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The movements of the human arm have been extensively stud-
ied for a variety of goal-directed experimental tasks. Analyses
of the trajectory and velocity of the arm have led to many
hypotheses for the planning strategies that the CNS might use.
One family of control hypotheses, including minimum jerk, snap
and their generalizations to higher orders, comprises those that
favor smooth movements through the optimization of an inte-
gral cost function. The predictions of each order of this family
are examined for two standard experimental tasks: point-to-
point movements and the periodic tracing of figural forms, and
compared both with experiment and the two-thirds power law.
The aim of the analyses is to generalize previous numerical
observations as well as to examine movement segmentation. It
is first shown that contrary to recent statements in the literature,
the only members of this family of control theories that match

reaching movement experiments well are minimum jerk and
snap. Then, for the case of periodic drawing, both the ellipse
and cloverleaf are examined and the experimentally observed
power law is derived from a first-principles approach. The
results for the ellipse are particularly general, representing a
unification of the two-thirds power law and smoothness hy-
potheses for ellipses of all reasonable eccentricities. For com-
plex shapes it is shown that velocity profiles derived from the
cost-function approach exhibit the same experimental features
that were interpreted as segmented control by the CNS. Be-
cause the cost function contains no explicit segmented control,
this result casts doubt on such an interpretation of the experi-
mental data.
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Movements of the human body are restricted both by mechanics
and computational resources. However, the repertoire of move-
ments that is actually observed comprises a small part of those
that are possible, because the CNS uses planning strategies that
impose further restrictions. The determination of these strategies
is nontrivial because they are not measurable directly. The ap-
proach has been therefore to observe the behavior under various
conditions and to construct mathematical theories that describe
the output of the motor system. The past few decades of experi-
mentation have lead to a number of (apparently) different hy-
potheses for planning strategies; for example, it has been pro-
posed that the CNS plans in the coordinate system of the joint
angles (Uno et al., 1989; Nakano et al., 1999) or in the coordinates
of the hand’s position (Morasso, 1981; Flash and Hogan, 1985) or
that the CNS plans movements that are robust against the inher-
ent noise in the motor system (Harris, 1998; Harris and Wolpert,
1998).

A successful description of an experiment by a theory is usually
taken as evidence that the CNS does indeed operate in such a
manner. But what if two different theories have the same predic-
tions? Obviously in this case no conclusions can be firmly drawn
until further experiments are performed, outside the region of
agreement. However, hypotheses can also be compared mathe-

matically to reach an understanding of their interrelation. In this
paper such a comparative study is undertaken with respect to two
simple, but widely applicable theories: the optimization of
smoothness-based cost functions and the two-thirds power law
between curvature and velocity. Predictions of these control hy-
potheses will be examined for two standard experimental para-
digms: point-to-point reaching movements and the periodic trac-
ing of simple figures. For the case of point-to-point movements it
is shown that only a few members of the family of smoothness-
based cost functions can match experiments well. For the case of
the periodic drawing of figural forms, a number of novel results
will be derived. A mathematical form for the exponent relating
hand velocity to curvature of the two-thirds power law will be
obtained from the cost functions for an ellipse and shown to be
indistinguishable from the experimental value of �0.33 (the
name “two-thirds” power law comes from the original formula-
tion in terms of curvature and angular velocity). This result holds
for all practical eccentricities, generalizing and formalizing pre-
vious numerical evidence obtained for specific examples (Wann
et al. 1988; Harris and Wolpert, 1998). As has been pointed out
previously, the ellipse is a special case with respect to the two-
thirds power law because it implies coupled harmonic motion. For
this reason, the same analysis was performed for the cloverleaf,
and again, an exponent was found that was in good agreement
with experiment. Finally, the case of movement segmentation in
complex shapes is examined. The velocity-curvature relationship
is derived from the smoothness-based cost function for a figure-
of-eight. It is shown that the same features of segmentation seen
in experiment are seen in the mathematically derived velocity
profile. Because the cost function contains no segmented control,
this suggests that this apparent segmentation is an epiphenome-
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num of smooth movements, in agreement with the experimental
work of Sternad and Schaal (1999).

MATERIALS AND METHODS
In this section, the two motor-control hypotheses to be studied will be
defined mathematically, and the notion of segmentation with respect to
the two-thirds power law will be reviewed.

The mean squared derivative cost functions. Each member of this family
of motion-planning hypotheses is a generalized version of the minimum-
jerk approach used initially to model velocity profiles generated by elbow
movements (Hogan, 1984) and later extended to trajectory prediction for
reaching movements between visual targets in the horizontal plane and
to curved and obstacle-avoidance movements (Flash and Hogan, 1985).
Since then, the minimum-jerk hypothesis has been applied to a great
many other motor tasks, including the drawing of complicated figural
patterns (Viviani and Flash, 1995; Todorov and Jordan, 1998) for which
a numerical approach was used to obtain velocity profiles in excellent
agreement with experiment. The predictions of these mean squared
derivative (MSD) hypotheses are derived through the minimization of
the time integral of the squared nth-derivative of the coordinates of the
hand (x(t), y(t)):

Cn � �
0

T

dt��dnx
dtn� 2

� �dny
dtn� 2� , (1)

where T is the duration, or period of the movement. Each order n, which
can take any integer value between unity and infinity, corresponds to a
different member of the family and is an independent hypothesis for how
the CNS might plan movement. For n � 2, n � 3, and n � 4 the
corresponding hypotheses have been named minimum acceleration, jerk,
and snap, respectively. The case n � 1 of minimum velocity is not
compatible with the observed velocity and acceleration data and will not
be considered here.

For completeness it should be stated that the trajectories derived miss
some of the fine detail seen in point-to-point movements. The paths
measured are actually slightly, but systematically, curved depending on
their position with respect to the body. This observation has led to
further hypotheses (Flash, 1987; Uno et al., 1989; Harris and Wolpert,
1998) that deal with the problem of motor execution and include explicit
details of the mechanical properties of the arm. Nevertheless, the simpler
cost function of minimum jerk gives a satisfactory prediction of the
observed movements and is more than sufficiently accurate to provide the
basis for the analyses below.

