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Linear and nonlinear integrate-and-fire neurons driven by synaptic
shot noise with reversal potentials
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The steady-state firing rate and firing-rate response of the leaky and exponential integrate-and-fire models
receiving synaptic shot noise with excitatory and inhibitory reversal potentials is examined. For the particular
case where the underlying synaptic conductances are exponentially distributed, it is shown that the master
equation for a population of such model neurons can be reduced from an integrodifferential form to a more
tractable set of three differential equations. The system is nevertheless more challenging analytically than for
current-based synapses: where possible, analytical results are provided with an efficient numerical scheme and
code provided for other quantities. The increased tractability of the framework developed supports an ongoing
critical comparison between models in which synapses are treated with and without reversal potentials, such as
recently in the context of networks with balanced excitatory and inhibitory conductances.
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I. INTRODUCTION

Neurons in active networks receive a barrage of com-
peting excitatory and inhibitory synaptic input leading to a
fluctuating membrane voltage and variability in the timing
of outgoing spikes [1]. Characterizing how this incoming
stochastic drive is integrated nonlinearly and output spikes
triggered is key to understanding single-neuron computation
or how network states emerge and has been the subject of
concerted theoretical effort for over half a century [2–5]. Over
the years, increasing biophysical details have been incorpo-
rated into an analytical framework that includes processes in
the synaptic and membrane-response components of neuronal
integration and spike generation.

At the synaptic level, a common approach has been to
approximate synaptic amplitudes as small so that, after a
Gaussian approximation is made, a Fokker-Planck approach
can be used to examine the neuronal or coupled network
responses [6–8]. More recently, in part due to experimen-
tal evidence for long-tailed synaptic-amplitude distributions
[9,10] and effects of presynaptic synchrony [11,12], there has
been increasing interest in how finite-amplitude synaptic shot
noise effects neuronal integration [13–22]. Though the effect
of synapses is often approximated as additive or current based
due to the reasonable desire for analytical tractability, they are
more accurately implemented as conductances. Their stochas-
tic activation therefore constitutes multiplicative noise due
to the reversal-potential prefactor in the membrane current-
balance equation. The aggregate conductance increase during
strong presynaptic activity significantly affects the integrative
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properties of neurons [23], the Gaussianity of voltage fluctu-
ations when coupled with finite-amplitude drive [24–26], the
transmission of sensory signals [27] and, importantly, qual-
itatively changes the nature of the modelled balanced state
between excitation and inhibition [28,29].

At the membrane level, the majority of results for the
stochastic integration of synaptic drive have been derived for
neurons with a linear and ohmic response, specifically for
the leaky integrate-and-fire (LIF) model; see Refs. [30,31]
for earlier reviews. However, from a theoretical reduction
of Hodgkin-Huxley-type models, the current-voltage rela-
tionship was shown to be better captured by including an
exponential nonlinearity leading to the spike onset [32]. It
was subsequently shown experimentally that the resultant
exponential integrate-and-fire (EIF) model provides a fairly
accurate description of the integration properties of neocorti-
cal pyramidal cells [33] and fast-spiking interneurons [34].

Here the framework for linear and nonlinear integrate-and-
fire neurons receiving exponentially distributed excitatory and
inhibitory conductances is developed. The general framework
previously introduced for population models [35–37] with
linear subthreshold behavior is first followed. However, the
choice of exponential conductance distributions (extending
the approach for the LIF [17] and EIF [21] models driven
by exponentially distributed additive shot noise) is shown
to reduce the integrodifferential master equation to purely
differential form. It also allows for a more direct numeri-
cal solution, avoiding the interpolation and integrative steps
needed for the more general gamma-distributed amplitudes
treated in earlier work on such systems [35]. After introducing
the model at the level of stochastic single-neuron dynamics
in Sec. II, the reduction of the master equation to a dif-
ferential form is demonstrated in Sec. III. In Secs. IV and
V the framework is applied to the LIF and EIF models to
examine the steady-state firing rate and firing-rate response.
Though analytical solutions to the master equation when both

2470-0045/2024/109(2)/024407(12) 024407-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.024407&domain=pdf&date_stamp=2024-02-15
https://doi.org/10.1103/PhysRevE.109.024407
https://creativecommons.org/licenses/by/4.0/


MAGNUS J. E. RICHARDSON PHYSICAL REVIEW E 109, 024407 (2024)

inhibition and excitation are present were not found, an effi-
cient numerical scheme for directly obtaining the steady-state
and rate response is developed with Julia code [38] provided
in the Supplemental Material [39].

II. DYNAMICS OF A NEURON

The neuron is isopotential with voltage v(t ) and receives
stochastic drive from excitatory and inhibitory presynaptic
populations. The rate of charging of the membrane capac-
itance is proportional to the voltage derivative, the intrinsic
current-voltage relation of the neuron is modelled as without
history, potentially nonlinear and proportional to the function
f (v), and the stochastic synaptic current s(v, t ) is a function
of both voltage and time as reversal potentials are included.
Putting these terms together in the current-balance equa-
tion for the neuronal membrane yields a first-order nonlinear
differential equation driven by multiplicative noise

dv

dt
= f (v) + s(v, t ). (1)

The spike is implemented via the integrate-and-fire mecha-
nism: If the voltage passes a threshold vth, then it is directly
reset to a lower value vre and a spike is registered.

Two different current-voltage relationships are considered
in this paper. The first is a leaky integrator

f (v) = −v

τ
, (2)

where τ is the membrane time constant. The second forcing
term considered is that of the EIF [32] which includes the
nonlinear effect of the spike onset

f (v) = 1

τ
[δT e(v−vT )/δT − v]. (3)

As well as a stable resting voltage near v = 0, the model
features an intrinsic spiking mechanism via an unstable fixed
point. Above this value, the voltage diverges until it hits the
threshold and is then reset. The quantity vT is the voltage at
which the forcing term is at its minimum whereas δT param-
eterizes how the exponential nonlinearity grows. These two
f (v) choices, corresponding to the LIF and EIF models, are
plotted in Fig. 1(a).

