x2, t )〉,
where x = x2 − x1, we first formally solve for the same-time
synaptic autocovariance〈

h2
s

〉
x = δ(x)

λs

τ 2
s

∫ t

−∞
dt ′e−2(t−t ′ )/τsαs(t

′). (5)

This integral is also the solution of a linear partial-differential
equation for 〈h2

s 〉x [see Eq. (6)]. We can also derive partial-
differential equations for other covariances by taking various
moments of Eqs. (4) to give

τs

2
∂t

〈
h2

s

〉
x = δ(x)

αsλs

2τs
− 〈

h2
s

〉
x, (6)

∂t 〈vhs〉x = Es
〈
h2

s

〉
x −

(
H + 1

τs

)
〈vhs〉x + D∂2

x 〈vhs〉x, (7)

1

2
∂t 〈v2〉x = Ee〈vhe〉x + Ei〈vhi〉x − H〈v2〉x + D∂2

x 〈v2〉x,

(8)

where we additionally have 〈vv̇〉x = ∂t 〈v2〉x/2. For the auto-
covariance of v̇ we will need the relation

〈v̇hs〉x = ∂t 〈vhs〉x + 〈vhs〉x/τs (9)

derived by multiplying the synaptic conductance Eq. (4) by
v and taking moments while noting that 〈vηs〉 = 0 due to
causality. The above relation is used for the autocovariance
of the rate-of-change of voltage

〈v̇2〉x = Ee〈v̇he〉x + Ei〈v̇hi〉x − H〈vv̇〉x + D∂2
x 〈vv̇〉x. (10)

The covariance Eqs. (6)–(10), with s = e, i provide a feedfor-
ward cascade allowing all momentlike quantities to be derived
for the upcrossing dynamics by solving for the x and t depen-
dence and then setting x = 0.

It should be noted that these equations are valid for
arbitrary presynaptic rate dynamics and are not linear ap-
proximations. An example of the response to changes in the
presynaptic rates comprising onset/offset and multiple fre-
quency components is provided in Fig. 2. It can be seen that
moments including V̇ or v̇ have sustained responses at higher
frequencies.

III. STEADY-STATE PROPERTIES

Before calculating frequency-dependent properties, we
first derive forms for the different spatial covariances and
moments required for the steady-state upcrossing rate. The
notation Q̄ is used for the steady-state value of a quantity Q(t ).
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(a)

(b)

(c)

FIG. 2. Response to patterned synaptic input (a) comprising
steprate increases in excitatory (green) and inhibitory (red) drive
[same parameters as Fig. 1(c)] with excitatory chirps at 20, 50,
100, 200 Hz. (b) First and second-order voltage moments with those
containing a voltage derivative showing stronger responses at higher
frequencies. (c). The upcrossing rate is a nonlinear function of the
various moments (see Appendix A) and also shows a relatively
sustained response at higher frequencies, despite the filtering from
synapses, spatial spreading and the membrane time constant. The
mathematical form of the patterned input is provided in Appendix D.

The steady-state means are calculated using 〈H̄s〉 = ᾱs for
the two synaptic conductances. These give the steady-state
average voltage as the standard weighted average of reversal
potentials 〈V 〉 = (α�E� + ᾱeEe + ᾱiEi )τv where 1/τv = H =

α� + ᾱe + ᾱi. For the steady-state fluctuating components, it
proves convenient to introduce an effective space constant
λv defined through λ2

v = Dτv . We note that the steady-state
synaptic conductance fluctuations in Eq. (6) are delta cor-
related in space 〈h2

s 〉x = δ(x)ᾱs/2τs and so when substituted
into the steady-state version of Eq. (7) will provide a gradi-
ent condition on 〈vhs〉x at x = 0. Given ψ = ψ0e−|x|k solves
ψ ′′ = k2ψ − 2kδ(x)ψ0 we have

〈vhs〉x = E s

4τs
ᾱsτv

λs

λv

√
τs

τv + τs
e−|x|ks , (11)

where k2
s λ

2
v = (τv + τs)/τs. An illustration for excitation and

inhibition is provided in the upper panel of Fig. 3(a). The
equation for the steady-state voltage autocovariance is sep-
arated into excitatory and inhibitory components 〈v2〉x =
〈v2〉e

x + 〈v2〉i
x and solved similarly (see Appendix B);

〈v2〉s
x = E2

s

4
ᾱsτv

λs

λv

(
e−|x|kv −

√
τs

τv + τs
e−|x|ks

)
, (12)

where kv = 1/λv . Unlike the covariance between voltage and
a synaptic drive, the voltage autocovariance has zero gradient
at the origin [see the middle panel of Fig. 3(a)]. The final
quantity needed for the steady-state upcrossing rate is the
autocovariance of v̇ that takes the form 〈v̇2〉x = Ee〈vhe〉x/τe +
E i〈vhi〉x/τi. Each synaptic component of this quantity is easily
expressed using the second of the two results in Eq. (11)
and so

〈v̇2〉s
x = E2

s

4τ 2
s

ᾱsτv

λs

λv

√
τs

τs + τv

e−|x|ks (13)

with an illustration provided in the lower panel of Fig. 3(a).
The result for 〈V 〉 and Eqs. (12) and (13) evaluated at x = 0
provide the quantities needed for the steady-state upcrossing
rate [see Fig. 3(c)].

