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Presentation Summary

Why are we here?
(Some) comms engineers interested in reaction-diffusion systems

What have we done?
• Applied comms engineering to chemical signalling in fluids
• Developed a reaction-diffusion simulator for comms analysis

Where are we going?
Understand and control communication in “small” natural systems
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What is Communications Engineering?
Designing communication systems and measuring their performance

TX ENVIRONMENTMESSAGE DESTINATIONRX
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What are Communication Networks?
From conventional networks to molecular communication
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Examples of Molecular Communication

Neuromuscular Junction

30 nm
Presynaptic
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Neurons control muscle contraction

Quorum Sensing

Low Density High Density
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Molecules

Bacteria estimate population
density
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How Does Engineering Integrate?

Biological
Signalling ⇐⇒ Communications and

Signal Processing

Long-Term Question
How to design small systems with living and synthetic devices where
we can predict and control behaviour?
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Future Applications of Molecular Communication

Drug delivery
In vivo Diagnostics

Lab-on-a-chip

Chemical reactors
Pollution monitoring
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Molecular Communication Channels are Different
Nodes may be simple, molecules must be physically sent
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Molecular Communication Experiments

Tabletop Signalling1

Using Bacteria as Transceivers2

1Farsad, Guo, Eckford, Proc. IEEE INFOCOM Workshops, Apr. 2014
2Krishnaswamy et al., Proc. IEEE ICC, Jun. 2013
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Our Contributions to Channel Modelling
“Enhanced” Diffusion

Molecule Degradation1
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1Noel, Cheung, Schober, IEEE Trans. NanoBiosci., Mar. 2014
2Noel, Cheung, Schober, IEEE Trans. NanoBiosci., Sept. 2014
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Our Contributions to Channel Modeling
Point-to-Point Model Accuracy

TX RX

Noel, Cheung, Schober, Proc. IEEE ICC MoNaCom, Jun. 2013

Noel, Makrakis, Hafid, Proc. CSIT BSC, Jun. 2016
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Why Simulate Mol Comm Systems?

Generic reasons for simulation:
• Test assumptions
• Verify expected behaviour

• E.g., Channel response, bit
error rate

Specifically for Mol Comm:
• Channels can be very

complex
• Physical space
• Many phenomena

• Understand unfamiliar
environments
• We can control/design the

channel

Cell Type A

Cell Type B

Cell Type C
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Scales of Molecular Simulations
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Scales of Molecular Simulations

(a) Continuum (b) Mesoscopic

(c) Microscopic

(d) Molecular Dynamics
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Generic Simulators

Generic Simulators – Existing platforms from physical chemistry

Advantages:

• Advanced “sandbox” tools
• Open source and commercial platforms
• Options for all physical scales
• Many are maturely developed

Disadvantages (for molecular communication):

• Not designed for data transmission
• Not designed for channel statistics
• Not always spatially tunable
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Popular Generic Simulators
Sample Commercial Platforms

COMSOL Multiphysics
(Continuum)1 ANSYS (Continuum)2

Images: 1https://uk.comsol.com/multiphysics/what-is-mass-transfer
2https://www.ansys.com/products/fluids
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Popular Generic Simulators
Sample Open Source Platforms

URDME (Mesoscopic)1

Smoldyn
(Microscopic)2

LAMMPS (Mol.
Dynamics)3

Images: 1https://doi.org/10.1186/1752-0509-6-76, 2https://doi.org/10.1371/journal.pcbi.1000705,
3https://lammps.sandia.gov/prepost.html
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Molecular Communication Simulators

Mol Comm Simulators – Developed within MC research community

Advantages:

• Designed for data transmission
• Designed for channel statistics
• Free if available

Disadvantages:

• Most are not generic solvers
• Implement specific environments

• No options for all scales
• Development focused on microscopic; some mesoscopic

• Not as maturely developed
• Not all readily accessible
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Reaction-Diffusion Sandbox for Communications

https://www.youtube.com/watch?v=xOGkKG8PsCE

Noel, Cheung, Schober, Makrakis, Hafid, Nano Commun. Networks, Mar. 2017
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AcCoRD Simulator

AcCoRD (Actor-based Communication via Reaction-Diffusion)
• Flexible environmental design (“sandbox”)
• Generate many independent realizations
• Release molecules based on modulated data
• Track number or locations of molecules

Noel, Cheung, Schober, Makrakis, Hafid, Nano Commun. Networks, Mar. 2017.
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Sandbox Environment Design with AcCoRD
AcCoRD: Actor-Based Communication via Reaction-Diffusion

https://www.youtube.com/watch?v=7QcN6eGrC4w

Noel, Cheung, Schober, Makrakis, Hafid, Nano Commun. Networks, Mar. 2017

Github page: https://github.com/adamjgnoel/AcCoRD
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Sample AcCoRD Results

Molecule Observation
Distributions
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Absorbing Surfaces

Absorbing
Sphere

Diffusing
Molecule

• Receivers commonly modelled as absorbing surfaces

Wang, Noel, Yang, submitted to IEEE Trans. NanoBiosci., Aug. 2018
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Absorbing Surfaces

Absorbing
Sphere

?