A. Shot noise with reversal potentials

The second term on the right-hand side of Eq. (1) is now
examined in detail. In this paper, a synaptic input is approxi-
mated as being unfiltered and implemented as a conductance
impulse having the effect of immediately increasing (excita-
tion) or decreasing (inhibition) the membrane potential by a
voltage-dependent amplitude. In the context of active presy-
naptic populations, the barrage of excitatory and inhibitory
input is modelled by time-dependent Poissonian rates Re(t )
and Ri(t ) such that

s(v, t ) = (εe − v)
∑
{t e

k }
he

kδ
(
t − t e

k

)

+ (εi − v)
∑
{t i

k}
hi

kδ
(
t − t i

k

)
, (4)

FIG. 1. Comparison of the leaky and exponential integrate-and-
fire (LIF and EIF) models driven by exponentially distributed
conductance or current-based synaptic shot noise. (a) Current-
voltage relationship f (v) normalized by the capacitance for the
LIF and EIF models. (b) Excitatory (green) and inhibitory (red)
synaptic-amplitude distributions as a function of three initial voltages
(−5, 0, 5 mV) for exponentially distributed synaptic conductances
[upper panel, Eq. (10)] or currents [lower panel, Eq. (B2)] with
distributions having mean amplitudes matched at v = 0. (c) Volt-
age dynamics for the LIF (upper panel) and EIF (lower panel).
Implementations with conductance-based [Eq. (4), black lines] and
current-based [Eq. (B1), gray lines] drive for the distributions
in panel (b) exhibit clear differences in membrane voltage and
firing times. Parameters: τ = 20 ms, δT = 1 mV, vT = 10 mV,
vre = 5 mV, vth = 10 mV for the LIF or vth = 20 mV for the EIF;
reversal potentials εe = 60 mV, εi = −10 mV; mean synaptic am-
plitudes as marked; steady-state presynaptic rates for panel (c) were
R̄e = 0.2 kHz and R̄i = 0.02 kHz. Code used to generate the figure is
provided in the Supplemental Material [39].

where εe and εi are the reversal potentials and {t e
k }, {t i

k} the
set of presynaptic-pulse arrival times. The quantities he

k and
hi

k are unitless (scaled conductance) impulses drawn from a
biophysically plausible distribution. In the context of the fast-
synapse limit used here, these quantities can be thought of as
being equal to the time integral of a fast synaptic-conductance
waveform divided by the membrane capacitance and therefore
directly proportional to the distribution of synaptic conduc-
tance strengths.

Care is needed in the interpretation of the effect of s(v, t )
on the voltage dynamics in Eq. (1) due to the delta functions
having a voltage-dependent prefactor. Using an isolated exci-
tatory pulse as an example

dv

dt
= f (v) + (εe − v)hδ(t ), (5)

both sides are first divided by (εe − v) and then integrated
over a short time window that includes the delta pulse. The
term including f (v) will vanish with the size of this time
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window leaving the solution

log

(
εe − w

εe − v

)
= h, (6)

where w was the voltage before and v > w is the voltage after
the pulse. This equation can be re-arranged to give the voltage
jump from its initial value w as

v − w = (εe − w)b, (7)

where b = 1 − e−h is a convenient measure of the synaptic
amplitude [35] and is bounded between 0 and 1. The ampli-
tudes of the synaptic impulses in Eq. (4) are stochastic and
drawn, using excitation as an example, from a distribution
He(h). Of interest, in the population-level description to be
considered later, will be the fraction of synaptic impulses that
bring the voltage above some value v from a lower value w.
This tail distribution can be written as

Te(v,w) =
∫ ∞

hvw

dhHe(h), (8)

where the lower bound hvw is the value given in Eq. (6)
and ensures that only jumps taking the voltage above v are
included.

B. Exponentially distributed synaptic conductances

A biophysically plausible exponential amplitude distribu-
tion of conductance impulses is chosen here. As will be seen
later, this special case of the more general gamma distribution
used in Ref. [35] allows for a considerable simplification of
both the analytical description of the master equation and its
numerical solution at the population level. Using excitation as
an example, the distribution is written

He(h) = θ (h)
e−h/he

he
, (9)

where he is the mean conductance amplitude. As introduced
earlier in Eq. (7), the voltage increase can be conveniently
expressed in a transformed variable b = 1 − e−h where b = 0
corresponds to a negligibly small input and b = 1 an input
sufficiently strong to place the voltage right at the excitatory
reversal potential εe. An exponential distribution for h implies
a special case of the beta distribution for b

Be(b) = βe(1 − b)βe−1, (10)

where βe = 1/he and the mean of b is be = 1/(βe + 1). The
distribution parameters he or βe can therefore be related to the
mean synaptic amplitude from rest ae via Eq. (7) which is

ae = εebe. (11)

This gives the typical jump size from a voltage w as ae(1 −
w/εe). Note that with this definition the limit εe → ∞ with
ae held constant recovers a current-based implementation of
the synaptic drive [see also Eq. (B1)]. Examples of these
results, and the equivalent for inhibition, are presented in
Fig. 1(b) (upper panel) where the amplitude distributions
from three different initial voltages are shown. Note that the
inhibitory amplitude distribution becomes markedly sharper
as the inhibitory reversal potential is neared. As a reference,
the distributions for exponentially distributed current-based

synaptic drive [see Appendix Eqs. (B1) and (B2)] are provided
in Fig. 1(b) lower panel showing the expected constancy at
different initial voltages. Finally, in Fig. 1(c) example voltage
dynamics [Eq. (1)] for the LIF and EIF are provided in the
upper and lower panels. The same patterned stochastic inputs
with amplitudes matched at rest are provided to conductance-
based [Eq. (4)] and current-based [Eq. (B1)] implementations
of the drive demonstrating distinct responses.

III. POPULATION DYNAMICS

The voltage trajectories of a population of neurons, each
obeying Eq. (1) with an uncorrelated but statistically iden-
tical realization of the stochastic drive in Eq. (4), can be
described by a probability density P(v, t ). The stochastic
single neuronal dynamics allow for the construction of a mas-
ter equation that describes the deterministic dynamics of the
ensemble at the population level. As well as the probability
density, it is convenient to consider the probability flux J (v, t ).
This describes the flow rate of trajectories passing a particular
voltage. Note that the flux at threshold J (vth ) is equal to the
instantaneous spike-rate r(t ) of the population with the flow
then reinserted at the reset vre. These quantities are connected
by a continuity equation,

∂P

∂t
+ ∂J

∂v
= r(t )[δ(v − vre ) − δ(v − vth )], (12)

which is statement of conservation of total density. The flux
J can be resolved into a deterministic contribution equal to
the forcing term multiplied by the density f P and two terms
Je > 0 and Ji < 0 coming from the stochastic excitatory and
inhibitory synaptic events in the s(v, t ) term of Eq. (1). This
gives the flux equation

J = f P + Je + Ji. (13)

The synaptic fluxes Je, Ji for conductance-based synaptic
drive s(v, t ) can be straightforwardly derived from the am-
plitude distributions considered in the previous section. For
example, the excitatory flux across a voltage v is the excitatory
presynaptic rate times the fraction of amplitudes that bring the
neuron from any lower voltage w to a voltage greater than v.
Hence,

Je(v, t ) = Re

∫ v

−∞
dwP(w)Te(v,w), (14)

where Te(v,w) is the tail distribution given in Eq. (8). A
similar form is derivable for inhibition but will be negative.
Equations (12)–(14) constitute the master equation for fast
synaptic shot noise implemented with reversal potentials and
having a general distribution for the synaptic-conductance
amplitudes. Such coupled integrodifferential equations sets
are generally difficult to treat analytically. In the next sec-
tion it is shown that the description simplifies considerably
when the underlying distribution of synaptic conductances is
exponential.