(a) (b) (c) (d) (e)

FIG. 3. Steady-state (a)–(c) and upcrossing-rate response (d) and (e) showing a weakly attenuated response at high frequencies. (a) Steady-
state spatial covariances of synaptic and voltage variables. (b) Steady-state synaptic drive covaried to provide a particular mean voltage (x axis)
at fixed conductance levels. For an isopotential neuron with matched voltage mean, variance, and conductance, a difference in the rate of change
of voltage is seen (lower panel, blue). (c) Steady-state upcrossing rate as a function of mean voltage for the dendritic (black) and isopotential
model (blue). (d) Upcrossing-rate response by frequency normalized by α̂e. Note that the dendritic-model response shows qualitatively weaker
attenuation at high-frequency ∼1/

√
iω than the reference isopotential model ∼1/iω. Inset shows same curves normalized at zero frequency

in which it is seen that the response of the dendritic and isopotential models are broadly similar even over moderate frequencies despite the
additional spatial filtering. (e) Upcrossing phase as a function of frequency with a −45◦ asymptote for the dendritic case and −90◦ for the
isopotential model. Parameters used are the same as Fig. 1.
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IV. FIRING-RATE RESPONSE

We now derive the frequency-dependent response by
considering weak sinusoidal modulations of the incoming ex-
citatory synaptic rate αe(t ) = ᾱe + α̂eeiωt and expand all state
variables to leading order in α̂e. We will use the notation for
some quantity Q(t ) = Q̄ + Q̂eiωt with Q̄ the steady-state value
and Q̂ the linear response proportional to α̂e. At this level, the
upcrossing rate response r̂uc will be a linear function of the
modulated moments (see Appendix A).

The strategy is similar to that taken for the steady state
but with Eqs. (6)–(10) solved in the frequency domain.
The calculation is algebraically lengthy so here we provide
the high-frequency asymptotics with the full forms given in
the Appendix. At the mean level

〈V̂ 〉 ∼ Eeα̂e

(iω)2τe
and 〈̂̇V 〉 ∼ Eeα̂e

iωτe
, (14)

so the rate-of-change of the average voltage is the dominant
deterministic contribution to the upcrossing-rate response at
higher frequencies.

For the fluctuating components, the driving excitatory
synaptic modulation is again delta correlated in space 〈ĥ2

e〉x =
δ(x)α̂eλe/2τe(1 + iωτe/2) but with a frequency-dependent
amplitude due to synaptic filtering. Using this result, solving
for the response of the voltage and synaptic covariances, the
high-frequency asymptote of the voltage variance is found:

〈v̂2〉 ∼ −2α̂eτv

iωτe

〈v2〉
iωτv

(15)

and so decays as 1/ω2. From 〈v̂v̇〉 = (iω/2)〈v̂2〉 this also
gives the weaker decay of 〈v̂v̇〉 ∼ 1/iω. Finally, the asymptote
of the variance of the rate-of-change of voltage

〈̂̇v2〉 ∼ α̂eτv

E2
e

2τ 2
e

λe

λv

1√
2iωτv

(16)

can be seen to have the weakest decay and therefore is domi-
nant at high frequencies.

This is the key and somewhat surprising result for the
dynamics of the dendritic model: the high-frequency asymp-
totics decay as 1/

√
iω and, through its linear dependence on

〈̂̇v2〉 as seen in Eq. (A9) of Appendix A, so also must the
high-frequency response of the firing rate in the upcrossing
approximation

r̂uc

ruc
∼ α̂eτv

E2
e

4τ 2
e 〈v̇2〉

λe

λv

1√
2iωτv

. (17)

This can be contrasted to the result for the isopotential point-
neuron model that has an upcrossing response decaying as
1/iω at higher frequencies (see Ref. [15] and Appendix C). In
Figs. 3(d) and 3(e), an illustration of the amplitude and phase
of the response is shown. These frequency-domain results are
compatible with the earlier observation in Fig. 1(b) that EPSPs
on a dendrite can be sharper in time than for an isopotential
model.

V. DISCUSSION

The analyses presented here are predicated on a number of
biophysical approximations and therefore should be consid-
ered as providing the basis for future refinement.

First, the membrane model does not include voltage-gated
currents such as the h-current that can affect low frequency
components of the firing-rate response. These could be in-
cluded using a quasiactive membrane approximation [21,22]
with additional state variables coupled to the voltage dynam-
ics.

The minimal model presented here also approximates spa-
tial extent as infinite (valid for dendrites significantly longer
than the effective electrotonic length λv), is homogeneous
and has no increased conductance at the position x = 0 of
the nominal soma. Recent analysis [9] showed significant
effects of geometry on the functional forms of steady-state
upcrossing rates. The derivation of Eqs. (6)–(10) rely on a
long, homogeneous approximation and so adaptation of the
method to more realistic geometries might be a technical chal-
lenge, though the spatial-mode expansion technique used by
Tuckwell [6] is a potential strategy to account for closed-end
effects.

A number of approximations of the synaptic drive have
been made including the Gaussian approximation of finite-
amplitude shot noise. This typically has validity when
statistically independent, high-rate, low-amplitude inputs are
summed. Given the distinct response seen in isopotential
neurons when shot noise is included [23,24], a worthwhile
extension would be to examine finite-amplitude effects on the
dynamics. This is particularly important for spatiotemporal
integration as the relative number of summed inputs within an
effective electrotonic length will be less than the global input
into an isopotential model.

Finally, though widely used in neuroscience, the upcross-
ing approximation should be critically evaluated in this spatial
context and compared to biophysical models of spike gener-
ation. Rapid responses have already been identified in these
models due to spiking nonlinearities or somatic-dendritic
coupling [25–30]. Extensions of the current study could
examine the high-frequency response when both stochastic
spatiotemporal integration and nonlinearities known to affect
the rapidity of action-potential generation are combined.
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APPENDIX A: UPCROSSING-RATE DYNAMICS

The time-dependent rate ruc(t ) that a fluctuating membrane
voltage V crosses a threshold Vth from below is considered.
Following Rice [10], this can be written as

ruc(t ) =
∫ ∞

0
dV̇ V̇ �(Vth, V̇ ), (A1)
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where V̇ is the rate-of-change of voltage and �(V, V̇ ) is the
joint probability density. The derivations that will be used for
the dynamics, steady state and linear response were given by
Badel [15] in the context of a related isopotential neuronal
model. We repeat that derivation and provide intermediate
steps for transparency.

