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Multiverse Approach
• Statistical analysis usually requires several (more or less) arbitrary decisions between 

reasonable alternatives:
• Data processing and preparation (e.g., exclusion criteria, aggregation levels)
• Analysis framework (e.g., statistical vs. cognitive model, frequentist vs. Bayes)
• Statistical analysis (e.g., testing vs. estimation, fixed vs. random effects, pooling)

• Combination of decisions spans multiverse of data and results (Steegen, Tuerlinckx, 
Gelman, & Vanpaemel, 2016):
• Usually one path through multiverse (or 'garden of forking paths', Gelman & Loken, 2013) is 

reported
• Valid conclusions cannot be contingent on arbitrary decisions

• Multiverse analysis attempts exploration of possible results space:
• Reduces problem of selective reporting by making fragility or robustness of results transparent.  
• Conclusions arising from many paths are more credible than conclusions arising from few paths.
• Helps identification of most consequential choices.

• Limits of multiverse approach:
• Implementation not trivial.
• Results must be commensurable across multiverse (e.g., estimation versus hypothesis testing).



Current Project
• DFG Scientific Network grant to Julia Groß and Beatrice Kuhlmann

• "Hierarchical MPT Modeling – Methodological Comparisons and Application 
Guidelines"

• 6 meetings over 3 years with 15 people plus external experts
• Multinomial processing tree (MPT) models: class of discrete-state cognitive 

models for multinomial data (Riefer & Batchelder, 1988)
• MPT models traditionally analysed with frequentist methods (i.e., !"/$") and 

aggregated data
• Several hierarchical-Bayesian approaches exist. Do we need those?

• Today: First results from model for recognition memory



Our Multiverse

• Statistical framework:
• Frequentist (i.e., maximum-likelihood)
• Bayesian (i.e., MCMC)

• Pooling:
• Complete pooling (aggregated data)
• No pooling (individual-level data)
• Partial pooling (hierarchical-modelling): Individual-level parameters with group-level 

distribution
• Results:

1. Parameter point estimates: MLE and posterior mean
2. Parameter uncertainty: ML-SE and MCMC-SE
3. Model adequacy: !" p-value and posterior predictive p-value (Klauer, 2010)



Our Multiverse Pipeline (in R)
• Frequentist (uses MPTinR; Singmann & Kellen, 2013):  

• (1) Traditional approach: Frequentist asymptotic complete pooling  
• (2) Frequentist asymptotic no pooling  
• (3) Frequentist no-pooling with parametric bootstrap  
• (4) Frequentist no-pooling with non-parametric bootstrap  

• Bayesian (uses TreeBUGS; Heck, Arnold, & Arnold, 2018):  
• (5) Bayesian complete pooling (custom C++ sampler)  
• (6) Bayesian no pooling (unique method, custom C++ sampler)  
• (7) Bayesian partial pooling I a, Jags: Beta-MPT Jags (Smith & Batchelder, 2010)  
• (8) Bayesian partial pooling I b, C++: Beta-MPT C++   
• (9) Bayesian partial pooling II: Latent trait MPT (Klauer, 2010; Jags)  
• (10) Bayesian partial pooling III: Latent trait MPT w/o correlation parameters (Jags) 

• (11) latent-class approach (Klauer, 2006)

• All implemented in R packages
• MPTmultiverse: (1)-(10): https://cran.r-project.org/package=MPTmultiverse
• hmpt (for latent-class only): https://github.com/mpt-network/hmpt

https://cran.r-project.org/package=MPTmultiverse
https://github.com/mpt-network/hmpt


Example Application: Recognition Memory



6-point ROCs

Data set Sample N Mean No. of Trials
Dube & Rotello (2012, E1, Pictures (P)) 27 400
Dube & Rotello (2012, E1, Words (W)) 22 400
Heathcote et al. (2006, Exp. 1) 16 560
Heathcote et al. (2006, Exp. 2) 23 560
Jaeger et al. (2012, Exp. 1, no cue) 63 120
Jang et al. (2009) 33 140
Koen & Yonelinas (2010, pure study) 32 320
Koen & Yonelinas (2011) 20 600
Koen et al. (2013, Exp. 2, full attention) 48 200
Koen et al. (2013, Exp. 4, immediate test) 48 300
Pratte et al. (2010) 97 480
Smith & Duncan (2004, Exp. 2) 30 140

• Total N = 459
• Mean trials = 350

• Still missing:
• 8-point ROCs
• 4 studies
• Total N: 459
• reasons: more model 

variants possible, 
takes longer





2-high threshold model (2HTM) for 6-point confidence-rating data 
(e.g., Bröder, et al., 2013)

• 3 core parameters: 
• !": Probability to detect old item as old
• !#: Probability to detect new item as new
• $: Probability to guess item is old (conditional on non-detection)

• 8 response mapping parameters (at least one needs to be equated for identifiability)



• Each data point is one study
• Value corner: CCC = concordance correlation coefficient (measure of absolute agreement)









Parameter 
trade-

off/fungibility
(based on 

Latent-trait 
group-level 
posteriors )



Conclusions
• Overall, methods appear to agree with each other (maximal 

difference ≈ .25)
• Agreement between estimation method, depends on parameter

• Even for structurally very similar core parameters (Do versus Dn) we see 
differences

• Compared to latent trait methods, Dn and g are slightly underestimated by 
other methods

• Effect of over/under-estimation does not appear to be related to sample size
• Parameters that show imprecision in estimation, seem to show larger 

parameter trade-offs
• Recommendation: Use multiverse approach to take uncertainty of 

modeling framework into account



2-high threshold model (2HTM) for 6-point confidence-rating data 
(e.g., Bröder, et al., 2013)

!1 = !$
!2 = 1 − !$ !'
!3 = 1 − !$ 1 − !'
same for 0

!6 = !2
!5 = 1 − !2 !4
!4 = 1 − !2 1 − !4
same for 0

• For !, !$ and !2 expected to have most 
data

• For 0, 04 and 0' expected to have most 
data

• Data provides 10 independent data points, full model has 11 free parameters:
• 3 core parameters: 67, 68, and 9. 
• 8 response mapping parameters

• For parameter identifiability: at least one parameter needs to be equated



Identifiability Restrictions

• original Bröder et al. (2013) variant:
• !" = !$
• %" = %$

• only q-restricted:
• !" = !$

• only r-restricted:
• %" = %$

%1 = %'
%2 = 1 − %' %$
%3 = 1 − %' 1 − %$
same for !

%6 = %3
%5 = 1 − %3 %"
%4 = 1 − %3 1 − %"
same for !




