Skip to main content Skip to navigation


Select tags to filter on

Modelling defects in Ni–Al with EAM and DFT calculations

F. Bianchini, J.R. Kermode, and A. De Vita, Modelling defects in Ni–Al with EAM and DFT calculations, Modell. Simul. Mater. Sci. Eng. 24, 045012 (2016).

We present detailed comparisons between the results of embedded atom model (EAM) and density functional theory (DFT) calculations on defected Ni alloy systems. We find that the EAM interatomic potentials reproduce low-temperature structural properties in both the γ and ${{\gamma}^{\prime}}$ phases, and yield accurate atomic forces in bulk-like configurations even at temperatures as high as  ~1200 K. However, they fail to describe more complex chemical bonding, in configurations including defects such as vacancies or dislocations, for which we observe significant deviations between the EAM and DFT forces, suggesting that derived properties such as (free) energy barriers to vacancy migration and dislocation glide may also be inaccurate. Testing against full DFT calculations further reveals that these deviations have a local character, and are typically severe only up to the first or second neighbours of the defect. This suggests that a QM/MM approach can be used to accurately reproduce QM observables, fully exploiting the EAM potential efficiency in the MM zone. This approach could be easily extended to ternary systems for which developing a reliable and fully transferable EAM parameterisation would be extremely challenging e.g. Ni alloy model systems with a W or Re-containing QM zone.

Fri 29 Apr 2016, 11:02 | Tags: jrkermode

A universal preconditioner for simulating condensed phase materials

D. Packwood, J. Kermode, L. Mones, N. Bernstein, J. Woolley, N. Gould, C. Ortner, and G. Csányi, A universal preconditioner for simulating condensed phase materials, J. Chem. Phys. 144, 164109 (2016)

We introduce a universal sparse preconditioner that accelerates geometry optimisation and saddle point search tasks that are common in the atomic scale simulation of materials. Our preconditioner is based on the neighbourhood structure and we demonstrate the gain in computational efficiency in a wide range of materials that include metals, insulators, and molecular solids. The simple structure of the preconditioner means that the gains can be realised in practice not only when using expensive electronic structuremodels but also for fast empirical potentials. Even for relatively small systems of a few hundred atoms, we observe speedups of a factor of two or more, and the gain grows with system size. An open source Python implementation within the Atomic Simulation Environment is available, offering interfaces to a wide range of atomistic codes.

Tue 26 Apr 2016, 18:48 | Tags: jrkermode

Development of an exchange–correlation functional with uncertainty quantification capabilities for density functional theory

Manuel Aldegunde, James R. Kermode, and Nicholas Zabaras, J. Comput. Phys. 311, 173-195, doi:10.1016/

This paper presents the development of a new exchange–correlation functional from the point of view of machine learning. Using atomization energies of solids and small molecules, we train a linear model for the exchange enhancement factor using a Bayesian approach which allows for the quantification of uncertainties in the predictions. A relevance vector machine is used to automatically select the most relevant terms of the model. We then test this model on atomization energies and also on bulk properties. The average model provides a mean absolute error of only 0.116 eV for the test points of the G2/97 set but a larger 0.314 eV for the test solids. In terms of bulk properties, the prediction for transition metals and monovalent semiconductors has a very low test error. However, as expected, predictions for types of materials not represented in the training set such as ionic solids show much larger errors.

Tue 16 Feb 2016, 09:32 | Tags: nzabaras, maldegunde, jrkermode

Older news