It is first convenient to expand the voltage and its rate
of change around their time-dependent mean values 〈V 〉 and
〈V̇ 〉 so the fluctuating excesses v and v̇ have zero mean: for
example, V (t ) = 〈V (t )〉 + v. Writing the joint distribution for
v and v̇ as the conditional distribution ψ (v̇|v) multiplied by
the marginal voltage density φ(v) we have

ruc(t ) = φ(vth )
∫ ∞

−〈V̇ 〉
d v̇(〈V̇ 〉 + v̇)ψ (v̇|vth ), (A2)

where vth(t ) = Vth − 〈V 〉. For the Gaussian-distributed volt-
ages considered in this paper, the distributions can be written
as

φ(v) = 1√
2π〈v2〉

exp

(
− v2

2〈v2〉
)

, and (A3)

ψ (v̇|v) = 1√
2πs2

exp

(
− (v̇ − κv)2

2s2

)
, (A4)

where the variances 〈v2〉, 〈v̇2〉, covariance 〈vv̇〉, and other
parameters κ = 〈vv̇〉/〈v2〉 and s2 = 〈v̇2〉 − κ2〈v2〉 are all
potentially time dependent. Using these results for the up-
crossing rate we get

ruc(t ) = 1

2π

√
s2

〈v2〉 e−v2
th/2〈v2〉

∫ ∞

−β

du(2u + 2β )e−u2
, (A5)

where β = (〈V̇ 〉 + κvth )/
√

2s2. The integral can be rewritten
in terms of Gaussians and the error function

ruc(t ) = 1

2π

√
s2

〈v2〉e−v2
th/2〈v2〉(e−β2 + √

πβ[1 + erf (β )]), (A6)

which is identical to the result arrived at by Badel [15]. An
example of the upcrossing rate in a regime that is nonlinear
in the synaptic driving terms is illustrated in Fig. 2(c) (lower
panel).

1. Steady-state upcrossing rate

For a quantity Q(t ) evaluated in the steady state we use
the notation Q. The steady-state upcrossing rate simplifies
because 〈V̇ 〉 = 0 and 〈vv̇〉 = ∂t 〈v2〉/2 = 0 so that β = 0 and
s2 = 〈v̇2〉, giving

r̄uc = 1

2π

√
〈v̇2〉
〈v2〉

exp

(
− v̄2

th

2〈v2〉

)
, (A7)

where v̄th = Vth − 〈V 〉. Figure 3(c) provides an illustration of
the steady-state upcrossing rate.

2. Linear response of the upcrossing rate

We now consider a weak harmonic modulation of the
incoming presynaptic rates. This will induce weak modula-
tions, with some amplitude and phase shift, in any dependent

quantity Q(t ) that we can conveniently write in complex form
Q(t ) = Q + Q̂eiωt . Before expanding the upcrossing form, let
us examine some of the component quantities. For β and s2

we have

β̂ = 1√
2〈v̇2〉

(
〈̂̇V 〉 + vth

〈v̂v̇〉
〈v2〉

)
and ŝ2 = 〈̂̇v2〉. (A8)

Then, for the upcrossing rate itself, we get that the ratio of the
modulation to the steady-state rate is [15]

r̂uc

r̄uc
= v̄th

〈v2〉
〈V̂ 〉 +

√
π

2〈v̇2〉
〈̂̇V 〉

+ 1

2

〈v̂2〉
〈v2〉

(
v̄2

th

〈v2〉
− 1

)
+

√
π

2〈v2〉
v̄th

〈v̂v̇〉
〈v2〉

+ 1

2

〈̂̇v2〉
〈v̇2〉

.

(A9)

In the above equation, the first two terms provide the deter-
ministic contribution and the last three terms are contributions
from modulated fluctuating quantities. The amplitude and
phase of the upcrossing linear response is shown in Figs. 3(d)
and 3(e), respectively.

APPENDIX B: DENDRITIC MODEL

The differential equations for the deterministic (mean)
components in Eq. (3) and the partial differential equations for
the fluctuating components (covariances) in Eqs. (6)–(10)
completely determine the moment dynamics in the Gaussian
approximation of the model. These equations are driven by the
ratelike terms αe(t ), αi(t ) that are proportional to the presy-
naptic excitatory and inhibitory rates. Also appearing in the
equations are the total conductance H(t ) = α� + 〈He〉 + 〈Hi〉
and electromotive forcing terms Es(t ) = Es − 〈V 〉. Together,
these equations represent a feedforward cascade that provide
all the required quantities needed for the upcrossing rate.

There are a number of approaches that can be taken to
find the solution of these equations in the steady state or at
the linear-response level; for example, direct solution in space
using substitution for the inhomogeneous components or us-
ing spatial Fourier transforms. Here we will use the former
real-space approach and therefore, the following result will
often be useful

∂2
x ψ = k2ψ − 2kδ(x)ψ0

with solution ψ = ψ0e−|x|k . (B1)

1. Steady state: dendritic model

We first derive the various same-time space-separated co-
variances in the steady state as these will be used to calculate
the time dependence.