A. Differential form of the master equation

The exponential form for He given above [Eq. (9)] is now
substituted into the tail equation for the distribution Te(v,w)
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and integrated to give

Je(v, t ) = Re

∫ v

−∞
dwP(w)e−hvw/he . (15)

Substituting in for hvw given in Eq. (6) yields

Je(v, t ) = Re

∫ v

−∞
dwP(w)

(
εe − w

εe − v

)βe

, (16)

where βe = 1/he. It can be noted that this is a special case
of the gamma-distributed conductance amplitudes considered
previously [35]. Following the approach in Ref. [17], the
derivative with respect to voltage is taken and the resulting
integral in one of the terms identified as being proportional to
Je. This results in differential equations for the excitatory and
inhibitory synaptic fluxes that take similar forms,

∂Je

∂v
+ βeJe

εe − v
= ReP and

∂Ji

∂v
+ βiJi

εi − v
= RiP. (17)

These two synaptic flux equations together with the conti-
nuity (12) and flux (13) equations describe the dynamics of
an ensemble of neurons subject to exponentially distributed
conductance-based shot noise.

B. Steady-state rate and firing-rate response

The master equation describes the full dynamics with ar-
bitrarily strong modulations of the incoming synaptic rates
Re(t ) and Ri(t ). A full solution of the system appears dif-
ficult to obtain, given the complexity of the time-voltage
partial-differential equation set and threshold-reset boundary
conditions. However, simpler quantities such as the steady-
state rate and firing-rate response—the response to weak
modulations of the incoming rates—nevertheless provide
important information on the behavior at the neuronal-
population level and are central quantities needed for network
stability and emergent oscillations [6]. Using modulated ex-
citation as an example, the incoming rate can be written in
complex form as

Re(t ) = R̄e + R̂eeiωt , (18)

where R̄e is the steady-state value, R̂e the (potentially
complex) amplitude of the modulation, and ω its angular fre-
quency. The modulatory amplitude is considered sufficiently
weak such that evoked modulations in all downstream vari-
ables take (using the excitatory flux as an example) the form

Je(t ) = J̄e + Ĵeeiωt . (19)

These expansions can be substituted into the master equa-
tion defined through Eqs. (12), (13), and (17) with the
resulting steady-state quantities providing a self-contained set
of equations and the modulations providing a second set of
equations. The master equations in the steady state is

dJ̄

dv
= r̄[δ(v − vre ) − δ(v − vth )], (20)

dJ̄e

dv
+ βeJ̄e

εe − v
= R̄eP̄, (21)

dJ̄i

dv
+ βiJ̄i

εi − v
= R̄iP̄, (22)

with the steady-state flux equation J̄ = f P̄ + J̄e + J̄i. Note
that the first equation implies J̄ = r̄θ (v − vre ) for v < vth.
Next, at the level of a weak excitatory and inhibitory mod-
ulation of the master equation, a similar-looking set of
differential equations is found

iωP̂ + dĴ

dv
= r̂[δ(v − vre ) − δ(v − vth )], (23)

dĴe

dv
+ βeĴe

εe − v
= R̄eP̂ + R̂eP̄, (24)

dĴi

dv
+ βiĴi

εi − v
= R̄iP̂ + R̂iP̄, (25)

where now Ĵ = f P̂ + Ĵe + Ĵi. For these quantities, the master
equation has therefore been reduced to a set of coupled or-
dinary differential equations for which there is some hope of
analytical solution or at least an efficient numerical scheme.
Before treating the equations, a general statement about the
limit of their behavior at high-frequency modulation is first
provided.

C. Synaptic fluxes at high frequency

For the analysis of the high-frequency asymptotics, it is
useful to consider the behavior of the synaptic fluxes in that
regime. First, it can be noted that because of the prefactor iω
in the continuity equation (23), the modulated probability den-
sity P̂ will decay with frequency. This allows for the following
observation, again using excitation as an example: Expanding
the integral [Eq. (16)] in terms of the modulated components
gives

Ĵe = R̂e

∫ v

εi

duP̄(u)

(
εe − v

εe − u

)βe

+ R̄e

∫ v

εi

duP̂(u)

(
εe − v

εe − u

)βe

. (26)

As P̂ → 0 at high frequency, the first term becomes increas-
ingly dominant. It can be noted that this term is simply the
steady-state excitatory synaptic flux multiplied by the ratio
R̂e/R̄e. This argument follows for both excitatory and in-
hibitory modulation and so, for increasing high modulation
frequencies, the modulated synaptic fluxes can be written in
terms of their steady-state values

Ĵe → R̂e

R̄e
J̄e and Ĵi → R̂i

R̄i
J̄i. (27)

These results allow for the high-frequency firing-rate response
to be related to steady-state quantities significantly simplify-
ing the asymptotic analysis.

IV. LEAKY INTEGRATE AND FIRE MODEL

For the LIF model, the current-voltage relation f (v) is
linear [Eq. (2) and Fig. 1(a)] and the threshold for action
potential generation vth is at the beginning of the spike with
an instantaneous reset to vre. The threshold and reset are both
considered to be above the resting potential, with the former
criterion ensuring that the neuron is in the fluctuation-driven
firing regime.
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FIG. 2. Leaky integrate-and-fire neuron driven by conductance or current-based shot noise with excitatory and inhibitory reversal poten-
tials. (a) Steady-state outgoing firing rate with the incoming presynaptic rates (R̄e, R̄i ) the same for the conductance and current-based cases.
The presynaptic rates were parameterized, for convenience, from the current-based equations [see Eq. (B6)] for the voltage mean 〈v〉 with the
standard deviation fixed at σ = 5 mV. Note the near-exponential rise for the conductance case seen in the inset. (b) Probability density together
with excitatory and inhibitory fluxes for neurons firing at 5 Hz [intersections with dotted line in panel (a)]. The presynaptic rates (R̄e, R̄i ) were
(0.393,0.650) kHz and (0.365,0.762) kHz for conductance and current-based cases, respectively. (c) Amplitude and phase of the firing-rate
response to modulation of the presynaptic excitatory rate with asymptotics shown. (d) Same, but for the case of modulation of the inhibitory
presynaptic rate. For panels (c) and (d) the presynaptic rates from panel (b) were used (corresponding to r̄ = 5 Hz) with all other parameters
for the LIF provided in caption to Fig. 1. Simulational results are provided by symbols in panels (a), (c), and (d) and histograms in panel (b).
All code used to generate the figure is provided in the Supplemental Material [39].

