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Synaptic Drive

In this module we will derive the form for the conductance dynamics on the post-synaptic side
of the synapse and use this to calculate the current and voltage response. The statistics of
vesicle release on the pre-synaptic side will be examined with vesicle run down shown to lead to
synaptic depression.
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• Time-course of the Post-Synaptic Conductance and Current

It is assumed that at t = 0 a vesicle is released and neurotransmitter floods the synaptic cleft.
Let there be N post-synaptic channels, where the channel can be in one of two states: open O
with x = 1 or closed C with x = 0. The total number of open channels can be written

X =
N∑
k=1

xk and β = closing rate 1 → 0. (1)

When the neurotransmitter is released at the synapse all the channels are opened instantaneously
so that initially xk = 1 ∀ k. These channels then start to close at a rate β and it is also assumed
that the neurotransmitter is quickly removed from the cleft so there are no further openings
of any channels that might have already closed. Writing an equation for X and assuming the
average gives a good indication of the behaviour, so that X � N〈x〉, we have

d〈x〉
dt

= −β〈x〉 with solution 〈x〉 = e−tβ (2)

where the factors of N have been dropped from both sides. It is more usual to write the factor
in the exponent in terms of a closing time constant (synaptic-type dependent) which we will
call τs = 1/β. In this way the total time-dependent synaptic conductance and current can be
written

gs(t) = gse
−t/τs and I = gs(Es − V )e−t/τs (3)

where gs=γN is the maximum conductance of the synapse with γ the conductance of a single
channel. It should be noted that the synaptic current is written in a form that is −Iion. This is
because it is considered a driving term and usually appears on the right-hand side of the voltage
equation.

The types of fast synapses that are most often considered are: excitatory AMPA synapses
that have a reversal Ee = 0mV, due to the fact that both Na+ and K+ flow through them, a
time constant of τe = 3ms and a strength ge = 0.1− 1nS; and inhibitory GABAA synapses that
have a reversal Ei = −70mV, because the channels carry Cl− ions, a time constant τi = 10ms
and a conductance gi = 0.1 − 1nS. Note that the conductances here are in absolute units, not
per unit area.

The current due to a synaptic impulse is called the Post-Synaptic-Current, or PSC. For ex-
citatory events one writes EPSC and for inhibitory IPSC.
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• The Post-Synaptic Voltage Response to a Synaptic Current Pulse

We will now calculate the effect of this current on the voltage. The voltage equation for a neuron
with a leaky membrane can be written

C
dV

dt
= gL(EL − V ) + I (4)

where now the capacitance C and leak conductance gL are the total values for the cell (not per
unit area). Inserting the form of the synaptic current and dividing by gL allows the equation to
be written

τL
dV

dt
= EL − V + gs

gL
(Es − V )e−t/τs . (5)

This equation can be solved for the voltage V (t) but the form is inconvenient for analysis. An
accurate approximation can be made by noting that the synaptic conductance is usually much
less than the total conductance of the cell, and hence gs/gL is small. The voltage can be written
as V = EL + v where v is of the order of gs/gL. Inserting this voltage into the equation

τL
dv

dt
= −v + gs

gL
(Es − EL)e

−t/τs +O(v gs
gL
). (6)

Dropping the second order term and integrating for v gives

v =
gs
gL

(Es − EL)

∫ t

0

dt′

τL
e−(t−t′)/τLe−t′/τs . (7)

Performing the integration and substituting back for the voltage V (t) yields

V = EL +
gs
gL

(Es − EL)
τs

τL − τs

(
e−t/τL − e−t/τs

)
. (8)

The voltage response to a synaptic pulse can be written as the difference of two exponentials
with time constants τL � 20ms and τs being either τe = 3ms or τi = 10ms depending on whether
the synapse is an excitatory AMPA synapse or inhibitory GABAA synapse.

This waveform is called a Post-Synaptic Potential, or PSP: for excitatory synapses an EPSP
and for inhibitory synapses an IPSP.

• Statistics of Pre-Synaptic Vesicle Release

We now turn our attention to the pre-synaptic terminal. Let us assume that there are n contacts
from a presynaptic neuron onto the postsynaptic cell and that each contact is able to release at
most one vesicle per presynaptic action potential. Let the probability that a vesicle is released
on the arrival of an action potential be p. The probability that k vesicles, out of a maximum
number n, are released is given by the binomial distribution

Pk =
n!

k!(n− k)!
pk(1− p)n−k. (9)

For pyramidal-to-pyramidal cell connections p � 0.6−0.8. It is interesting to examine the prob-
ability there is a failure P0 = (1− p)n. For p = 0.6 and n = 1, 2 and 4 the fraction of a release
failures are 40%, 16% and 2.6% respectively. The number of release sites is typically quoted at
around n = 5− 10. Hence it is unlikely to see a release failure with an isolated pulse.
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• Post-Synaptic Amplitude Distribution

We now consider the distribution of amplitudes on the post-synaptic side, which are proportional
to the amount of neurotransmitter released. We assume that a vesicle contains an amount of
neurotransmitter that is Gaussian distributed so that the average voltage amplitude for a single
vesicle is a with a standard deviation of σa. We can then make use of the relation for addition
of Gaussian random numbers: for k vesicles

the mean = ka and the variance = kσ2
a (10)

Hence, if k vesicles are released the amplitude distribution is expected to be

ρk(A) =
1√

2πkσ2
a

exp

(
−(A− ka)2

2kσ2
a

)
. (11)

The number of vesicles released is, however, binomially distributed, so that the full distribution
can be written

P (A) = δ(A)P0 +
N∑
k=1

ρk(A)Pk (12)

where δ(A) is the Dirac delta function and Pk was given in equation (9). This formula is
important because it relates an observable, the post-synaptic voltage distribution, to the num-
ber of vesicles and their size which are hard to measure directly. The distribution (12) can give
a very accurate fit to data with the quantal effects clearly visible in the multi-modal distribution.