Synaptic autocovariances 〈h2
s 〉x. From Eq. (6), these are

simply delta correlated in space〈
h2

s

〉
x = δ(x)

ᾱsλs

2τs
. (B2)
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Voltage and synaptic covariances 〈vhs〉x. In the steady-
state, Eq. (7) reduces to

D
∂2

∂x2
〈vhs〉x =

(
1

τs
+ 1

τv

)
〈vhs〉x − E s

〈
h2

s

〉
x. (B3)

Remembering that D = λ2
v/τv and looking at the form of

Eq. (B1) identifies λ2
vk2

s = (τv + τs)/τs. From the prefactor of
the delta correlated inhomogeneous term, the solution must
therefore be

〈vhs〉x = 1

2λvks

[
E s

2τs
ᾱsτv

λs

λv

]
e−|x|ks

= E s

4τs
ᾱsτv

λs

λv

√
τs

τs + τv

e−|x|ks . (B4)

Voltage autocovariance 〈v2〉x. There are two inhomoge-
neous terms in its equation

D
∂2

∂x2
〈v2〉x = 1

τv

〈v2〉x − Ee〈vhe〉x − E i〈vhi〉x (B5)

so it can be resolved into 〈v2〉x = 〈v2〉e
x + 〈v2〉i

x. Trying
〈v2〉s

x = ψs + cs〈vhs〉x and using Eq. (B3) to remove the
double derivative requires setting cs = −τsE s to cancel the
inhomogeneous term. This leaves

D
∂2

∂x2
ψs = 1

τv

ψs − E2
s τs

〈
h2

s

〉
x. (B6)

Introducing k2
v = 1/λ2

v, the solution for ψs is

ψs = E2
s

4
ᾱsτv

λe

λv

e−|x|kv . (B7)

Putting these forms in 〈v2〉s
x = ψs + cs〈vhs〉x gives

〈v2〉s
x =

(
E2

s

4
ᾱsτv

λs

λv

)(
e−|x|kv −

√
τs

τv + τs
e−|x|ks

)
. (B8)

It can be noted that this gives the voltage autocovariance a
zero gradient at x = 0.

Rate-of-change-of-voltage autocovariance 〈v̇2〉x. In the
steady-state this is simply

〈v̇2〉x = Ee

τe
〈vhe〉x + E i

τi
〈vhi〉x, (B9)

where the forms for 〈vhs〉x have already been given above.

2. Deterministic weak oscillations: dendritic model

Modulation of the excitatory presynaptic drive α̂e only is
considered, so the modulated inhibitory drive is zero α̂i =
0. With this in mind, expanding the deterministic equa-
tions [Eq. (3)] at the level of the linear response to excitatory
oscillations gives the following quantities of interest

〈Ĥe〉 = Ĥ = α̂e

1 + iωτe
and 〈Ĥi〉 = 0, (B10)

so

〈V̂ 〉 = E s〈Ĥe〉
1/τv + iω

= α̂sτvE s

(1 + iωτs)(1 + iωτv )
, (B11)

and the modulated rate-of-change of the voltage is given by
〈̂̇V 〉 = iω〈V̂ 〉. Note also that Ês = −〈V̂ 〉 for s = e, i.

3. Weak oscillations and fluctuations: dendritic model

We present the modulated moment derivations in the or-
der of the cascade of equations, remembering again that for
modulated excitatory drive only we have α̂i = 0 throughout.

Synaptic autocovariances 〈ĥ2
s 〉x. These are delta correlated〈

ĥ2
e

〉
x = δ(x)

α̂eλe

2τe

1

1 + iωτe/2
and

〈
ĥ2

i

〉
x = 0. (B12)

Voltage and synaptic covariances 〈v̂hs〉x. This obeys

D∂2
x 〈v̂hs〉x =

(
iω + 1

τv

+ 1

τs

)
〈v̂hs〉x

+ Ĥ〈vhs〉x − E s
〈
ĥ2

s

〉
x − Ês

〈
h2

s

〉
x. (B13)

We then use a substitution of the form 〈v̂hs〉x = ψs + as〈vhs〉x

and use the result of Eq. (B3) to remove the double spatial
derivative on 〈vhs〉x. Setting as = −Ĥ/iω then removes the
remaining inhomogeneous term in 〈vhs〉x to leave

∂2
x ψs = k̂2

s ψs − E s

D

〈
ĥ2

s

〉
x − 1

D
(Ês − asEe )

〈
h2

s

〉
x,

where λ2
v k̂2

s = (1 + τv/τs + iωτv ). This is straightforwardly
solved and, when combined with the other inhomogeneous
term, gives

〈v̂hs〉x = 1

4τs

λs

λv

(
E sα̂sτv

1 + iωτs/2
+ Êsᾱsτv + ĤE s

iω
ᾱsτv

)
e−|x|k̂s

k̂sλv

− Ĥ
iω

〈vhs〉x. (B14)

Note that we would have α̂i = 0 in the first term for the
inhibitory form 〈v̂hi〉x.

Voltage autocovariance 〈v̂2〉x. This obeys

D∂2
x 〈v̂2〉x =

(
iω

2
+ 1

τv

)
〈v̂2〉x + Ĥ〈v2〉x

− Ee〈v̂he〉x − Êe〈vhe〉x − E i〈v̂hi〉x − Êi〈vhi〉x.

(B15)

We can separate this into components for excitation and inhi-
bition, each of which satisfies

D∂2
x 〈v̂2〉s

x =
(

iω

2
+ 1

τv

)
〈v̂2〉s

x + Ĥ〈v2〉s
x

− E s〈v̂hs〉x − Ês〈vhs〉x. (B16)

These can be solved by substituting 〈v̂2〉s
x = a〈v2〉s

x +
bs〈v̂hs〉x + cs〈vhs〉x + ψs, giving

aD∂2
x 〈v2〉s

x + bsD∂2
x 〈v̂hs〉x + csD∂2

x 〈vhs〉x + D∂2
x ψs

=
(

iω

2
+ 1

τv

)(
a〈v2〉s

x + bs〈v̂hs〉x + cs〈vhs〉x + ψs
)

+ Ĥ〈v2〉s
x − [E s〈v̂hs〉x + Ês〈vhs〉x]. (B17)
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We now replace the double spatial derivatives D∂2
x 〈v2〉s

x,
D∂2

x 〈v̂hs〉x, and D∂2
x 〈vhs〉x using Eq. (B5) resolved into s-

dependent components for 〈v2〉s
x as well as Eqs. (B13) and

(B3), respectively, for 〈v̂hs〉x and 〈vhs〉x, to give

a

[
1

τv

〈v2〉s
x − E s〈vhs〉x

]
+ bs

[(
iω + 1

τv

+ 1

τs

)
〈v̂hs〉x

+ Ĥ〈vhs〉x − E s
〈
ĥ2

s

〉
x − Ês

〈
h2

s

〉
x

]
+ cs

[(
1

τv

+ 1

τs

)
〈vhs〉x − E s

〈
h2

s

〉
x

]
+ D∂2

x ψ

=
(

iω

2
+ 1

τv

)(
a〈v2〉s

x + bs〈v̂hs〉x + cs〈vhs〉x + ψs
)