A. Boundary conditions

In the fluctuation-driven regime, the threshold can only be
crossed by an excitatory synaptic event so the firing rate is
identical to the excitatory flux at threshold:

r(t ) = J (vth, t ) = Je(vth, t ) implying P(vth, t ) = 0. (28)

The second result (zero probability density at threshold)
comes from the flux equation (13) and the equality of the
total and excitatory steady-state fluxes combined with zero in-
hibitory flux at threshold (there are no neurons with v > vth).
This requires P(vth ) = 0 given that the forcing term f (vth ) is
nonzero at threshold.

B. LIF steady-state rate

For the LIF driven by current-based shot noise [17] it
was possible to solve the master equation using a bilateral
Laplace transform. This approach does not appear practical
for combined excitatory and inhibitory shot noise with rever-
sal potentials due to the additional voltage dependencies in
the flux equations (17) compared to those for current-based
drive [see Eq. (B4)]. However, an efficient numerical scheme
developed for additive Gaussian [40] and additive shot noise
[17] can be extended to account for the reversal potentials. The
method works by integrating Eqs. (20)–(22) in the direction of
convergence in two domains:

[εi
(i)−→ 0] [0

(ii)←− vth]. (29)

The only inhomogeneous term in the equation set is propor-
tional to r̄ [in Eq. (20)]. It must be, therefore, that all quantities
are proportional to r̄ and so this factor can be scaled out. Using
lowercase letters for the scaled versions, the flux is trivially
given as j̄ = θ (v − vre ) from the solution of Eq. (20). This

leaves the remaining pair of synaptic fluxes (j̄e, j̄i ) to describe
the system where the scaled probability density can be written
in terms of these quantities by re-arranging the flux equa-
tion p̄ = (j̄ − j̄e − j̄i )/ f . For domain (ii) Eqs. (21) and (22)
with threshold conditions (1,0) are integrated downwards to
v = 0. For domain (i) the equations are integrated up to v = 0
starting from just above the inhibitory reversal potential with
initial conditions (0,−1). The excitatory flux is then matched
on either side of the origin by scaling the solutions in domain
(i). Finally, the unknown steady-state rate r̄ is recovered by
the normalization condition on the probability density P̄(v)
via r̄

∫
p̄(v)dv = 1.

The steady-state rate for excitatory and inhibitory
conductance-based synaptic shot noise is given for the LIF
model in Fig. 2(a) as a function of the subthreshold mean
voltage. The inset features a semilog plot on the y axis shows
that the rate is close to exponential with the mean voltage. The
behavior is also compared to that for additive shot noise (see
Appendix B). In Fig. 2(b) the steady-state probability density
and synaptic fluxes are shown for the case where r̄ = 5 Hz.
Note that the distribution of the current-based case is curtailed
above the reversal potential for inhibition εi.

C. LIF firing-rate response

It was not obvious how an analytical solution to Eqs. (23)–
(25) for the modulated rate can be obtained for combined
excitatory and inhibitory conductance-based shot noise; how-
ever, it is again straightforward to generalize the numerical
approach. At the modulated level, there are two inhomoge-
neous terms, proportional to r̂ and either R̂e or R̂i in the
equation set (taking either excitatory or inhibitory modulation
separately). The method is therefore more involved than for
the steady-state case and can be found in full in the Appendix.
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Examples of the firing-rate response are provided in Fig. 2(c)
for modulated excitation and in Fig. 2(d) for modulated inhi-
bition. They are compared with previously derived results for
current-based shot noise and shown to be broadly similar, no-
tably in their high-frequency asymptotics. Though it was not
possible to solve the equations analytically, the asymptotics
for the firing-rate response for the LIF model can be derived.

1. Excitatory modulation at high frequencies

For the LIF, the modulated firing rate is given by the mod-
ulated excitatory flux at threshold Ĵe(vth ) as stated in Eq. (28).
This quantity in turn becomes increasingly proportional to
the steady-state excitatory flux as the modulating frequency
increases [see Eq. (27)]. Applying this gives the result

r̂ ∼ R̂e

R̄e
r̄ (30)

and so the response to modulation of the presynaptic excita-
tory rate tends to a constant in the limit of high frequency
with zero phase lag. An example of this asymptotic behavior
is provided in Fig. 2(c) and compared to the current-based
case that has an identical form.

2. Inhibitory modulation at high frequencies

Though it is the incoming inhibitory rate that is modulated,
the outgoing firing rate is still given by the modulated exci-
tatory flux but with the first term in the expansion Eq. (26)
absent as R̂e = 0. The modulated firing rate therefore reduces
to just the second term and so

r̂ = R̄e

∫ vth

εi

du

(
εe − vth

εe − u

)βe

P̂(u), (31)

where it remains only to approximate P̂(u) at high frequency.
The argument is as follows: In Eq. (25) there is an inhomo-
geneous term that is proportional to the steady-state density
P̄ that does not decay with increasing frequency. Driven by
this term, inhibitory flux is therefore dominant over the f P̂
and Ĵe terms in the modulated flux equation, so that Ĵ � Ĵi

at high frequencies. Inserting this into equation (23) gives
P̂ = −(dĴi/dv)/iω and then, using the result from Eq. (27)
that Ĵi � J̄iR̂i/R̄i at high frequencies allows for substitution
into Eq. (31). Following a final integration-by-parts step gives
the modulated rate in terms of the steady-state inhibitory flux,

r̂ ∼ R̂i
R̄e

R̄i

βe

iω

∫ vth

εi

du

(
εe − vth

εe − u

)βe J̄i(u)

εe − u
. (32)

It was not obvious how to further reduce this equation. Nev-
ertheless, it shows that the high-frequency asymptotics decay
with the reciprocal of frequency and with a phase of 90◦ by
virtue of the 1/i term and that the steady-state inhibitory flux
J̄i is negative. An example of this result is provided in Fig. 2(d)
and compared to the result for current-based inhibitory shot
noise which shares the same asymptotic behavior.

V. EXPONENTIAL INTEGRATE & FIRE MODEL

The EIF current-voltage term f (v) given by Eq. (3) has
two zeros determined by the parameters vT and δT : a stable

fixed vs just above v = 0, similar to the LIF model, and an
unstable fixed point vu above vT . These fixed points can be
found in terms of Lambert W functions [41] but to leading
order approximation are roughly

vs � δT e−vT /δT and vu � vT + δT log (vT /δT ). (33)

In the absence of synaptic drive, a starting voltage above
vu will take the voltage to infinity in finite time which can
be considered the ultimate threshold. However, physiologi-
cally, the range of validity of the exponential term is up to
∼10 mV above the unstable fixed point (see inset to Fig. 2(a)
in Ref. [33]) and so it is reasonable, as well as convenient
numerically, to set a finite threshold at some value vth that is
above vu but below εe and at which point a spike is registered
and the voltage is reset to vre. For the EIF model, therefore,
the ultimate threshold vth is set at a higher value than for the
LIF model.