• Vesicle Run Down: Synaptic Depression

The analysis above was for the case of voltage amplitudes measured from synaptic events that
are well separated, such that there is always sufficient time for a new vesicle to be moved into
place before the next presynaptic spike arrives. We will now consider the response to a train
of presynaptic spikes that start at time t = 0 and continue at intervals of ∆. Let Dm be the
probability that a vesicle is present at the contact in question before the arrival of the mth
spike. This means that the probability that a vesicle is released at the arrival of the mth spike
is pm = pDm. The initial conditions mean that D1 = 1. We also assume that after a vesicle
is released, it is restocked at a rate 1/τD. For synapses that show synaptic depression (such as
between pyramidal cells) the time constant τD is usually around 500ms. Hence the probability
that a release site remains empty for a time ∆ is

P (remains empty) = e−∆/τD so that P (empty and then refilled) = 1− e−∆/τD . (13)

With these definitions, we can derive a formula that links the probability that a vesicle is ready
to be released just before the m and m+ 1 presynaptic spikes arrive. The relation is

Dm+1 = (1− p)Dm + pDm(1− e−∆/τD) + (1 −Dm)(1 − e−∆/τD). (14)

On the RHS: the first term is the chance that before spike m there was already a vesicle, and it
was not released; the second term is the chance that there was a vesicle before the mth spike,
it was released, but was then restocked before the (m+1)th spike arrived; and the third term is
the probability that there was no vesicle ready before spike m but that the site was restocked
before the (m+1)th spike. Combining terms gives,

Dm+1 = Dm

(
(1− p)e−∆/τD

)
+
(
1− e−∆/τD

)
= Dmβ + α (15)
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If ∆ → ∞ or τD → 0 then Dm → 1 as expected. We now calculate the long-time limit, after
many presynaptic spikes. When this occurrs Dm+1 = Dm = D∞, hence

D∞ =
α

1− β
=

1− e−∆/τD

1− (1− p)e−∆/τD
NB if ∆ � τD then D∞ � ∆

pτD
. (16)

We now calculate the dynamical approach to this steady state by introducing the excess dm =
Dm −D∞. Inserting this into equation (15)

dm+1 +
α

1− β
= dmβ +

βα

1− β
+ α so that dm+1 = dmβ with solution dm = Aβm. (17)

Hence the relaxation to the steady state is exponential. On using the initial condition the
prefactor A can be fixed so that

Dm = (1−D∞)βm−1 +D∞. (18)

From this we get the release probability pm = pDm. Across the n release sites, the probability
that a vesicle is released is still binomial, hence for k particles

Pk =
n!

k!(n − k)!
pkm(1− pm)n−k. (19)

The probabiltiy of a release failure is P0 = (1 − pm)n. For a high rate of spike arrival (when
∆ � τD - see also Eq 16) we have p∞ = pD∞ = ∆/τD. Hence for τD = 500ms and ∆ = 100ms
(i.e. 10Hz) we have for n = 1, 2 and 4 release failure probabilities of 80%, 64% and 41%. Hence,
transmission failures represent a potentially significant source of noise at active synapses.

• Synaptic Communication at High Input Frequencies

The total current delivered to the neuron via an active synapse is now examined for the regular
presynaptic spiking case that was considered above. The total current delivered is proportional
to the product of two factors; (i) the strength of the synapse (i.e. the number of vesicles released
per presynaptic spike) which for long time limits is proportional to D∞; and (ii) the rate 1/∆
at which the synapses are activated and vesicles have a chance of being released

Isyn ∝ D∞/∆ ∼ 1

pτD
(20)

where the second result is for the high-frequency case (see Eq. 16). It can be noted, then, that
in the high-frequency limit the total amount of current delivered is independent of the frequency
that the presynaptic neuron fires: no information about the firing rate of the presynaptic neuron
is transferred for high-frequency regular firing. So what information does the synapse transfer?

Consider a long period of presynaptic firing at a rate 1/∆1 so that the steady state is
reached D∞1 = ∆1/pτD. Now assume that the firing rate is increased to 1/∆2 at a time T
where ∆2 < ∆1. The vesicle occupancy Dm will relax exponentially and smoothly (starting at
its old value of D∞1) to the new lower value D∞2 = ∆2/pτD. If we now consider the current
arriving in the postsynaptic cell we have

Isyn ∝ D∞1/∆1 ∼ 1

pτD
before T (21)

Isyn ∝ D∞1/∆2 ∼ ∆1

∆2

1

pτD
just after T (22)

Isyn ∝ D∞2/∆2 ∼ 1

pτD
long after T . (23)
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Because ∆1/∆2 > 1 the current just after the change in frequency will be transiently stronger.
Similarly if the new firing rate 1/∆2 would have been lower there would have been a weaker
transient current just after the change in frequency. This analysis shows that, at high fre-
quencies of presynaptic spike arrival, a synapse with synaptic depression (or vesicle run-down)
communicates information only about changes in the signal - its acts as a natural differentiator.

Though not considered in any detail in this course, there exists another type of short-term
synaptic dynamics called facilitation. For synapses that facilitate, the initial probability of re-
lease p is very low, but as Calcium builds up in the presynaptic terminal, after many spikes
arrive, p can increase dramatically and so the response gets progressively stronger.
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