+ Ĥ〈v2〉s
x − E s〈v̂hs〉x − Ês〈vhs〉x. (B18)

We then set a, bs, and cs to remove the inhomogeneous terms
in 〈v2〉s

x, 〈v̂hs〉x, and 〈vhs〉x, respectively:

a = −2Ĥ
iω

, bs = −E sτs

1 + iωτs/2
,

and cs = τs(aE s − Ês − bsĤ)

1 − iωτs/2
(B19)

and leave an equation for ψs of the form

D∂2
x ψs =

(
iω

2
+ 1

τv

)
ψs

+ bsE s
〈
ĥ2

s

〉
x
+ bsÊs

〈
h2

s

〉
x
+ csE s

〈
h2

s

〉
x
. (B20)

This equation has solution

ψs = − 1

4τs

λs

λv

[
bs

(
E sα̂sτv

1 + iωτs/2
+ Êsᾱsτv

)
+ csE sᾱsτv

]

× e−|x|k̂v

λv k̂v

(B21)

which, together with the other inhomogeneous forms in
〈v̂2〉s

x = a〈v2〉s
x + bs〈v̂hs〉x + cs〈vhs〉x + ψs completes the so-

lution for one synaptic component of the modulated variance.
Rate-of-change of voltage autocovariance 〈̂̇v2〉x. This has

form

〈̂̇v2〉x = Ee〈̂̇vhe〉x + Êe〈v̇he〉x + E i〈̂̇vhi〉x + Êi〈v̇hi〉x

− 1

τv

〈v̂v̇〉x + D∂2
x 〈v̂v̇〉x. (B22)

We again separate out the solution in terms of the components
involving excitation and inhibition

〈̂̇v2〉s
x = E s

τs
(1 + iωτs)〈v̂hs〉x + Ês

τs
〈vhs〉x

− iω

2τv

〈v̂2〉s
x + iω

2
D∂2

x 〈v̂2〉s
x, (B23)

where we have also made use of the simplifying relations for
〈v̇hs〉 and 〈vv̇〉 in the steady-state and linear-response levels.

We now substitute for the following term

D∂2
x 〈v̂2〉s

x =
(

iω

2
+ 1

τv

)
〈v̂2〉s

x

+ Ĥ〈v2〉s
x − E s〈v̂hs〉x − Ês〈vhs〉x (B24)

and tidy things up to get

〈̂̇v2〉s
x = E s

τs

(
1 + iωτs

2

)
〈v̂hs〉x + Ês

τs

(
1 − iωτs

2

)
〈vhs〉x

+
(

iω

2

)2

〈v̂2〉s
x + iω

2
Ĥ〈v2〉s

x (B25)

which is expressed in terms of quantities already derived.

4. Low-frequency limit: dendritic model

In the limit ω → 0, the various frequency-dependent
quantities Q̂(ω) can be obtained by taking derivatives of cor-
responding steady-state quantities with respect to ᾱe,

lim
ω→0

Q̂ = α̂e
d

dᾱe
Q, (B26)

where it should be remembered that τv, λv, Ee, E i all depend
on ᾱe. The following results are useful

d

dᾱe

1

τv

= 1,
d

dᾱe
τv = −τ 2

v ,

d

dᾱe
E s = − d

dᾱe
〈V 〉 = −τvEe, and

d

dᾱe

1

λv

= 1

2

τv

λv

. (B27)

It is also useful to introduce the following definition and its
derivatives:

xs = τs

τs + τv

so
d

dᾱe
xs = τvxs(1 − xs) = τ 2

v

τs
x2

s . (B28)

Finally, note that because V̇ or 〈vv̇〉 are both complete tempo-
ral derivatives, their temporal Fourier transforms vanish in the
ω = 0. We now provide the forms of the remaining moments.

Voltage and synaptic covariance 〈v̂hs〉. In terms of xe and
xi, these can be written

lim
ω→0

〈v̂he〉 = α̂eτv

Ee

4τe

λe

λv

√
xe

(
1 − ᾱeτv

(
1 + xe

2

))
,

lim
ω→0

〈v̂hi〉 = −α̂eτv

1

4τi

λi

λv

√
xiᾱiτv

(
Ee + E i

xi

2

)
. (B29)

Voltage variance 〈v̂2〉. We can split this term into excitatory
and inhibitory components and use the same definitions for xe

and xi as above

lim
ω→0

〈v̂2〉e = α̂eτv

E2
e

4

λe

λv

(
(1 − 2ᾱeτv )

(
1 − √

xe
)

− ᾱeτv

2

(
1 −

√
x3

e

))
,

lim
ω→0

〈v̂2〉i = −α̂eτv

1

4

λi

λv

ᾱiτv

(
2EeE i(1 − √

xi )

+ E2
i

2

(
1 −

√
x3

i

))
. (B30)
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Rate-of-change of voltage variance 〈̂̇v2〉. The excitatory and
inhibitory components are proportional to 〈v̂he〉 and 〈v̂hi〉 so
that

lim
ω→0

〈̂̇v2〉e = α̂eτv

E2
e

4τ 2
e

λe

λv

√
xe

(
1 − ᾱeτv

(
2 + xe

2

))
,

lim
ω→0

〈̂̇v2〉i = −α̂eτv

1

4τ 2
i

λi

λv

√
xiᾱiτv

(
2EeE i + E2

i
xi

2

)
. (B31)

5. High-frequency asymptotics: dendritic model

For a modulation of the excitatory component, to leading
order, the deterministic components needed are

〈V̂ 〉 ∼ α̂eEe

(iω)2τe
, 〈̂̇V 〉 ∼ α̂eEe

iωτe
,

〈Ĥe〉 = Ĥ ∼ α̂e

iωτe
, and Êe = Êi = −〈V̂ 〉. (B32)

Note that 〈Ĥi〉 = 0 because α̂i = 0. The dominant contribu-
tion to the deterministic component to the upcrossing rate is
therefore 1/iω and comes from the rate-of-change of voltage
term. We now take the covariances in turn.