A. Boundary conditions

At threshold the firing rate is given by the flux J (vth, t ).
However, unlike for the LIF model, in this voltage range both
the (positive) deterministic component of the flux and the
excitatory flux contribute to crossing the threshold

r(t ) = J (vth, t ) = f (vth )P(vth, t ) + Je(vth, t ), (34)

with
Ji(vth, t ) = 0, (35)

where the second result is due to there being no neuronal

trajectories above vth due to the instantaneous reset condi-
tion. Unlike the LIF model, there is no equality between the
total flux and excitatory flux at threshold so the probability
density at threshold does not vanish. Additionally, the flux
equation (13) reduces to J = Je + Ji at the two fixed points
[when f (v) = 0].

B. EIF steady-state rate

Analytical solutions to the steady-state master equa-
tion [Eqs. (20)–(22)] driven by excitatory and inhibitory shot
noise were not forthcoming and so again a numerical scheme
was developed. However, some care is needed due to the pres-
ence of the fixed points at vs and vu where f (v) vanishes. This
requires that the steady-state master equation is integrated in
three domains

[εi
(i)−→ vs] [vs

(ii)←− vu] [vu
(iii)−→ vth] (36)

with matching across the domain interfaces vs and vu as well
as the boundary conditions at εi and vth respected. It is conve-
nient to first solve in domain (iii) from the unstable fixed point
up to the threshold, then in domain (ii) from the unstable fixed
point down to the stable fixed point and finally in domain (i)
from the inhibitory reversal potential to the stable fixed point.
Like for the LIF model, the only inhomogeneous term is in
Eq. (20) and is proportional to r̄. All downstream quantities
will therefore be proportional to this unknown quantity and
it can be scaled out (lowercase letters are used for these
quantites). The scaled flux is again j̄ = θ (v − vre ). It remains
only to solve for the two synaptic fluxes (j̄e, j̄i ) with the
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FIG. 3. Exponential I&F neuron driven by conductance or current-based shot noise with excitatory and inhibitory reversal potentials.
(a) Steady-state outgoing firing rate with the incoming presynaptic rates (R̄e, R̄i ) the same for the conductance and current-based cases. The
presynaptic rates were parameterized, for convenience, from the current-based equations [see Eq. (B6)] for the (subthreshold) voltage mean
〈v〉 with the standard deviation fixed at σ = 5 mV. As for the LIF, again note the near-exponential rise of r̄ for the conductance case seen in the
inset. (b) Probability density together with excitatory and inhibitory fluxes for neurons firing at 5 Hz (intersections with dotted line in panel (a).
The presynaptic rates (R̄e, R̄i ) were (0.446,0.440) kHz and (0.397,0.636) kHz for conductance and current-based cases, respectively. Note the
relatively curtailed distribution near the inhibitory reversal potential εi = −10 mV for the conductance-based case. (c) Amplitude and phase
of the firing-rate response to modulation of the presynaptic excitatory rate with asymptotics shown. (d) Same but for the case of modulation of
the inhibitory presynaptic rate. For panels (c) and (d) the presynaptic rates from panel (b) were used (corresponding to r̄ = 5 Hz) with all other
parameters for the EIF provided in caption to Fig. 1. Simulational results are provided by symbols in panels (a), (c), and (d) and histograms in
upper panel (b). Code used to generate the figure is provided in the Supplemental Material [39].

probability density written in terms of these quantities using
the flux equation in the steady state, as was done for the LIF.

Numerical stability requires that integration of the equa-
tion set is in the direction away from the unstable fixed point
and towards the stable fixed point. This adds the complica-
tion that the ratio of excitation to inhibition is unknown at
vu. As stated above, the method is to first solve the equa-
tions in region (iii) and to do so twice. For the first solution
(j̄A

e , j̄A
i ) initial conditions at vu of (1,0) are chosen using

p̄A = (1 − j̄A
e − j̄A

i )/ f . For the second solution (j̄B
e , j̄B

i ) the
initial conditions at vu are (1,−1) and p̄B = −(j̄B

e + j̄A
i )/ f

is used. The requirement of a vanishing inhibitory flux at
threshold is then used to get the correct mix of these solutions

j̄A
i (vth ) + κ j̄B

i (vth ) = j̄i(vth ) = 0 (37)

fixing the constant κ . Once achieved, the correct combination
of A and B solutions can be integrated in region (ii) from vu

down to the stable fixed point vs. Matching at vs is achieved
by rescaling the solution from region (i), which is found in the
same way as for the LIF model. Finally, the steady-state rate
r̄ is recovered from the normalization condition on P̄ = r̄ p̄.
Examples of the steady-state rate [Fig. 3(a)], density and flux
distributions [Fig. 3(b)] are provided for the conductance-
based case with comparison to the case of current-based
additive shot noise.

C. EIF firing-rate response

The master equation at the level of modulation, given by
Eqs. (23)–(25) again appears difficult to solve analytically.
However, a numerical approach similar to that used for the
steady-state rate can be developed. As for the LIF case, at
the level of modulation, the numerical solution is relatively

involved to construct due to the multiple inhomogeneous
terms and difficulty in accounting for boundary conditions and
the fixed points of f (v) for the EIF model: The method is
therefore described in detail in the Appendix. Example results
for the numerical solutions are provided in Figs. 3(c) and 3(d)
and compared to the matched current-based shot-noise model.

1. Modulation at high frequencies

For the case of excitatory current-based shot noise, an ana-
lytical approach was developed that allowed the rate response
at high frequencies to be related to steady-state synaptic fluxes
[21]. A similar framework can be developed for the case of
combined excitatory and inhibitory flux and is now presented.

First, the notion of the escape time T is introduced. In
the absence of the synaptic input term s(v, t ) in Eq. (1), the
time taken for the voltage to diverge to infinity from a voltage
above the unstable fixed point v > vu is

T =
∫ ∞

v

dv

f (v)
, where

dT
dv

= − 1

f
. (38)

Here v = vu corresponds to T = ∞ and v = ∞ corresponds
to T = 0. Separately, in the same domain of v > vu, the
modulated continuity equation [Eq. (23)] can be rewritten
for P̂ and substituted into the modulated flux equation Ĵ =
f P̂ + Ĵe + Ĵi to give

f

iω

dĴ

dv
+ Ĵ = Ĵe + Ĵi. (39)

These two results can now be combined by using the deriva-
tive form in Eq. (38) to convert the differential equation in
v to one in T (v). Making use of the boundary conditions
that Ĵ → r̂ in the limit v → ∞, T → 0 and Ĵ → Ĵe + Ĵi at
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v = vu, T → ∞ gives the result

r̂ =
∫ ∞

0
dT e−iωT

(
dĴe

dT + dĴi

dT

)
. (40)

At high frequencies, using Eq. (27), the asymptotics can be
written in terms of the steady-state fluxes

r̂ �
∫ ∞

0
dT e−iωT

(
dJ̄e

dT + dJ̄i

dT

)
(41)

allowing for the high-frequency asymptotics—a parametriza-
tion of the dynamics—to be derived if an analytically
convenient form for the steady-state synaptic fluxes can be
found in terms of the escape time T (v). This is in the nature
of a fluctuation-dissipation relation (though see Ref. [42] for
a complete relation for neuronal systems). Unfortunately, this
does not appear to be as straightforward as for the current-
based case [21] in which the asymptotics had a dependency
on the relation between the ratio of the mean excitatory ampli-
tude and the spike sharpness δT . However, the broad behavior
remains as can be seen in Figs. 3(c) and 3(d) in which the rate
response of the models with conductance or and current-based
drive have similar forms over moderate frequencies.