Given that minimum jerk is just one member of the MSD cost function
family (with n � 3), it could be asked if the theoretical velocity profiles
derived for other orders give an equally good prediction of experiment.
Recently it was stated in the literature (Harris, 1998) that this was indeed
the case. If this were true it would of course imply a fundamental
problem with MSD-generated velocity profiles: if they all fit the data
equally well there are no criteria for choosing one hypothesis over
another. In the first part of Results it will be shown that in fact this is not
the case. By calculating the predicted velocity profiles for each order, it
will be shown that only minimum jerk (and to a lesser extent minimum
snap) is compatible with the experimental data.

The two-thirds power law. In the extensive analysis of handwriting and
drawing motion, where the trajectories of the hand are curved, it was
seen that the velocity is not constant but varies strongly with the instan-
taneous curvature. It was found (Viviani and Terzuolo, 1982; Lacquaniti
et al., 1983) that this phenomena could be expressed in terms of a power
law between velocity � and curvature � as follows:

� � g���, (2)

where the accepted value of the exponent � � 0.33. The factor g is known
as the gain factor and is set by the tempo of the movement. The name
“two-thirds” power law comes from the original formulation of the law in
terms of the angular velocity. The tracing of ellipses of various eccen-
tricities is the most extensively analyzed task used in the examination of
the power law. However, many results exist for more complex shapes, and
although the power is not indistinguishable from 0.33 in every case
(Wann et al. 1988; Viviani and Schneider, 1991; Viviani and Flash, 1995)
the power-law form still holds with an exponent close to this value.

An intriguing aspect of the power law is seen in the tracing of extended
shapes and also in free scribbling. In such cases a single value of the gain

factor g is not sufficient to fit the data. However, a power law between
velocity and curvature can still be shown to exist if a piecewise constant
gain factor is used. A second and separate issue is that the regions of zero
curvature in such shapes are incompatible with the power law in its usual
form, and so an altered form involving an effective radius of curvature R*
(the standard radius of curvature is R � 1/�) was also introduced to avoid
divergences (Viviani and Stucchi, 1992). Thus the velocity �, in this case,
takes the form:

� � gj�R*�� � gj� R
1 � �R�

�

for each segment j of the shape, (3)

with � � 0.05. The discontinuous changes throughout the movement of
the gain factor are compelling evidence for segmentation of movements
in the CNS (Viviani and Cenzato, 1985) and are seen clearly in log–log
plots of velocity versus curvature. Recently, this view of segmentation
was challenged in the paper of Sternad and Schall (1999). Subjects were
asked to trace increasingly large ellipses with the point of their finger. It
was found that the larger the ellipse traced, the clearer the evidence of
segmentation in the velocity of the finger. However, at the same time it
was shown that the motion at the joints was purely oscillatory. Based on
these observations, it was concluded that the apparent segmentation of
the hand trajectories was a result of the nonlinearities in the forward
kinematics of the human arm (which become significant for large move-
ments). However, it is also true that segmentation is seen in the tracing
of small, but complex shapes, which would be in the linear regime of the
kinematic transformations. The aim here will be to examine if a smooth-
ness maximization of the end-point trajectory around such a complex
shape also yields apparent segmentation [it should be stressed at this
point that unlike in Viviani and Flash (1995), no experimental data is
used in obtaining the prediction: the approach is from first principles].

RESULTS
In this section, explicit mathematical forms for the order-n pre-
dicted velocity profiles will be given for the two contrasting
experimental tasks of point-to-point and periodic drawing
movements.

Reaching movements in the plane
The aim of this section is to analyze the forms of the predicted
velocity profiles for each order n of the derivative of the coordi-
nates of the hand. The mathematical form for the nth-order
profile will be obtained, and the limit n3 � will be examined. It
will be shown that the profiles diverge in this limit, and therefore
not all MSD profiles can fit the data equally well.

The position vector of the hand is written as r � (x, y). Using
the Euler–Lagrange formalism for the functional minimization of
the cost function given in Equation 1 yields the following differ-
ential equation for the trajectory r as a function of time t:

d2nr
dt2n � 0. (4)

This implies that r is an order (2n � 1)th polynomial in time and
therefore that the velocity is an order (2n � 2)th polynomial in
time. The constants in this polynomial can be found by applying
the boundary conditions. The first set of boundary conditions are
those that enforce the maximal allowable stationarity at the start
and at the end of the movement. For an nth order MSD velocity
profile this requires setting the first (n � 1)th time derivatives of
r to zero at t � 0 and t � T. As an example, minimum jerk with
n � 3 has boundary conditions of zero velocity and acceleration
at the start and end of the reach. It should be noted that these
boundary conditions are the only choice that does not require
input of experimental data (e.g. the velocity) at the beginning and
end of the movement. The differential Equation 4 for the trajec-
tory can be integrated using the boundary conditions, allowing all
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but one of the 2n � 1 constants in the velocity profile �n to be
found:

�n � pn�4��1 � ���n�1 ,

where the only unknown is the peak velocity pn (occurring at � �
1⁄2) which is different for each order n of the cost function. The
notation � � t/T (where T is the movement duration) has also
been introduced to simplify the appearance of the equation. The
final quantity needed, pn , can be found by integrating the velocity
over time and setting the result equal to the total amplitude of the
movement L. The resulting integral can be found in a standard
book of tables and gives the following form for the peak velocity,
and its limit when n is large:

pn � �L
T� 1

4n�1

�2n � 1�!
�n � 1�!2 (5)

pn � 2�L
T� �n

	
for n3 �.

The n 3 � limit was obtained using Stirling’s formula for facto-
rials of large numbers. This result should be interpreted as the
average velocity L/T multiplied by an order-n-dependent factor.
The ratio between the peak and average velocities implied by this
result is a simple (but sufficient for the purposes of discounting
the higher-order MSD cost functions) measure of the shape of the
order-n velocity profile. Experimentally, the mean value of the
peak to average velocity ratio has been measured over 30 move-
ments and found to be close to 1.8 (Flash and Hogan, 1985) with
an SD of �10%. This value should be compared with the pre-
dicted results from Equation 5:

1.5 minimum acceleration n � 2
1.875 minimum jerk n � 3
2.186 minimum snap n � 4.