Voltage and synaptic covariance 〈v̂hs〉. For the covariances
between voltage and synaptic drive we have

〈v̂he〉 ∼ α̂eτv

Ee

2τe

λe

λv

1

iωτe

1√
iωτv

and

〈v̂hi〉 ∼ − α̂eτv

iωτe

〈vhi〉
iωτv

. (B33)

Voltage variance 〈v̂2〉 and 〈v̂v̇〉. Examining the forms of
the various terms in Eq. (B19) we see that a ∼ 1/ω2, bs ∼
1/ω, and cs ∼ 1/ω3. The term multiplying the exponential
therefore decays as 1/ω5/2 and is less significant that the
a〈v2〉s

x term, which dominates the inhomogeneous parts of the
solution. Using the asymptotics for a then gives

〈v̂2〉 ∼ − α̂eτv

iωτv

2

iωτe
〈v2〉 and 〈v̂v̇〉 ∼ − α̂e

iωτe
〈v2〉, (B34)

where the latter result follows from 〈v̂v̇〉 = (iω/2)〈v̂2〉.
Rate-of-change of voltage variance 〈̂̇v2〉. It is useful to

rearrange the form of this equation so that

〈̂̇v2〉s
x =

(
iω

2

)2
[
〈v̂2〉s

x + 2

iω
Ĥ〈v2〉s

x + 2E s

iω
〈v̂hs〉x

]

+E s

τs
〈v̂hs〉x + Ês

τs

(
1 − iωτs

2

)
〈vhs〉x. (B35)

To leading order, the part in the square brackets is equivalent
to ψs in the solution for 〈v̂2〉s

x [see Eq. (B21) and above]. The
leading order component of ψs(x = 0) is

ψs ∼ − E2
s

4τ 2
s

λs

λv

1

iω/2

α̂sτv

iω/2

1

λv k̂v

(B36)

so that we have

〈̂̇v2〉 ∼ α̂eτv

E2
e

2τ 2
e

λe

λv

1√
2iωτv

. (B37)

APPENDIX C: ISOPOTENTIAL MODEL

As a reference model to compare the additional effect
of spatiotemporal filtering we consider an isopotential neu-
ron receiving temporally filtered synaptic drive. This type
of model has been analyzed previously [20] including using
the upcrossing approximation [15]. The model comprises two
synaptic conductances filtered at excitatory and inhibitory
time scales τe and τi. These conductances drive a voltage
equation that also includes a leak conductance. As before,
it proves convenient to introduce ratelike quantities that are
conductances divided by the membrane capacitance.

dV

dt
= α�(E� − V ) + He(Ee − V ) + Hi (Ei − V ),

τe
dHe

dt
= αe − He + √

αeκe ξe(t ),

τi
dHi

dt
= αi − Hi + √

αiκi ξi(t ). (C1)

The time-dependent quantities αs(t ) where s = e or i are pro-
portional to the presynaptic rate whereas the κs parameters are
constant. We use a Gaussian approximation for the synaptic
drive so that ξs(t ) is a white-noise process with zero mean,
autocovariance 〈ξs(t1)ξs(t2)〉 = δ(t1 − t2) and it is assumed
that excitatory and inhibitory synaptic drives are uncorrelated.

Similar to the approach used for the long-dendrite model,
we separate voltages and conductances into deterministic and
zero-mean fluctuating components V = 〈V 〉 + v and Hs =
〈Hs〉 + hs. At the level of the stochastic differential equa-
tion for voltage, we drop less significant terms that are second
order in the fluctuating components like vhs with the result
that v also has Gaussian statistics. In terms of the quantities
αs, the deterministic equations for the isopotential neuron are
identical to the dendritic case given in Eq. (3). The fluctuating
components, however, obey

v̇ = heEe + hiEi − Hv,

τeḣe = √
αeκe ξe − he,

τiḣi = √
αiκi ξi − hi, (C2)

where we again have the notations Es(t ) = Es − 〈V 〉 and
H(t ) = α� + 〈He〉 + 〈Hi〉. Note that the difference between
this isopotential reference model and the dendritic case
[Eq. (4)] is the absence of a second spatial derivative in the
equation for the voltage and that the synaptic quantities are
instead driven by temporal Gaussian white noise, not spa-
tiotemporal Gaussian white noise.

1. Voltage-moment equations: isopotential model

The deterministic equation set (3) provides a complete
description of dynamics of the first moments 〈V 〉 and 〈V̇ 〉.
We now derive a set of differential equations for the second
moments of the voltage and its derivative. First, we can solve
for the variance of one of the synaptic drives. This can be
written as filter integral over the quantity αs(t ),

〈
h2

s

〉 = κs

τ 2
s

∫ t

−∞
dt ′αs(t

′)e−2(t−t ′ )/τs , (C3)
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and because the filter is exponential, it can be rewritten in the
differential form

τs

2

d
〈
h2

s

〉
dt

= αsκe

2τs
− 〈

h2
s

〉
. (C4)

We next crossmultiply the stochastic differential equations for
v and hs by hs and v, and average to get

〈v̇hs〉 = Es
〈
h2

s

〉 − H〈vhs〉 and 〈vḣs〉 = −〈vhs〉/τs, (C5)

where the causality 〈ξsv〉 = 0 has been used in the latter
equation. Adding these gives the complete derivative 〈v̇hs〉 +
〈vḣs〉 = ∂t 〈vhs〉, and so

d〈vhs〉
dt

= Es
〈
h2

s

〉 − (
H + 1

τs

)
〈vhs〉. (C6)

We can also multiply the stochastic differential equation for v

by v and average to get

1

2

d〈v2〉
dt

= Ee〈vhe〉 + Ei〈vhi〉 − H〈v2〉 = 〈vv̇〉, (C7)

which provide equations for both 〈v2〉 and 〈v̇v〉. For the au-
tocovariance of the rate-of-change of voltage we multiply the
differential equation for v by v̇ and average

〈v̇2〉 = Ee〈v̇he〉 + Ei〈v̇hi〉 − H〈vv̇〉. (C8)

All together, these differential equations and subsidiary re-
lations for the synaptic drive and voltage provide all that is
required to apply the upcrossing method to the isopotential
model.