VI. DISCUSSION

The population-level framework for linear and nonlinear
neurons driven by exponentially distributed excitatory and
inhibitory synaptic condutances was examined. For this bio-
physically reasonable choice of conductance distribution it
was demonstrated that the generic integrodifferential master
equation (see Ref. [35]) can be reduced to a set of more
tractable differential equations. This description of the master
equation allowed for the development of an efficient scheme
for the numerical derivation of the steady-state density distri-
butions and rate as well as those at the level of the firing-rate
response to weakly modulated presynaptic rates. The anal-
yses of these equations presented here extend treatments
of the effects of synaptic conductance on the LIF and EIF
firing rates previously derived in the small-amplitude app-
proximation [3,40,43]. They also extend previous results for
finite-amplitude synaptic drive for the LIF [17] and EIF [21]
models where synapses were treated as current-based and the
noise was therefore additive rather than conductance-based
and multiplicative.

For the case of additive shot noise, it was possible to derive
analytical forms for the steady-state and modulated rates [17]
for the LIF with excitatory and inhibitory input. These results
were later extended to nonexponentially distributed inhibi-
tion [18,19]. Unfortunately, that analytical approach, which
used bilateral Laplace transforms, does not appear to extend
straightforwardly to the case of reversal potentials: analytical
solutions for these quantities remain a topic for future re-
search. Interestingly, the steady-state firing rate as shown in
the inset to Fig. 2(a) appears close to exponential, suggesting
that there may nevertheless be a simple approximation, if not a
full solution, to the steady-state rate with combined excitation
and inhibition

An analytical solution for the rate response for the LIF
model was similarly illusive, though the high-frequency

asymptotics could be obtained. The difficulty in finding an
analytical solution of course also extends to the more detailed
EIF model, though again an intriguing near-exponential rise
in the steady-state firing rate can be seen in the inset to
Fig. 3(a). This suggests that a simple solution (or, at the least,
an accurate approximation) to the steady-state rate might be
possible.

It was previously shown [21] that, at the level of the firing-
rate response for the EIF model with current-based drive, there
is an interplay between the mean amplitude ae and the sharp-
ness of the spike δT in setting the asymptotic high-frequency
exponent. Though it was again possible to show that the
asymptotics of the high-frequency response can be related
to the steady-state excitatory flux—a form of fluctuation-
dissipation relation—the simplification of the excitatory flux
for the case of reversal potentials was not so straightforward to
derive as for the current-based case because the mean synaptic
amplitude is conditional on voltage. However, the dependency
on the rapidity of the response as a ratio of the amplitude
around threshold and the spike sharpness broadly holds over
moderate frequencies [Fig. 3(c)].

These results represent an initial foray into models of linear
and nonlinear integrate-and-fire models with exponentially
distributed conductances. While it is clear from the structure
of the master equation that the steady-state voltage distri-
bution can be trivially derived in integral form for both the
LIF and EIF in the case of excitation only, in the context of
synaptic reversal potentials it is the inclusion of inhibition
that is of relevance. The solution for the steady-state rate for
combined excitation and inhibition as well as the firing-rate
response remain therefore an important theoretical goal.

A further case of interest would be to relate a chang-
ing amplitude distribution to the role of short-term synaptic
plasticity [44,45]. This has been analysed in the Gaussian ap-
proximation [46,47] but would be interesting to examine as a
driver for how the amplitude distribution changes as a function
of presynaptic activity, the history dependence of inputs at
particular fibres and the effect of non-Poissonain statistics on
the population equations [48,49]. The high-frequency asymp-
totics of the rate response are sensitive to the interplay of the
spike-sharpness and mean synaptic amplitude [21]. Including
a mechanism like short-term plasticity provides a motivation
for analyzing how the rapidity of the neuronal response can be
modulated by the level of presynaptic network activity and is
a physiologically valid question for future research.

APPENDIX A: NUMERICS FOR THE
FIRING-RATE RESPONSE

The numerical solution for the steady-state master equa-
tion (20)–(22) for the conductance-based shot-noise LIF and
EIF models were described in the main text. The approach is
an extension of the threshold integration methods developed
for Gaussian-white noise [40], LIF with additive shot noise
[17], and EIF with additive excitatory shot noise [21]. In this
section, the approach for modulated excitatory or inhibitory
conductance-based shot noise is outlined. The general compo-
nents common to the LIF and EIF are first described and then
the boundary conditions specific to the two models explained
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in detail. All Julia code [38] is provided in the Supplemental
Material [39].

The method now presented is similar to that used for the
steady state, though in the modulation case there are three
inhomogeneous components proportional to r̂, R̂e, and R̂i in
the region (ii) for the LIF and (ii) and (iii) for the EIF [see
Eqs. (29) and (36)]. The system is linear so it suffices to solve
the problem with either excitatory modulation or inhibitory
modulation separately, with effects of combinations of the
remaining two modulations simply adding at the population
level in the weak modulation approximation. Throughout the
following, the example of excitatory modulation will be used
without loss of generality. There are therefore two inhomoge-
neous terms that are considered together: that of r̂, R̂e allowing
the solutions for the various fluxes to be separated into a sum
of two subsolutions, like for the total flux:

Ĵ = r̂ĵ r + R̂eĵ
e. (A1)

Equations (23)–(25) can be resolved into two sets of equa-
tions with variables (ĵ r, ĵ r

e , ĵ r
i ) and (ĵ e, ĵ e

e , ĵ e
i ). The first set

has r̂ = 1 and R̂e = R̂i = 0 and the second set has r̂ = 0
and R̂e = 1 with R̂i = 0 still because here only excitatory
modulation is considered. The solution approach is relatively
straightforward for the LIF in region (ii) because the bound-
ary conditions can be imposed at the threshold, which is
the starting point for the integration back to the stable fixed
point. For the EIF, however, there is an added complication
because it is necessary to integrate from the unstable fixed
point (where boundary conditions are not directly specified)
up to the threshold where they are—the strategy for handling
this complication is explained in detail later.