Clearly the predictions of the minimum-jerk cost function fall
between the bounds mentioned above, but as can be seen in
Figure 1, minimum snap also gives a reasonable fit of the data.
From this figure and also Equation 5 it can be seen that the ratio
of peak to average velocity increases as a function of n. This is a
result of the large n form given in Equation 5 above. It is
therefore apparent that high-order MSD velocity profiles are
incompatible with experiment: because as n tends to infinity the
predicted peak velocity goes to infinity, diverging with the square-
root of n. The functional form of the velocity profile in this limit
can be found using the following simple argument: the distance
traveled by the hand is constrained to be L and is equal to the
area under the velocity curve. Therefore to compensate for the
diverging peak velocity, the width of the bell-shaped velocity
profile must become increasingly small for larger n (although still
remaining centered at � � 1⁄2). In the extreme limit of n3 � this
forces the velocity profile to have a vanishingly small width to
counterbalance the increasingly high peak velocity. Therefore the
velocity curve takes the form of a Dirac delta function centered
on time T/2, which is clearly unacceptable experimentally and
physically. This result provides the proof that only the low-order
MSD velocity profiles could be compatible with experiment.

However, the conclusions reached above need to be reconciled
with the results previously reported that stated that the MSD
velocity profiles converge to an experimentally more realistic
Gaussian function in the large n limit (Harris, 1998). There the
velocity profiles found at each order n were rescaled by different

(n-dependent) amounts so that their peaks all coincided at the
same point and their widths passed through a value of 25% of the
normalized peak velocity at the same times. Such a rescaling of
the profiles in Figure 1 has been performed, with the results
plotted in Figure 2. In this way, it appears that the curves become
similar as n takes higher values, with the n � � limit converging
to a Gaussian. Nevertheless, because the velocity tails become

Figure 1. The MSD profiles for n � 2, 3, 4, and 10 with the only
experimental input being the time scale T (given by the experimental
data). The profiles become narrower and taller as n increases. The
experimental curve is best fitted by minimum jerk n � 3 and snap n � 4.

Figure 2. The same profiles as in Figure 1 but rescaled as by Harris
(1998). Each profile is rescaled such that they all pass through the points
marked by arrows. A cut-off for the start and end of the movements must
also be supplied.
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increasingly large, a cut-off must also be introduced to fix the time
of the movement to be T (which is given by experiment). Essen-
tially what that approach amounted to was to treat each order-n
MSD velocity profile as a curve that can be fitted to experiment
by stretching the time axis and compressing the velocity axis.
Curve-fitting is a valid and useful approach for examining the
shape of the experimental curves (Plamondon et al., 1993). How-
ever, it is in spirit a very different approach to the derivation of a
curve from a hypothesis as was done here and elsewhere (Flash
and Hogan, 1985), with a minimal number of free parameters.

Periodic tracing of figural forms
In this section the case of continuous drawing of closed shapes is
analyzed. The approach will be to substitute into the MSD cost
function, written in Equation 1, a specific path (the template of
the shape) and then use a minimization procedure to derive the
predicted velocity profile. It is important to note that this approach
differs from the one taken in an earlier study (Viviani and Flash,
1995) where the experimental values of the velocity of the hand
and acceleration at several via-points were used in the minimum-
jerk prediction. By contrast, in the present study the velocity
profiles are derived from a first-principles approach for general
classes of shapes, necessitating minimal experimental input (only
the path itself and the tempo). In fact the mathematical approach
used here is more closely related to the detailed numerical study
used in Todorov and Jordan (1998) in which the jerk was mini-
mized along a prescribed path.

In contrast to the previous experimental task, the motion is
periodic, and because of this it is natural to describe the motion
in the language of Fourier series. The time dependence of the x
and y coordinates of the hand can each be expanded in Fourier
series, where for convenience the normalized time � � t/T is again
used (where T is now the period of the motion):

x��� �
a0

2
� �

k�1

�

�ak cos�2	k�� � bk sin�2	k���

(6)

y��� �
p0

2
� �

k�1

�

� pk cos�2	k�� � qk sin�2	k���.

These forms are quite general and can be used to describe the
continuous and repeated tracing of any closed shape. The infinite
set of variables {a, b, p, q} are fixed both by the path and the
velocity profile along the path taken by the hand. When the x and
y coordinates are written in this way, the integral (Eq. 1) can be
performed to give:

Cn �
T
2

1
T2n�

k�1

�

�2	k�2n�ak
2 � bk

2 � pk
2 � qk

2�. (7)

The Fourier coefficients are of course subject to many auxiliary
conditions that ensure that the path taken has the given shape,
which still makes minimization very difficult. Nevertheless, this
form for the cost function allows for a straightforward and re-
vealing analysis in terms of the frequency components present in
the movement. If the first few terms of the series (Eq. 7) are
written out explicitly, it becomes clear that the higher-order terms
contribute a cost that is amplified by a factor of k2n. This means
that, if the cost function is to be minimized, the higher-order
Fourier coefficients must be small (as would be expected for
smooth movements). In fact, just restricting the cost to be finite

means that the square of these coefficients must decay with the
order k of the expansion faster than 1/k2n. For low order-n MSD
derivative cost functions like acceleration and jerk there is some
balance between this amplifying factor and the magnitude of the
Fourier coefficients. However, for the higher-order MSD profiles
the amplifying factor becomes increasingly significant. This
means that in the limit n 3 � the corresponding order n MSD
trajectory converges to the one that has the smallest allowable
values of Fourier coefficients in the range k 	 2. This is the
central result of this section: in contrast to the case of point-to-
point movements, for periodic movements the limit n 3 � pre-
dicts a convergence to the maximally smooth velocity profile that
follows the given template. This result often allows the minimiz-
ing trajectory for the limit n 3 � to be found with little mathe-
matical effort. Moreover, as the MSD velocity profiles converge in
this case it also provides a good first guess for the lower-order n
profiles. This first guess can be used for numerical minimization
because it would reduce the time taken to search through the
space of possible profiles. The implications of this mathematical
analysis are examined for two simple figural forms: the ellipse and
cloverleaf.

