DEFECTS IN 2D MATERIALS:
HOW WE TAUGHT ELECTRONIC SCREENING TO MACHINES
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Theory and simulation of materials: focus on electronic excitations
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PN-junction: building block of semiconductor technology
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Defects play a key role:
» donate electrons or holes to host material
» formation of charged ions

» charged defects scatter electrons



Promise of ultrathin devices with novel functionality

field effect transistor based on gas sensor based on
2d semiconductor MoS; graphene



Example: adsorbed atom
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Challenges:

« screened potential has complicated spatial dependence
» screening in 2D is weaker than in 3D
» large supercells

- charge transfer is difficult to compute




Scanning tunneling spectroscopy (STS):

» add or remove electrons from sample
» probe quasiparticle excitations

» experiments in Crommie group (Berkeley)



STM image of single calcium atom on graphene

electrons tunnel from
graphene to tip

single adatom influences thousands of
Wong et al., Phys. Rev. B (2017) graphene atoms




Effect of changing the graphene electron concentration via gate voltage V4

n-doped experiment
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DOPING DEPENDENCE

For tip voltage such that electron tunnel from tip to graphene:
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Modelling charged adsorbates on doped graphene:
- use tight-binding to model supercells with 100,000 carbon atoms
- charge transfer Z=0.7 lel
» from experimental measurement of Fermi level shift
- screened potential: random phase approximation
- calculate local density of states (LDOS)

2me*DOS(E
ES+ e q ( F)s

2 2
€, + ¢ D;)S(EF)[I — %\/1 — (2:—"") + %cos‘lzg—"], g > 2kp,




STS images for tunneling from graphene to tip:

n-doped experiment
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STS images for tunneling from tip to graphene:
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Electric potential shifts the energies of electronic states
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depletion layer
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Wong et al., Phys. Rev. B (2017)



Electric potential shifts the energies of electronic states
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Electric potential shifts the energies of electronic states
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Electric potential shifts the energies of electronic states
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- How to calculate the charge transfer?

- |s screening model ok? Need nonlinear response?

In principle: these questions can be answered by DFT calculations

uncomfortable

But: DFT calculations for 100,000 atoms are ...




INSPIRATION FROM MACHINE LEARNING

Machine learning for classical molecular dynamics simulations

use DFT to calculate use training set to
E({R}) for simple/ determine
small system parameters of
simpler model/
algorithm (e.g. neural
network)

training set

use simpler model to
do molecular
dynamics for
complex/large
system




MULTISCALE APPROACH FOR CHARGED DEFECTS

DFT in small supercell Parametrize model in small supercell
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continuum model

calculate screened potential - use non-atomistic model for graphene
(training set) - point charge for defect
- Z and EF are fitting parameters

Use model potential in tight-binding Evaluate model in large supercell
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Non-linear Thomas-Fermi (NLTF) approach: / \

continuum model

VER(E; 1) = 2 + [ In(x') — moluo(x — ),
(1)

where ng(p) = p|p|/(mvE) and n(r) = no(p — V(1))

» Thomas-Fermi approach only captures intraband transitions

» include interband transition in linear response (via dielectric matrix)

Corsetti, Mostofi, JL, 2D Materials (2017)



Parametrization of continuum model using ab initio screened potential

Fithess metric F as function of model parameter EF and Z
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Corsetti, Mostofi, JL, 2D Materials (2017)



S
RESULTS

Parametrization of continuum model using ab initio screened potential

Optimal parameters for defect charge Z:

Model Z (e) F (eV)

LTF 0.3 8.9 x 1073
LTF + inter 1.3 8.4 x 103
NLTF 1.6 9.3 x 1072
NLTF + inter 1.6 7.4 x 1073

» all theories have similar fitness, but different parameters
» nonlinearity and interband transitions are important

» But: only manifest themselves as rescaling of screening potential

Corsetti, Mostofi, JL, 2D Materials (2017)
Katsnelson, PRB (2006)



e
CHARGED DEFECTS IN 2D SEMICONDUCTORS

Impurity states of charged defects in MoS:

» tight-binding calculations with 8,000 atoms

» screened potential from ab initio RPA calculation

» defect charge is parameter

Most strongly bound defect states for Z=-0.25 lel (=acceptor defect):

iIncreasing binding energy
Aghajanian, Mostofi, JL, Scientific Reports (2018)




CHARGED DEFECTS IN 2D SEMICONDUCTORS

Comparison to 2d hydrogen model:

1s 1s 2p | 2p 25

2D Rydberg States (Z2=-0.25m*R)

e impurity states similar to 2d hydrogen model

e But why multiple 1s states?

Aghajanian, Mostofi, JL, Scientific Reports (2018)



Extra
unbound
electron

e phosphorus has one more valence electron than silicon

e extra electron forms 3D hydrogenic state with positive core
e But: replace electron mass by effective mass from band structure

* And: reduce attractive Coulomb interaction by dielectric constant

m¥ 1

Binding energy: & = — — x 13.6 V.

mn €



Band structure of MoS::

:
(

K' [ Q K

e valence band has multiple maxima: K, K’, Gamma

e Each maximum acts as 2d hydrogen atom and contributes series of states

Aghajanian, Mostofi, JL, Scientific Reports (2018)



CHARGED DEFECTS IN 2D SEMICONDUCTORS

Binding energy as function of impurity charge Z:
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e small IZl: 1s state from K/K’ (=VBM) more strongly bound

* larger IZl: binding energy of 1s state at Gamma increases quickly due to large m*
e crossover at critical 1ZI = 0.35



CHARGED DEFECTS IN 2D SEMICONDUCTORS

Donor atoms:
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e weak spin-orbit coupling in conduction band |
e 1s states from K and K’ can hybridize: W+ = 7 (V1s x = Vis K7)
e splitting of hybridized states not captured by Keldysh model

e crossover from K/K’ state to state from Q near |ZI=0.6



Strong electron correlations in two dimensions Poawe :
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Experimental observations (Cao et al.):
» at a magic twist angle of 1.1 degree, TBG becomes insulator at quarter filling
» at T=1.7 K, TBG becomes superconductor
» similar phase diagram to cuprates



Theory: effective hopping model (Fu group, MIT) + renormalization group
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Summary:

 understanding of charged defects in 2d materials is required for new devices
« modelling defects is challenging due to multiscale behaviour

e combining ab initio DFT with simpler models allows accurate description
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