In domain (i), from the reversal potential to the stable fixed
point for the LIF or EIF, it is numerically convenient to run
the integration from a lower-bound vlb that is slightly above
the inhibitory reversal potential εi. A zero-flux condition is
imposed at vlb. The excitatory flux is zero here (as there are
no neuronal trajectories below) so the inhibitory flux balances
the deterministic component Ji(vlb) = − f P. Calling the mag-
nitude of this inhibitory flux q̂, the equations in region (i) for
both the LIF and EIF can be resolved into two components.
So, again using the total flux as an example:

Ĵ = q̂ĵ q + R̂eĵ
e. (A2)

Once each subsolution has been obtained with the appropriate
boundary conditions at vlb (see later) the equation in domain
(i) can be scaled to match with that in (ii) at the stable fixed
point (v = 0 for the LIF, v = vs for the EIF)(

q̂ĵ q
e + R̂eĵ

e
e

)∣∣
− = (

r̂ĵ r
e + R̂eĵ

e
e

)∣∣
+, (A3)(

q̂ĵ
q
i + R̂eĵ

e
i

)∣∣
− = (

r̂ĵ r
i + R̂eĵ

e
i

)∣∣
+, (A4)

where the ± means either just below or above the stable
fixed point. These two equations can be trivially solved to
finally provide q̂ and the desired modulatory rate r̂ in response
to presynaptic excitatory modulation. The case of inhibitory
modulation is derived using an identical approach but with
R̂e = 0 and R̂i = 1. The specific boundary conditions for the
LIF or EIF model are now described in more detail.

1. LIF boundary conditions

For the LIF there are two domains to integrate over [see
Eq. (29)]. Starting with domain (ii), first integrate 0 ← vth

with initial conditions (1,1,0) for the (ĵ r, ĵ r
e , ĵ r

i ) solution and
(0,0,0) for the (ĵ e, ĵ e

e , ĵ e
i ) solution. Then integrate in domain

(i) up from vlb → 0 with initial conditions (0, 0,−1) for the
(ĵ q, ĵ

q
e , ĵ

q
i ) solution and (0,0,0) for the (ĵ e, ĵ e

e , ĵ e
i ) solution.

The matching criterion then gives r̂ as required from the
solution of Eqs. (A3) and (A4). The approach for inhibitory
modulation is analagous.

2. EIF boundary conditions

The method is similar to that described above for the LIF
except that, like for the steady-state case, the solution in the
domain (iii) from vu → vth needs to be properly constructed
before the solutions in the other domains (ii) and (i) are found.
Again, for simplicity of exposition, a case is considered where
there is excitatory modulation only.

a. Region (iii). Stability requires integration to be in the
direction vu → vth. However, the boundary conditions, that
Ĵ = r̂ and Ĵi = 0, are imposed at vth. Hence, linearly inde-
pendent solutions with different initial conditions at vu need
to be appropriately combined so that the desired conditions
at vth are met. First, a solution (ĵE , ĵE

e , ĵE
i ) to Eqs. (23)–(25)

with R̂e = 1, R̂i = 0 are integrated from vu → vth with ini-
tial conditions (0,0,0). Two other solutions, (ĵA, ĵA

e , ĵA
i ) and

(ĵB, ĵB
e , ĵB

i ) are then integrated with R̂e, R̂i = 0, 0, with initial
conditions (1,1,0) and (0, 1,−1) respectively. The solution
that deals with the inhomogeneous term proportional to R̂e

can now be constructed as a linear combination of these three
solutions such that, for example, the total flux is written

ĵ e = aĵA + bĵB + ĵE . (A5)

Given freedom to vary a and b (the two homogeneous solu-
tions), a scenario is chosen where both the total and inhibitory
flux vanish at threshold for this component

0 = (aĵA + bĵB + ĵ e)|vth and (A6)

0 = (
aĵA

i + bĵB
i + ĵ e

i

)∣∣
vth

. (A7)

This fixes the values of a and b in terms of the integrated
solutions at vth. The r̂ component (ĵ r, ĵ r

e , ĵ r
i ) can also be

constructed from the A and B subsolutions, so for example
for the total flux

ĵ r = cĵA + d ĵB. (A8)

Given the way the R̂e component was constructed to have
vanishing total flux at threshold, the r̂ component now has
to satisfy the boundary conditions ĵ = 1 as well as ĵi = 0.
Hence, the requirements

1 = (cĵA + d ĵB)|vth and (A9)

0 = (
cĵA

i + d ĵB
i

)∣∣
vth

(A10)

that together fix c and d . These provide the correct com-
bination of solutions for the two inhomogeneous solutions
proportional to R̂e and r̂ in domain (iii).
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b. Region (ii). Here the integration is downwards (vs ← vu)
with the initial conditions from the previous case being(

ĵ e, ĵ e
e , ĵ e

i

)∣∣
vu

= a(1, 1, 0) + b(0, 1,−1)(
ĵ r, ĵ r

e , ĵ r
i

)∣∣
vu

= c(1, 1, 0) + d (0, 1,−1). (A11)

It should be remembered that the initial conditions for the
solution (ĵE , ĵE

e , ĵE
i ) were (0,0,0) and so do not contribute

to the first of the conditions above. Both sets of equations, for
the r̂ and R̂e inhomogeneous solutions, are integrated down to
vs. Note that because vre is in this domain, the integration for
the r̂ solution includes the Dirac-delta function in Eq. (23).

c. Region (i). As explained above, a lower bound vlb is
imposed just above the inhibitory flux. At this point, all fluxes
will be zero except for the inhibitory one which is set as
being proportional to a quantity q̂ [see Eq. (A2)]. The initial
conditions for the solution (ĵ q, ĵ

q
e ) are (0, 0,−1) and (0,0,0)

for (ĵ e, ĵ e
e , ĵ e

i ). Finally, r̂ and q̂ are determined from the linear
equations (A3) and (A4) given earlier thereby completing the
numerical solution.

APPENDIX B: ADDITIVE SHOT NOISE

The framework for additive, current-based shot noise with
exponentially distributed amplitudes was developed in ref-
erence [17] for the LIF driven by excitatory and inhibitory
input and later for the EIF driven by excitatory input only
[21]. In this section, the analysis in Ref. [21] is extended to
combined excitation and inhibition. For current-based drive,
the amplitude distribution is independent of voltage with the
drive term in Eq. (1) written as

S(t ) =
∑

k

ae
kδ

(
t − t e

k

) +
∑

k

ai
kδ

(
t − t i

k

)
, (B1)

where ae
k is the amplitude and t e

k the time of the kth excitatory
input, with a similar definition for inhibition. The voltage
amplitudes are drawn from exponential distributions Ae(a)
with mean ae > 0, using excitation as an example, so that

Ae(a) = θ (a)
e−a/ae

ae
and Te(a) = θ (a)e−a/ae . (B2)

The tail distribution Te(a) is the probability that an amplitude
is greater than a and, unlike for the conductance-based case,
is independent of voltage. The inhibitory jumps are also expo-
nential distributed, though with ai < 0. Example distributions
are provided in Fig. 1(b) lower panel for comparison to the
case with reversal potentials.