The ellipse
The general parametric equations for an ellipse are:

x��� � A cos�
 ���� y��� � B sin�
 ����, (8)

where for various values of the constants A, and B and the
function 
(�) the Fourier expansion coefficients in Equations 6
take different values. In particular, the simplest choice of 
 � 2	�
would imply a1 � A, q1 � B, and all other Fourier coefficients
would be zero. The Fourier expansion corresponding to this
choice has the lowest frequency components in the range k 	 2
(they are all zero), and therefore following the reasoning above,
this choice for 
 defines a velocity profile that minimizes the MSD
cost function in the limit n 3 �. As is well known (Wann et al.,
1988) this harmonic form:

x��� � a1 cos�2	�� y��� � q1 sin�2	�� (9)

automatically satisfies the power law between velocity and curva-
ture given in Equation 2 with � � 1

3
. Despite the simplicity of the

harmonic forms of Equations 9 this is an important result because
it unifies mathematically the predictions of the two-thirds power
law and the MSD cost function in the limit n 3 � for ellipses.
This is despite the fact that the two laws were originally formu-
lated independently and have different “philosophical” underpin-
nings: the two-thirds power law is an empirical law relating
instantaneous velocity to the local curvature, whereas the MSD
cost function implies the full trajectory is planned as a whole
before implementation, by virtue of the integral formulation and
was originally designed to model point-to-point movements.

This equivalence between the two laws only holds for the
somewhat abstract limit of n3 �. It would be more interesting to
know what the predictions for the exponent � are from MSD
hypotheses with orders that are more closely related to quantities
with physical meaning (as was shown for point-to-point move-
ments) like jerk or snap. In the remainder of this section, the
results of such a calculation are presented with the mathematical
details given in Appendix A. The method used is a perturbative
approach whereby the calculation is performed for ellipses that
are very close to circles, with a small parameter � measuring
deviation of the ellipse from a circle. After performing this
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calculation, the power-law exponent predicted from the order-n
MSD cost function can be found to have the following form:

�n �
1
3

�
8

3�9n � 1�
� corrections of order �2 . (10)

It is clear from the above form that as n3 � the exponent tends
to the idealized value of 1

3
as was argued above. However, this

does not mean that the n 3 � is the most appropriate order to
choose. The numerical values of the exponents predicted by the
lower-order n MSD cost functions are given from Equation 10 as:

�2 �
3

10
� 0.3000 minimum acceleration

�3 �
30
91

� 0.3297 minimum jerk

�4 �
273
820

� 0.3329 minimum snap.

The latter two, jerk and snap, are experimentally indistinguish-
able from 0.33. In fact all orders n 	 2 predict an exponent that
is compatible with this accepted value. It is interesting to note
that it was previously thought that only minimum jerk would give
predictions similar to the two-thirds power law by virtue of the
form of the jerk normal to the velocity tangent vector. As has
been shown (Todorov and Jordan, 1998), setting the normal jerk
to zero automatically enforces the 1

3
power-relation between cur-

vature and velocity. However, the result (Eq. 10) shows that the
close relation to the power law is present for almost all order-n
MSD velocity profiles and is not just a consequence of the special
form of the normal jerk for the order n � 3 MSD cost function.
It should be further noted that the theoretical result exhibits
other properties seen in experiment. The exponent derived is
independent of the size of the ellipse and also the time period of
the drawing of the ellipse. More significantly, the predicted ex-
ponent is, for practical purposes, independent of the eccentricity
of the ellipse by virtue of the weak dependence of �n on � (see
Appendix A). Taken together, these features represent a robust
reproduction of the experimental results by a first-principles
approach.

The cloverleaf
In the previous section, the case of an ellipse was analyzed.
Although the choice of this shape is ubiquitous in the experimen-
tal literature it is, from the theoretical point of view, a special
case. This is because choosing the exponent to be exactly 1

3
implies

drawing with coupled harmonic motion. It is therefore worth
examining another shape that has also been measured in exper-
iments: the cloverleaf. This is a more interesting shape than an
ellipse (no harmonic solution exists), but still shares the same
property of a single segment on a log(�) versus log(�) graph.

Unfortunately, the form of the cloverleaf used in experiment is
far removed from a circle. Because of this, a similar perturbative
approach to that used above yields bad results. For example, a
general form for a cloverleaf that extrapolates between a circle
(� � 0) and the figure used in experiment (� � 1) is:

x � cos 3
 �t� � � cos 
 �t� y � sin 3
 �t� � � sin 
 �t�. (11)

Examples of this generalized cloverleaf for different values of �
are given in Figure 3. The perturbative expansion, used in the
previous section and detailed in Appendix A, gives the following
exponent for the cloverleaf:

� �
1530
3631

� 0.42, (12)

which does not agree well with experiment: cloverleaves that were
traced with periods of 2.5 and 3.0 sec (Viviani and Flash, 1995)
were found to have average values of � of 0.35 
 0.03 and 0.36 

0.03, respectively. (For completeness it should be noted that for
faster tracing, with a period of 2 sec, the value was lower � �
0.33 
 0.04, but this was attributable to a somewhat-anomalous
data point.) However, the inaccuracy of the result (Eq. 12) is a
breakdown of the perturbative approach only. A numerical
method can be used to obtain the velocity profile from the
minimum-jerk cost function to an arbitrary degree of accuracy.
Once the velocity profile has been obtained, the predicted expo-
nent can be found from a least-squares fit of Equation 2: the same
approach used for experimental velocity curves. Such a velocity
curve was obtained from Equation 1, and the fit can be seen in
Figure 4. The exponent obtained was:

� � 0.36 � 0.01, (13)

which compares well with the two-thirds power law result and the
experimental values given above. This result cannot be a trivial
consequence of coupled harmonic motion, because for the clo-
verleaf there are no coupled harmonic solutions. The result there-
fore represents a success for the first-principles approach for
calculating the exponent, particularly because the only input into
the theory is the curvature profile given by Equations 11.