2. Steady state: isopotential model

The steady state 〈V 〉 for the mean voltage is identical to
that given for the dendritic model; however, the variance and
variance of the rate-of-change of voltage are different. First
we note that 〈h2

s 〉 = ᾱsκs/2τs and that it is useful to use the
steady-state relation τs〈v̇hs〉 = 〈vhs〉. Then comparing the rel-
evant equations above we have

〈v2〉 = E2
e

2
κeᾱeτv

τv

(τv + τe )
+ E2

i

2
κiᾱiτv

τv

(τv + τi )
(C9)

which can be seen in Fig. 3(b) (middle panel) for a case
matched to the dendritic model. For the variance of the rate-
of-change of voltage we have

〈v̇2〉 = E2
e

2τ 2
e

κeᾱeτv

τv

(τv + τe )
+ E2

i

2τ 2
i

κiᾱiτv

τv

(τv + τi )
(C10)

which is also illustrated in Fig. 3(b) (lower panel). Other
useful quantities are

〈vhe〉 = Ee
〈
h2

e

〉
H + 1/τe

and 〈v̇he〉 = Ee
〈
h2

e

〉
1 + τeH

, (C11)

and similarly for inhibition.

3. Response to weak oscillations: isopotential model

We again consider a weak oscillation of the excitatory drive
such that αe(t ) = ᾱe + α̂eeiωt and keep terms in all calcu-
lations up to first order in α̂e. The deterministic, first-order

moments of the various quantities are identical to the case
of the long-dendrite considered previously. The second-order
moments are different, and for the conductances we have〈

ĥ2
e

〉 = α̂eκe

2τe

1

1 + iωτe/2
and

〈
ĥ2

i

〉 = 0. (C12)

The next quantities of interest are the covariances between the
conductance and voltage

〈v̂he〉 = Ee
〈
ĥ2

e

〉 − 〈V̂ 〉〈h2
e

〉 − Ĥ〈vhe〉
iω + H + 1/τe

, and

〈v̂hi〉 = −〈V̂ 〉〈h2
i

〉 + Ĥ〈vhi〉
iω + H + 1/τi

, (C13)

where 〈ĥ2
i 〉 = 0 has been used. The oscillatory voltage vari-

ance can be expressed in terms of these quantities

〈v̂2〉 = Ee〈v̂he〉 + E i〈v̂hi〉 − 〈V̂ 〉(〈vhe〉 + 〈vhi〉) − Ĥ〈v2〉
iω/2 + H

.

(C14)

The covariance has the relation 〈v̂v̇〉 = iω〈v̂2〉/2 and is there-
fore obtained directly from the above. Finally, to calculate the
variance of v̇ we need

〈̂̇vhe〉 = (
Ee

〈
ĥ2

e

〉 − 〈V̂ 〉〈h2
e

〉 − H〈v̂he〉 − Ĥ〈vhe〉
)
,

〈̂̇vhi〉 = −(〈V̂ 〉〈h2
i

〉 + H〈v̂hi〉 + Ĥ〈vhi〉
)
, (C15)

and the same for inhibition, again noting that 〈ĥ2
i 〉 = 0. We

can then write that

〈̂̇v2〉 = Ee〈̂̇vhe〉 + E i〈̂̇vhi〉 − 〈V̂ 〉(〈v̇he〉 + 〈v̇hi〉) − H〈v̂v̇〉,
(C16)

where the steady-state result 〈vv̇〉 = 0 has been used.

4. Low-frequency limit: isopotential model

When ω = 0, the 〈̂̇V 〉 and 〈v̂v̇〉 terms vanish as they are
time derivatives of other quantities and therefore proportional
to ω. It remains to calculate 〈V̂ 〉, 〈v̂2〉, and 〈̂̇v2〉, and when
ω = 0 these can be calculated by taking the derivatives of the
steady-state values with respect to ᾱe. Again, it is useful to use
the shorthand xe = τe/(τv + τe ) and similarly for inhibition:

lim
ω→0

〈v̂he〉 = α̂eτv

Eeκe

2τe
xe(1 − ᾱeτv − ᾱeτvxe ),

lim
ω→0

〈v̂hi〉 = −α̂eτv

κi

2τi
τvᾱixi(Ee + E ixi ). (C17)

For the low frequency limit of the variance modulation we
break the response into excitatory and inhibitory components
which take the form

lim
ω→0

〈v̂2〉e = α̂eτv

E2
eκe

2

τv

τe
xe(1 − 3ᾱeτv − ᾱeτvxe ),

lim
ω→0

〈v̂2〉i = −α̂eτv

κi

2

τv

τi
xi

(
2EeE iτvᾱi + E2

i τvᾱi + E2
i ᾱiτvxi

)
.
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Taking a similar approach with the variance of the rate-of-
change of voltage gives

lim
ω→0

〈̂̇v2〉e = α̂eτv

E2
eκe

2τ 2
e

xe(1 − 2ᾱeτv − ᾱeτvxe ),

lim
ω→0

〈̂̇v2〉i = −α̂eτv

κi

2τ 2
i

xi
(
2EeE iᾱiτv + E2

i ᾱiτvxi
)
.