1. Synaptic flux equations for additive shot noise

The excitatory flux across a voltage v is equal to the rate
that jumps from all values of the voltage w < v cross it. For
current-based shot noise, this is just a convolution of the prob-
ability density and tail distribution, which for exponentially
distributed input can be written

Je(v, t ) = Re

∫ v

−∞
dwP(w)e−(v−w)/ae (B3)

with a similar form derivable for inhibition. This integral
form can be recognized as the solution of a first-order linear

differential equation for Je with the density P acting as an
inhomogeneous term, with a similar result for inhibition

∂Je

∂v
+ Je

ae
= ReP and

dJi

dv
+ Ji

ai
= RiP. (B4)

Together with the continuity and flux equation [Eqs. (12)
and (13)] these differential equations constitute the master
equation that fully describes the dynamics of an ensemble of
neurons subject to current-based shot noise with exponentially
distributed amplitudes.

2. LIF with additive shot noise

The master equation for this model can be solved to find
both the steady-state rate and firing-rate response through a
bilateral Laplace transform of the voltage [17]. Both rates can
be written in terms of the voltage moment-generating function
Z (s)

1

Z (s)
= (1 − aes)τRe (1 − ais)τRi (B5)

giving the steady-state voltage mean and variance as

〈v〉 = aeτ R̄e + aiτ R̄i and Var(v) = a2
eτ R̄e + a2

i τ R̄i. (B6)

Fixing these two quantities specifies R̄e and R̄i which is used
as the basis of the steady-state rate in Figs. 2(a) and 2(b). The
steady-state firing rate can be written in terms of an integral
over the generating function

1

τ r
=

∫ 1/ae

0

ds

s

1

Z (s)

(
esvth

1 − aes
− esvre

)
. (B7)

This is the shot-noise generalization of the simplified form
[6] of the Ricciardi formula [5]. The corresponding firing-
rate response for weak modulation of either the excitatory or
inhibitory presynaptic rate is written

r̂κ = R̂κτ r

∫ 1/ae

0
ds
s

1
Z (s)

(
esvth

1−aes − esvre
) ∫ s

0
dcaκ ciωτ

1−aκ c∫ 1/ae

0
ds
s

1
Z (s)

(
esvth

1−aes − esvre
)
eiωt

(B8)

where κ = e, i for excitation or inhibition. Though these an-
alytical forms exist for the LIF with additive shot noise, it is
often more convenient to generate the solutions numerically
using a similar method to that described in Appendix A for
conductance-based shot noise. The principal difference is that
the lower bound is not constrained to be above any reversal
potential for inhibition but rather chosen to be sufficiently low
that it has little effect on the results. Finally, in the limit of
high frequencies, the asymptotics can be shown to be

r̂e � r̄
R̂e

Re
and r̂i � r̄

R̂i

iω

ai

ae − ai
(B9)

for excitatory and inhibitory modulation.

3. EIF with additive shot noise

Unfortunately, the Laplace-transform solution used for the
LIF does not transfer easily to the EIF with additive shot
noise. The solutions are therefore obtained numerically, in the
same way as for the conductance-based case but, again, with
the lower bound vlb no-longer constrained by any inhibitory
reversal potential εi. Though a numerical approach is required
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for the full solution, the firing-rate response asymptotics can
nevertheless be obtained, as was shown for the case of the
EIF driven by only excitatory current-based shot noise [21].
In the following section these results are updated for the case
of excitatory and inhibitory input.

a. Excitatory modulation at high frequencies. For the
excitatory-only drive it was shown [21] that the asymptotics
for excitatory modulation depend nontrivially on the ratio of
the excitatory synaptic amplitude ae to the spike sharpness δT .
The method used in Ref. [21] is identical when background
steady-state inhibition is included with the results taking the
same form

r̂ � R̂e
rτ

iωτ

ae

δT − ae
for ae < δT , (B10)

r̂ � R̂e
rτ

iωτ
log(iωτ ) for ae = δT , (B11)

r̂ � R̂e
rτ Ie

(iωτ )δT /ae
�

(
δT

ae
+ 1

)
for ae > δT . (B12)

The integral Ie is a function of the steady-state density

Ie =
∫ ∞

−∞
due(u−vT )/ae P̄(u)/r̄τ (B13)

and therefore includes the presence of both excitatory and
inhibitory drive.

b. Inhibitory modulation at high frequencies. As inhibitory
modulation was not considered in Ref. [21] a little more detail
is provided. The steady-state inhibitory flux can be written

J̄i = −R̄i

∫ ∞

v

dwP(w)e−(v−w)/ai , (B14)

where it should be remembered that ai < 0. Well above
the unstable fixed point the voltage varies as P̄(w) �
(r̄τ/δT )e−(w−vT )/δT . Substituting in this form and performing
the integral gives an approximation valid at large voltages:

J̄i � R̄i
ai

δT − ai
r̄τe−(v−vT )/δT � R̄i

ai

δT − ai
r̄T (v). (B15)

In the second form, the escape time T (v) has been sub-
stituted in by noting that f ∼ δT e(v−vT )/δT /τ so that T ∼
τe−(v−vT )/δT at large voltages. Performing the integral trans-
form [see Eq. (41)] gives the high-frequency asymptotic

r̂ � R̂i
r̄τ

iωτ

ai

δT − ai
(B16)

for modulation of the inhibitory rate modulation. These results
are presented in Fig. 3.

4. Numerics for the EIF with additive shot noise

In cases where the analytical solution cannot be found
in convenient closed form or even for reasons of numerical
convenience, the solutions can be found for the steady-state
rate or firing-rate modulation using the same method as for
the conductance-based case described in Appendix B. The
two differences are as follows: first, the forms of the flux
equations so that Eqs. (B4) are used instead of Eqs. (17); and
second, the position of the lower bound vlb. Because there is
no inhibitory reversal potential, the lower bound vlb can be
placed at some sufficiently low value such that it does not
have a material effect on the results (i.e., in a sufficiently
hyperpolarized region where the probability density is very
low). Julia code [38] for the EIF with additive shot noise is
also provided in the Supplemental Material [39].

APPENDIX C: SIMULATIONS

Simulations of the voltage dynamics [Eq. (1)] with
synaptic-amplitude distributions drawn from Eqs. (9) or (B2)
were performed using a forward Euler scheme to provide
a comparison to analytical or numerically exact results. All
simulations were run at a time step of 0.01 ms and averaged
such that results were of the order of the symbol size in
figure panels. For the oscillatory responses the amplitudes of
the modulated rates for the LIF model were R̂e = 0.025 kHz
and R̂i = 0.075 kHz for both conductance-based and current-
based modulations. For the EIF model these parameters were
0.075 kHz in all cases.
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