General one-segment shapes
Two specific shapes were tested above. However, it is possible to
generalize to an arbitrary one-segment shape. The approach is to
write the curvature as a Taylor expansion in a small parameter �
and solve the optimization problem in terms of the derivatives of
the curvature with respect to this variable. Details of the method

Figure 3. Examples of the generalized cloverleaf for various values of
the perturbation parameter �. See Results (Eq. 11) for the mathematical
definition.
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of obtaining this generalized form for the exponent � are given in
Appendix B.

The drawing of complex figures
In the previous section the cases of the ellipse and the cloverleaf
were analyzed. Both of these shapes have a common feature:
their curvature-velocity profiles are well matched by the two-
thirds power law with a single gain factor. This means that in a
log–log plot of the velocity versus curvature only a single segment
is seen. In this section the more complex case of a multiple-
segment shape is analyzed, specifically the asymmetric lemnis-
cate, or figure-of-eight with two different sized lobes. Again
comparison is made with experimental data, but it should be
stressed that here quantitative accuracy is not required, just a
qualitative reproduction of the features of segmentation. Because
of the complexity of the analysis of multiple-segment shapes, the
approach in this case is numerical. An algorithm similar to that
described in Todorov and Jordan (1998) was used, in which the
time the movement passes through 10 via-points is varied until
the trajectory with the lowest minimum-jerk cost is found. The
optimal times were obtained using a stochastic descent algorithm,
to an accuracy of 0.25% of the total movement duration.

Before examining the results, it is worth underlining again the
importance of using a first-principles approach in the derivation.
In a related paper (Viviani and Flash, 1995), similar shapes were
analyzed, but experimental information in the form of velocity
and acceleration was also supplied at the via points. The argu-
ment put forward here is that the minimization of an integral cost
function (e.g. minimum jerk) gives a movement that mimics the
segmentation seen in experiment. This argument would be un-
dermined if experimentally derived values of the velocity and
curvature for the via-points were used as they could contain
information about possible segmented planning of the movements
by the CNS.

The figure-of-eight
The shape to be analyzed has the following mathematical form:

x �
a�cos 
 � b� cos�
�

1 � sin2�
�
y � xsin�
�,

with a � 3.26 cm and b � 2.80 giving a large and a small lobe (Fig.
5). The drawing of shapes of this form has been extensively
analyzed (Viviani and Flash, 1995), and it has been shown that
when the lobes in the figure-of-eight have different sizes, the
log(curvature) versus log(velocity) plots show two apparent seg-
ments (corresponding to the large and small lobes) with distinct
gain factors. Using the form of the power law given by Equation
3 in Materials and Methods, measurements have shown (Viviani
and Flash, 1995) that across a sample of three subjects the gain
factors and power law fits were found to be:

� � gL�R*��L with gL � 21 � 3 and �L � 0.33 � 0.05

� � gS�R*��S with gS � 17 � 3 and �S � 0.34 � 0.05

for the large and small lobes, respectively (the gain factors are
written in unitless form here), and the average period of tracing
was T � 1.43s 
 0.05s. The errors in the gain factors mainly
represent between-subject variance. Individually, the three sub-
jects consistently traced the figure-of-eights with gL 	 gS with
ratios gL /gS � {1.35 
 0.04, 1.23 
 0.03, 1.12 
 0.03}. Thus, the
experimental data can be interpreted as having two segments.

The numerically derived minimum-jerk trajectory is plotted in
Figure 6, in velocity � versus (R*)1/3 form. In this format, different
segments lie on radial lines passing through the origin, with
gradients corresponding to the different gain factors gL and gS.
The duration of the movement has been scaled to agree with the
average experimental period of T � 1.43s. As can be seen, the

Figure 4. The log(curvature) versus log(velocity) curve as derived nu-
merically from the minimum-jerk cost function for a cloverleaf with � �
1 (in this case the units are arbitrary as the fit is to theory, not experi-
ment). The value of the � exponent measured from this curve is � � 0.36,
reproducing the results found in the experiment.

Figure 5. A plot of the figure-of-eight template. The numerical deriva-
tion of the minimum-jerk trajectory was obtained using 10 via-points. The
labels M1, M2, and M3 mark the curvature maxima, whereas m1 is the
curvature minimum. It is these extrema and their relation by symmetries
that determine the number of apparent segments (Fig. 6).

8206 J. Neurosci., September 15, 2002, 22(18):8201–8211 Richardson and Flash • Comparing Motor-Control Theories



theoretically derived curve shows qualitatively the same features
of segmentation as the experimental data. The � exponents of the
power law are not too well defined for the theoretical curve
because of the curvature of the two segments (unlike the exper-
imental data, the theoretical curve has not been smoothed, a
process which tends to increase the likelihood of measuring an
exponent close to 0.33), and, as stressed above the aim here is to
show that features of segmentation are seen in theoretical pre-
dictions, not to show close quantitative agreement. However, to
provide a level of comparison, the tangential dotted lines in
Figure 6 (meant as guides for the eye) represent gain factors
corresponding to gL � 20.5 and gS � 18.4, which implies a ratio
gL /gS � 1.1 (the choice here of using tangents, rather than a fit,
tends to underestimate the value of this ratio). Though this value
is about 10% smaller than the average found experimentally
(�1.2, the corresponding values of gL � 21 and gS � 17 are
represented as dashed lines in Fig. 6), it is not inconsistent with
the range of experimental values seen across the three subjects.

