DEFECTS IN 2D MATERIALS:

HOW WE TAUGHT ELECTRONIC SCREENING TO MACHINES

Johannes Lischner Imperial College London

LISCHNER GROUP AT IMPERIAL COLLEGE LONDON

Theory and simulation of materials: focus on electronic excitations

DEFECT ENGINEERING

PN-junction: building block of semiconductor technology

Defects play a key role:

- donate electrons or holes to host material
- formation of charged ions
- charged defects scatter electrons

2D MATERIALS AND DEVICES

Promise of ultrathin devices with novel functionality

field effect transistor based on 2d semiconductor MoS₂

gas sensor based on graphene

CHARGED DEFECTS IN 2D MATERIALS

Example: adsorbed atom

CHARGED DEFECTS IN 2D MATERIALS

THEORETICAL DESCRIPTION

Challenges:

- screened potential has complicated spatial dependence
- screening in 2D is weaker than in 3D
 - ► large supercells
- charge transfer is difficult to compute

EXPERIMENTAL STUDY OF CHARGED DEFECTS

Scanning tunneling spectroscopy (STS):

- ▶ add or remove electrons from sample
- probe quasiparticle excitations
- experiments in Crommie group (Berkeley)

SINGLE ADATOM ON GRAPHENE

STM image of single calcium atom on graphene

electrons tunnel from graphene to tip

single adatom influences thousands of graphene atoms

Wong et al., Phys. Rev. B (2017)

DOPING DEPENDENCE

Effect of changing the graphene electron concentration via gate voltage V_g

Wong et al., Phys. Rev. B (2017)

DOPING DEPENDENCE

For tip voltage such that electron tunnel from tip to graphene:

Wong et al., Phys. Rev. B (2017)

THEORETICAL DESCRIPTION

Modelling charged adsorbates on doped graphene:

- use tight-binding to model supercells with 100,000 carbon atoms
- charge transfer Z = 0.7 lel
 - ► from experimental measurement of Fermi level shift
- screened potential: random phase approximation
- calculate local density of states (LDOS)

$$\epsilon(q) = \begin{cases} \epsilon_s + \frac{2\pi e^2 \text{DOS}(E_F)}{q}, & q \leq 2k_F, \\ \epsilon_s + \frac{2\pi e^2 \text{DOS}(E_F)}{q} \Big[1 - \frac{1}{2} \sqrt{1 - \left(\frac{2k_F}{q}\right)^2} + \frac{q}{4k_F} \cos^{-1}\frac{2k_F}{q} \Big], & q > 2k_F, \end{cases}$$

THEORY RESULTS

STS images for tunneling from graphene to tip:

Wong et al., Phys. Rev. B (2017)

THEORY RESULTS

STS images for tunneling from tip to graphene:

Wong et al., Phys. Rev. B (2017)

Electric potential shifts the energies of electronic states

Electric potential shifts the energies of electronic states

Electric potential shifts the energies of electronic states

Wong et al., Phys. Rev. B (2017)

Electric potential shifts the energies of electronic states

OPEN QUESTIONS

- How to calculate the charge transfer?
- Is screening model ok? Need nonlinear response?

In principle: these questions can be answered by DFT calculations But: DFT calculations for 100,000 atoms are ... uncomfortable

INSPIRATION FROM MACHINE LEARNING

Machine learning for classical molecular dynamics simulations

MULTISCALE APPROACH FOR CHARGED DEFECTS

DFT in small supercell

calculate screened potential (training set)

Parametrize model in small supercell

- use non-atomistic model for graphene
- point charge for defect
- Z and E_F are fitting parameters