5. High-frequency asymptotics: isopotential model

For large ω, the leading-order contributions can be shown
to decay as 1/ω and comprise contributions from 〈̂̇V 〉, 〈v̂v̇〉,
and 〈̂̇v2〉. The forms for the first two are fairly straightforward
to derive

〈̂̇V 〉 ∼ α̂eEe

iωτe
and 〈v̂v̇〉 = − α̂e

iωτe
〈v2〉. (C18)

The third term is more complicated. We use

〈̂̇vhe〉 = Ee
〈
ĥ2

e

〉 − Ĥ〈vhe〉 + O

(
1

ω2

)
, (C19)

and similar for 〈̂̇vhi〉, though note that 〈ĥ2
i 〉 = 0. Then

〈̂̇v2〉 = Ee〈̂̇vhe〉 + E i〈̂̇vhi〉 − H〈v̂v̇〉 + O

(
1

ω2

)
, (C20)

where for large ω we have〈
ĥ2

e

〉 ∼ α̂eκe

iωτ 2
e

and Ĥ ∼ α̂e

iωτe
. (C21)

The quantities above can then be substituted into the linear
response form of the upcrossing rate, which will therefore also
have a 1/ω behavior at high frequencies.

APPENDIX D: SIMULATIONS AND FIGURES

Simulational code was written using the Julia program-
ming language [19] and all code used for figures is provided
in the Supplemental Material [31]. The simulations were im-
plemented using a forward Euler scheme typically with �t =
0.02 ms and �x = 20 µm so that

Hs(xm, tn+1) = Hs(xm, tn)

+ �t

τs

(
αs(tn) − Hs(xm, tn)

+
√

αs(tn)λs
φs

mn√
�x�t

)
, (D1)

and for the voltage

V (xm, tn+1) = V (xm, tn) + �t (α�(E� − V (xm, tn)))

+ �t (He(xm, tn)(Ee − V (xm, tn)))

+ �t (Hi(xm, tn)(Ei − V (xm, tn)))

+ �t

�2
x

D(V (xm−1, tn) − 2V (xm, tn)

− V (xm+1, tn)), (D2)

where φs
mn are independent Gaussian random numbers with

zero mean and unit variance. The system was implemented

using periodic boundary conditions with size L = 2000 µm
being sufficiently larger than spatial correlation lengths. Given
the homogeneity of the system, statistical quantities such as
the upcrossing could be evaluated at all positions simultane-
ously and averaged, thereby increasing the efficiency of the
simulations.

For the isopotential neuron the discretization is across time
only so the equations are

Hs(tn+1) = Hs(tn)

+ �t

τs

(
αs(tn) − Hs(tn) +

√
αs(tn)κs

φs
n√
�t

)
,

(D3)

and for the voltage

V (tn+1) = V (tn) + �t (α�(E� − V (tn)))

+ �t (He(tn)(Ee − V (tn)) + Hi(tn)(Ei − V (tn))),
(D4)

where φs
n are again independent Gaussian random numbers

with zero mean and unit variance.
Note that for both the dendritic and isopotential models, the

schemes above can be straightforwardly modified to simulate
the systems in the Gaussian approximation of the voltage in
which terms that are second-order in zero-mean fluctuating
quantities like vhe are dropped from the voltage dynamics.

1. The patterned input used in Fig. 2

The time-dependent input used in Fig. 2 comprised func-
tions αe(t ) and αi(t ) lasting one second. Outside the range
of 250 to 750 ms these rates were zero. Within this range
both had constant value with ᾱe = 0.00566 kHz and ᾱi =
0.01100 kHz [which would give a constant upcrossing rate of
5 Hz, anticipating Fig. 3(c)] with the excitatory rate αe(t ) hav-
ing four functions additionally superimposed. These functions
A(t ) were parametrized as

Ak (t ; a, tk, σ, fk ) = a exp

(
− (t − tk )2

2σ 2

)
cos(2π fkt ), (D5)

where a = 0.03 kHz, tk = 350, 450, 550, 650 ms, σ = 20 ms,
and f = 0.02, 0.05, 0.100, 0.200 kHz.

2. Illustration of steady-state properties

Given the many components of the model, there is a broad
choice of parameter combinations that might be used to il-
lustrate behavior. In the context of examining the steady-state
behavior [Figs. 3(b) and 3(c)] the choice was made to vary
ᾱe and ᾱi at fixed ratio between τv and τ� = 1/α� to give a
particular 〈V 〉. Given the forms

1

τv

= α� + ᾱe + ᾱi and

〈V 〉 = τv (E�α� + Eeᾱe + Eiᾱi ), (D6)
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we therefore have the conditions

ᾱe = (〈V 〉 − Ei ) − (E� − Ei )α�τv

(Ee − Ei )τv

and

ᾱi = (Ee − 〈V 〉) − (Ee − E�)α�τv

(Ee − Ei )τv

. (D7)

This parameter variation is used in Figs. 3(b) and 3(c).

3. Matching the isopotential and dendritic models

To provide as fair a comparison as possible between the
models, we set the parameters of the isopotential model such
that the steady-state mean voltage 〈V 〉, conductance state τv,

and voltage variance 〈v2〉 were all matched. The mean prop-
erties of the model are identical by design and set by ᾱe and
ᾱi. To match the variance, we choose κe and κi by comparing
Eqs. (B8) and (C9) so that

κs = 1

2

λs

λv

(
τv + τs

τv

)(
1 −

√
τs

τv + τs

)
. (D8)

Though the voltage mean and variance [Fig. 3(b), middle
panel] as well as the conductance state parametrized by τv

are matched, it is not possible [9] to simultaneously match the
variance of the rate-of-change of voltage [see Fig. 3(b), lower
panel] and so the upcrossing rates will not be the same; this
can seen in Fig. 3(c).
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