The theoretically generated trajectory captures all the qualita-
tive features of segmentation, despite the absence of any piece-
wise algorithm in the minimum-jerk hypothesis. In fact even the
hook-like feature (corresponding to the region of the trajectory
between the curvature maxima M2 and M3 via the curvature
minimum m1) can be seen in a detailed analysis of the experi-
mental data. In examining this feature, it becomes clear what
criteria determine the apparent segmentation of the velocity
versus curvature plots: it is the extrema of the curvature and the
symmetries of the shape. Thus, the segmentation features seen in
such log-log plots can be directly accounted for by the geometric
aspects (curvature profile) of the drawn path: segmented planning
in the CNS need not be assumed.

DISCUSSION
A family of movement-planning strategies for the human arm was
analyzed in mathematical detail and compared with experiment,
with a number of results derived. The planning strategies are
defined through the minimization of cost functions that favor
smoothness, to differing degrees, and are known collectively as
the MSD cost functions. Two standard and contrasting motor
tasks were analyzed: point-to-point reaching movements and the
periodic tracing of closed shapes. For the first task of point-to-
point movements the predicted velocity profile from each order n
of the MSD family was derived explicitly and compared with
experiment. By comparing the ratio of the peak to average veloc-
ities it was concluded that the best fit (from the MSD family) was
by the minimum-jerk cost function, corresponding to order n � 3.
It was further shown that as the order n was increased the
corresponding velocity profile diverged, reaching the highly un-
physical limit of a Dirac delta function when n 3 �. This result
corrects conclusions previously reached in the literature (Harris,
1998). However, it is acknowledged here that this was not the
main point of that paper, and therefore the current work should
not be mistaken as a criticism of the minimum-variance principle,
for which the paper of Harris (1998) laid the foundation. Rather,
the aim here was to clarify the mathematical understanding of the
smoothness-based cost functions.

The theory of minimum variance was applied to both arm and
eye movements and may seem, at first view, to be at odds with the
smoothness-based cost function approach. However, there are
many overlaps between the two theories. An obvious example is
the independence of the velocity profiles for fast movements from
physical parameters of the arm. This suggests an interpretation of
the minimum-jerk theoretical framework as a simplified limit of a
more complete theory. As has already been noted, minimum-jerk
predictions for point-to-point movements miss some of the fine
structure of the trajectories. Experimentally measured trajecto-
ries show a small but systematic curvature, a feature captured by
other models that take into account both the problems of trajec-
tory planning and motor execution (Flash, 1987; Uno et al., 1989;
Harris and Wolpert, 1998). In this context, it would be very
interesting to examine theoretically the similarities between the
MSD cost functions and other more detailed hypothesis such as
the minimum-variance hypothesis (Harris and Wolpert, 1998) or
the optimal feedback control hypothesis of Todorov (2001). In the
latter work, it is demonstrated that greater control of a noisy
goal-dependent variable can be obtained at the expense of allow-
ing variance to increase in redundant degrees of freedom. In their
formulation, features such as simplifying rules, control parame-
ters, and synergies emerge as epiphenomena from the optimal
feedback control.

Several neural implementations have been proposed for the
minimum-jerk cost function (Hoff and Arbib, 1992; Jordan et al.,
1994) and neurophysiological studies have shown that the fine
kinematic details of the movements are represented within cor-
tical neuronal populations (Schwartz and Moran, 1999). Never-
theless, given the present level of knowledge of the neural corre-
lates of movement and also the success that different modeling
approaches have in describing the same psychophysical experi-
ments (as was shown here in the context of minimum-jerk and the
two-thirds power law), it is clear that the data are not yet suffi-
ciently fine to restrict the space of the possible neurally based
algorithms that might generate the observed behavior. As an
example, the optimal feedback hypothesis produces movements

Figure 6. The predicted minimum-jerk velocity versus effective radius of
curvature plot, for the tracing of the figure-of-eight. The positions of the
curvature extrema (M1, M2, M3, and m1) are marked and can be com-
pared with Figure 5. The dotted tangential lines give an indication of the
gain factors for the two segments (see Results), whereas the dashed lines
represent the average experimental values. The theory reproduces the
features of segmentation seen in the experimental curves, despite no
explicit segmental planning in the structure of the theory.
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that are smooth, and in some limits may be reproduced by the
minimum-jerk predictions, but the underlying structure of the
controlling system is very different.

The second experimental task analyzed was the periodic draw-
ing of closed shapes. In contrast to point-to-point movements the
order-n velocity profile was shown to converge to a smooth
function as n was increased. For the limit n3 � it was shown that
the predicted velocity profile is the one for which the Fourier
series for the trajectory of the hand has the lowest values in the
high-frequency range. For the specific examples of an ellipse and
cloverleaf it was shown that the power-law exponent derived from
a MSD cost function, with any order greater than minimum
acceleration, gives values that are indistinguishable from the
accepted value of � � 0.33. Further comparison was then made
between the two theories for the case of a complex figural form (a
figure-of-eight with different sized lobes). The velocity profile
derived from the MSD smoothness-based cost functions was seen
to have features that implied segmented control. However, the
cost function contains no explicit segmented control. Therefore,
the conclusion must be that these types of experimental features
can no longer be taken as evidence for segmented control in the
CNS, in the absence of further supporting evidence.

Despite the success of the smoothness-based cost function in
fitting different aspects of the two-thirds power law, there are still
many questions unanswered. In earlier studies several different
reasons and explanations for the observed two-thirds power law
were offered. These reasons included either the mechanical prop-
erties of muscles (Gribble and Ostry, 1996), acceleration, or noise
constraints (Harris and Wolpert, 1998) or the coupling between
oscillatory joint rotations (Sternad and Schaal, 1999). The anal-
ysis performed by Schwartz (1994) and more recently by Schwartz
and Moran (1999), has shown that the two-thirds power law fits
neural trajectories derived by using a population vector analysis
of the neural activity data recorded from motor cortical cells in
monkeys during drawing movements. The fact that the two-thirds
power law has been found in motor cortical representations of
drawing movements suggests that this relation is manifested in
the planning stages of hand trajectories (Schwartz and Moran,
2000), consistent with the idea that central neural representations
have evolved or are acquired with age (Viviani and Schneider,
1991) or through learning to achieve the smoothest and/or the
least variable movement. Nevertheless, explanations for the two-
thirds power law based on central mechanisms or on peripheral
factors, such as the mechanical properties of muscles or neuro-
motor noise, may not be mutually exclusive, and both peripheral
and central factors might have evolved to work in tandem to
guarantee the smoothest possible or most accurate movement.
Other questions of interest that relate to the work presented here
concern the nature of the relation between the two-thirds power
law and visual perception of motion. There is compelling evi-
dence from a number of studies that the two-thirds power law is
related to both the motor production and visual perception of
movement (Pollick and Sapiro, 1996; de’Sperati and Viviani,
1997). Such connections were not examined here and represent an
interesting case for further study.