Evaluate model in large supercell

Use model potential in tight-binding

CONTINUUM MODELS

Non-linear Thomas-Fermi (NLTF) approach:

$$V_{\text{scr}}^{\text{cont}}(\mathbf{r};\mu) = Z v_{z_{\text{imp}}}(\mathbf{r}) + \int d^2 \mathbf{r}' [n(\mathbf{r}') - n_0] v_0(\mathbf{r} - \mathbf{r}'),$$
(1)
(1)
where $n_0(\mu) = \mu |\mu| / (\pi v_F^2)$ and $n(\mathbf{r}) = n_0(\mu - V_{\text{scr}}(\mathbf{r}))$

Thomas-Fermi approach only captures intraband transitions

include interband transition in linear response (via dielectric matrix)

RESULTS

Parametrization of continuum model using ab initio screened potential

Corsetti, Mostofi, JL, 2D Materials (2017)

RESULTS

Parametrization of continuum model using ab initio screened potential

Optimal parameters for defect charge Z:

Model	Z (e)	\mathcal{F} (eV)
LTF	0.3	8.9×10^{-3}
LTF + inter	1.3	$8.4 imes 10^{-3}$
NLTF	1.6	9.3×10^{-3}
NLTF + inter	1.6	$7.4 imes 10^{-3}$

- ► all theories have similar fitness, but different parameters
- nonlinearity and interband transitions are important
- But: only manifest themselves as rescaling of screening potential

Impurity states of charged defects in MoS₂

- ► tight-binding calculations with 8,000 atoms
- screened potential from ab initio RPA calculation
- defect charge is parameter

Most strongly bound defect states for Z=-0.25 lel (=acceptor defect):

increasing binding energy

Aghajanian, Mostofi, JL, Scientific Reports (2018)

Comparison to 2d hydrogen model:

- impurity states similar to 2d hydrogen model
- But why multiple 1s states?

Phosphorus substitutional in silicon crystal:

- phosphorus has one more valence electron than silicon
- extra electron forms 3D hydrogenic state with positive core
- But: replace electron mass by effective mass from band structure
- And: reduce attractive Coulomb interaction by dielectric constant

Binding energy:
$$\mathcal{E} = \frac{m^*}{m} \frac{1}{\epsilon^2} \times 13.6 \text{ eV}.$$

Band structure of MoS₂:

- valence band has multiple maxima: K, K', Gamma
- Each maximum acts as 2d hydrogen atom and contributes series of states

Aghajanian, Mostofi, JL, Scientific Reports (2018)

Binding energy as function of impurity charge Z:

- small IZI: 1s state from K/K' (=VBM) more strongly bound
- larger IZI: binding energy of 1s state at Gamma increases quickly due to large m*
- crossover at critical IZI = 0.35

Donor atoms:

- weak spin-orbit coupling in conduction band
- 1s states from K and K' can hybridize: $\Psi_{\pm} = \frac{1}{\sqrt{2}} \left(\Psi_{1s,K} \pm \Psi_{1s,K'} \right)$
- splitting of hybridized states not captured by Keldysh model
- crossover from K/K' state to state from Q near IZI=0.6

TWISTED BILAYER GRAPHENE

Strong electron correlations in two dimensions

Experimental observations (Cao et al.):

- ▶ at a magic twist angle of 1.1 degree, TBG becomes insulator at quarter filling
- ► at T=1.7 K, TBG becomes superconductor
- similar phase diagram to cuprates

TWISTED BILAYER GRAPHENE

Theory: effective hopping model (Fu group, MIT) + renormalization group

Kennes, JL, Karrasch, arXiv: 1805.06310

DEFECTS IN 2D MATERIALS

Summary:

- understanding of charged defects in 2d materials is required for new devices
- modelling defects is challenging due to multiscale behaviour
- combining ab initio DFT with simpler models allows accurate description

STUDENTS AND COLLABORATORS

Martik Aghajanian

Fabiano Corsetti

Jin Zhang

Arash Mostofi

Dante Kennes

Christoph Karrasch

Dillon Wong

Mike Crommie

CHARGED DEFECTS IN 2D MATERIALS

EPSRC

Engineering and Physical Sciences Research Council

group website:

https://sites.google.com/site/jlischner597/home