Another significant topic for future study that was addressed
here is that of movement segmentation. Many earlier hypotheses
concerning the nature of the underlying movement segments
have been made (Krebs et al., 1999; Doeringer and Hogan, 1998).
Among them, one of the most compelling hypotheses, which
attempted to suggest a criterion for motion segmentation, is that
based on the existence of a piecewise constant gain factor in the

relation between velocity and curvature (Lacqaniti et al., 1983).
Using a similar approach, the boundaries of movement segments
during drawing movements were defined kinematically as places
in the trajectory where speed is maximal (Schwartz and Moran,
1999). These are points at which the velocity gain factor in the
power law changes instantaneously, where curvature is minimal,
and where curvature inflections also occur. The conclusion, based
on the mathematical analysis presented here is that the presence
of sharp changes in the velocity gain factor does not necessarily
suggest a noncontinuous mode of motion planning and therefore
cannot provide sufficient evidence for segmented control [sup-
porting the findings reached in the experimental study of Sternad
and Schall (1999)]. This conclusion does not undermine the idea
that complex movements are constructed from simpler units of
action or movement segments that are then concatenated to-
gether or are temporally overlapped to generate longer move-
ment sequences. It does, however, raise the need for new ideas
concerning the nature of the underlying movement segments or
strokes.

APPENDIX A
This appendix contains the details of the calculation leading to
the predicted exponent for the power law of the ellipse, Equation
10, as derived from the general order-n MSD cost function. One
route to obtaining the exponent �n of the power law is to substi-
tute the velocity form given in Equation 2 into the integral (Eq.
1) and change the integration variable from time to arc-length.
This can be done directly for very small values of n by using the
Frenet–Serret formulation for curves (see Appendix B). How-
ever, to get general results for arbitrary order, a less direct
approach is necessary. The route taken to find �n is to obtain the
Fourier coefficients for the cost function (Eq. 7) in terms of the
unknown exponent �. Once this has been done it is straightfor-
ward to minimize Cn by differentiation with respect to the
exponent.

The first step is to write the coordinates of the hand (quite
generally) as parametric functions of a time dependent angle

(�):

x��� � A cos 
 ��� y��� � B sin 
 ���, (14)

with boundary conditions 
(0) � 0, 
(1) � 2	 and � � t/T, where
T is the period. Next, the time dependence of the angle must be
found by using the power law (Eq. 2). It is the time dependence
of 
 that encodes the velocity profiles. Once this is done the
Fourier coefficients required for the cost function can be easily
derived. Writing the velocity as the rate-of-change of arc-length s
with respect to time allows Equation 2 to be rearranged to give:

Td� �
ds
g

�� �
d


g � ds
d
��� .

The integral can now be performed, and the gain factor g is fixed
by the condition that 
 � 2	 when normalized time � � 1:

� �

�
0




d
� ds
d
���

�
0

2	

d
� ds
d
���

�

�
0




d
 �1 � � cos 
�
1�3�

2

�
0

2	

d
 �1 � � cos 
�
1�3�

2

. (15)
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In the second equation, the following geometric properties of the
ellipse have been used:

� � AB� ds
d
�

�3 � ds
d
� � A�1 � � cos2 
�1/2 � � 1 � B2/A2 .

The quantity � is related to the eccentricity of the ellipse and is a
measure of how close the ellipse in question is to a circle, for
which � � 0. To obtain the time � as a function of angle, the
integrals in Equation 15 must be performed. Unfortunately, this
is not possible exactly because of the nature of the integrals and
to proceed further it is necessary to make an approximation. It
will be assumed now that the quantity � is very small (more will
be said about the validity of this approximation later). This allows
the arguments of the integrals to be expanded as a series in the
small parameter � using standard formulas, and then the integra-
tion performed. The result is also a series expansion in � which,
in all the following steps, will be written up to order �2:

� �
1

2	�
 �
�

8
�3� � 1� sin 2


�
�2

256
�16 sin 2
 � �9�2 � 1� sin 4
�� � �3· · · .

This expansion can now be inverted to give the angle as a
function of time, the quantity needed for Equations 14. The
inversion can be performed by substituting the following into the
previous equation:


 ��� � f��� � �g��� � �2h��� � �3· · · . (16)

The trigonometric functions can then be expanded again, keeping
terms only up to order �2. Then by matching terms with the same
powers of � the following functions of time are found:

f��� � 2	�

g��� �
1
8
�1 � 3�� sin 4	� (17)

h��� �
1

16
�1 � 3�� sin 4	� �

1
256

�3� � 1��9� � 5� sin 8	�.

As expected, the first contribution f(�) is the result for the angular
dependence of time when a circle is drawn. The higher order
terms g(�) and h(�) represent the corrections caused by the
elliptical perturbation.

What remains now is to obtain the Fourier coefficients in
Equation 6 of the x and y coordinates. This is achieved by
substituting Equation 16 with the results (Eq. 17) into Equation
14, for example:

ak � 2�
0

1

d�A cos� f��� � �g��� � �2h���� cos 2	k� � �3· · ·

The argument of the cosine can be expanded in � allowing the
integral to be performed and the Fourier coefficients obtained,
accurate to order �2. The calculation is similar for bk , pk , and qk ,
although for the latter two it must be remembered that B � A(1 �
�)1/2 and that this should also be expanded to the appropriate

order. The final results for the squares of the Fourier coefficients
are:

a1
2 � A2�1 �

�

16
�3� � 1� �

�2

256
�30� � 9�2 � 9�� 2

� �3· · ·

a3
2 � A2

�2

256
�1 � 3��2 � �3· · ·

q1
2 � A2�1 �

�

16
�3� � 1� �

�2

256
�30� � 9�2 � 9�� 2

� �3· · ·

q3
2 � A2

�2

256
�1 � 3��2 � �3· · ·,

where all other terms are either zero or small enough to be
neglected (order �3 or higher). At this level, only the first two
terms in the infinite series for the cost function (Eq. 7) remain:

Cn �
T
2�2	

T � 2n

��a1
2 � q1

2� � 9n�a3
2 � q3

2�� � �3· · ·.

Substituting in the Fourier coefficients and differentiating with
respect to �, while equating the resulting expression to zero,
yields an equation for the predicted power-law exponent from the
order-n MSD hypothesis, which is accurate at a level of �2:

dCn

d�
�

�2A2T
128 �2	

T � 2n

�27 � 9�n � 9n�3�n � 1�� � 0.

The exponent �n should of course also be written as an expansion
in �. However, there is a prefactor of �2 in the equation above. So
even though the calculation has been performed throughout at
the level of �2, it is only possible to obtain the �0 order term of the
�n expansion. The result is:

�n �
1
3

�
8

3�9n � 1�
� corrections of order �2 . (18)

Because the approach used involved an approximation (ellipses
that were similar to circles were considered), the validity of the
perturbation expansion must be examined. As stated above, the
exponent derived is just the first term in an � expansion. The
result is therefore only strictly valid for ellipses that have low
eccentricity. However, the size of the first correction to �n can be
calculated by repeating the whole of the last derivation but this
time keeping terms up to order �4. As an example for minimum
jerk, the first correction is only 0.000336�2: there is no term at the
level of �, and the correction at �2 is clearly small. Therefore,
despite the approximation, the results derived are valid for ellipse
eccentricities of similar magnitude to those that were used in
experiment, because of this small correction term.

APPENDIX B
The first step is to re-write the cost function (Eq. 1) with n � 3
for minimum jerk in terms of velocity and curvature. This step
can be done conveniently by using Frenet’s relations, see for
example Todorov and Jordan (1998). The result is:

C ��
0

Lds
�

���2�� � �����2 � �2�3�2 � �3���2� � �3���2�, (19)

where s is the arc-length, L is the circumference of the path, � is
the curvature, and in this equation the notation X� means X
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differentiated with respect to arc-length. As in Appendix A, the
gain factor g must be fixed by the restriction that all trajectories
have the same period:

�
0

Lds
�

� T.

This gives the following form for the gain factor (using � � g���):

g � �
0

2	

d

�� where 
 �
ds
d


,

where from now on the scaling choice has been made that T �
L � 1. This is merely a choice of units of time and length and
does not affect the generality of any of the following results. It
should be noted that there are two dependencies on �: in the gain
factor g and also in the form ���:

� � ��
0

2	

d

������ ,

which complicates the calculation. When the cost function is
written in terms of an integration over angle, by using ds � 
d
,
it has the form:

C � �
0

2	

d
F��, �, 
�,

where all the dependence on the exponent � is contained in the
velocity �. In general it is still very difficult (if not impossible) to
minimize this cost function with respect to � exactly. It is there-
fore necessary to proceed with an approximation.

Again, perturbations from a circle to a shape of interest are
considered. By symmetry the extremizing velocity is a constant
for a circle, and hence this particular example is easy to solve. It
is assumed that there exists some parameter � that measures how
close the shape in question is to a circle, for which � � 0. The
curvature and differential 
 can be expanded in terms of this
parameter:

� � �0�1 � ��1 � · · ·� 
 � 
0�1 � �
1 � · · ·�,

where �0 and 
0 are the values for a circle and the higher order
expansion terms (like �1 and 
1 ) are angle dependent and specific
to the shape in question. The method to be followed now is to
substitute these expansions into the cost function and expand in
a power series C � C0 
 C1� 
 C2�2 . . . (where here the
subscripts refer to the order of the expansion: all the calculations
here are for minimum jerk only):

C1 �
dC
d�
� 0 �

�F
��
�

0
�

0

2	d�

d�
� 0d
 �

�F
��
�

0
�

0

2	

�1d
 �
�F
�

�

0
�

0

2	


1d
,

with the notation X�0 representing the quantity X evaluated for
the circular case, i.e. with � � 0. To obtain the predicted expo-
nent, this expansion must be minimized:

dC
d�

�
dC0

d�
� �

dC1

d�
� �2

dC2

d�
· · · � 0. (20)

Minimizing with respect to � at some order of perturbation
theory will then give the exponent at that level of approximation.
Clearly the first term of Equation 20 is zero because this is simply
the cost for a circle and must be independent of �. It can be
shown that C1 is also independent of �, and in fact the first
contribution to Equation 20 appears only at order �2. Therefore,
the following must be solved:

�2
d

d�
C2���0, 
0, �1,· · ·�, �� � 0, (21)

which requires a full evaluation of the integral C keeping all
terms at order �2 throughout. It should also be noted that because
of the prefactor �2 in the equation above, the solution for the
exponent will only be the zero-order term in an � expansion for �.

Because no specific values of the curvature or differential 
 have
been specified, the method described here is quite general. After
some algebra, the minimizing � can be found and has the follow-
ing value:

� �
10�2 � 5�2�̇2

15�2 � 15�2�̇2 � �4�̈2
,

where the notation used is defined as follows:

� � ��0
0�
�1 � � �1 � �� 1

Ẋ �
dX
d


X� �
1

2	�
0

2	

d
X�
 �.

It should be noted that the exponent is a function of only {�0 , �1 ,

0}. The quantity � is unity for shapes that are deformation of a
circle drawn once (like the ellipse). However, it takes different
values for more complex cases like the cloverleaf. The result
derived above can be used for any one-segmented shape (in the
power-law sense) that is sufficiently close to a circle.
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