• Microscopic simulation - displacements are straight lines
• “Simplistic Monte Carlo” (SMC; Arifler and Arifler, 2017)
• Final point within absorbing object is obvious

Wang, Noel, Yang, submitted to IEEE Trans. NanoBiosci., Aug. 2018
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Absorbing Surfaces

Absorbing
Sphere

Possible
Path

• Need small time steps ∆t to model path
• Absorption takes LONG time to simulate accurately

Wang, Noel, Yang, submitted to IEEE Trans. NanoBiosci., Aug. 2018
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Absorbing Surfaces

Absorbing
Sphere

li

lf

“Refined Monte Carlo” (RMC; Arifler and Arifler, 2017)
• Assume sphere is flat infinite plane and check absorption

probability

PrRMC = exp

(
− lilf

D∆t

)

Wang, Noel, Yang, submitted to IEEE Trans. NanoBiosci., Aug. 2018
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Absorbing Surfaces

Absorbing
Sphere

r0

rr

“A priori Monte Carlo” (APMC)
• Check for absorption BEFORE diffusing

PrAPMC =
rr

r0
erfc

(
r0 − rr√

4D∆t

)
• More accurate for large time steps and when far from receiver
Wang, Noel, Yang, submitted to IEEE Trans. NanoBiosci., Aug. 2018
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Absorbing Surfaces
Performance

• Distance r0 = 50µm, receiver radius rr = 0.5µm

Wang, Noel, Yang, submitted to IEEE Trans. NanoBiosci., Aug. 2018
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Absorbing Surfaces
Performance with Different ∆t

• Distance r0 = 50µm, receiver radius rr = 5µm
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Absorbing Surfaces
Performance with Multiple Receivers (Limited Analytical Results)

• Distance r0 = 100µm, ∆t = 0.2 s

Wang, Noel, Yang, submitted to IEEE Trans. NanoBiosci., Aug. 2018
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Mesoscopic Model

A

B
C

Divide fluid environment into virtual subvolumes (containers)
• Track number of molecules of each type in each subvolume
• Reaction and diffusion events change molecule counts
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Mesoscopic Model
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Mesoscopic Model

0 0 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

Divide fluid environment into virtual subvolumes (containers)
• Track number of molecules of each type in each subvolume
• Reaction and diffusion events change molecule counts

Simulation of Reaction-Diffusion Systems A. Noel 31/46



Mesoscopic Simulation (Gillespie Method)

Mesoscopic simulations need rates to predict when events occur
• Every event has a propensity α

• α depends on the rate k, i.e., α = f (k)

• For transitions between subvolumes, propensity is α = kU
• U – number of molecules of same type within subvolume

Next event time is then
tnext = − log u

α

where u is a uniform RV u ∈ (0, 1]

• Different ways to deal with large number of potential events

Gillespie, Phys. Chem., Dec. 1977; Bernstein, Physical Review E, Apr. 2005
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Mesoscopic Rates with Flow

• v – flow speed perpendicular to subvolume face (assume positive)
• D – diffusion coefficient
• kw – transition rate in direction of flow
• ka – transition rate against direction of flow

Diffusion Only (v = 0)

ka = kw =
D
h2

“Naive” Flow Model

kw =
D
h2 +

v
h

ka =
D
h2

Proposed Flow Model

kw =
D
h2 +

v
2h

ka =
D
h2 −

v
2h

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018
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Mesoscopic Flow
Implementation

• Need to make sure transition rates aren’t negative

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018
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Mesoscopic Flow
Performance

• Subvolume size h = 1µm, flow speed v = 0.1 mm/s

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018
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Mesoscopic Flow
Dependence on Subvolume Size

• Flow speed v = 0.4 mm/s, distance lRX = 2µm

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018
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Mesoscopic Flow
Time-Varying Statistics

0

0.05

0.1

0.15

0.2

• Flow speed v = 0.1 mm/s, distance lRX = 10µm

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018
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Long Term Objectives

Question
How to design small systems with both living and synthetic devices
where we can predict and control behaviour?

Biology Communications and
Signal Processing

On-going topics
Use communications and signal processing tools to model:
• Behavioural dynamics of the system
• Devices’ ability to share information (including living “devices”)
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Behaviour in Microscopic Cellular Populations

Heterogeneous Quorum Sensing

Cell Type A

Cell Type B

Cell Type C

Tumour Growth and
Development

Tumor Cells

Tissue Cells

The Idea
Noisy signalling contributes uncertainty for us to mitigate or enhance

Noel, Fang, Yang, Makrakis, Eckford, https://arxiv.org/abs/1711.04870
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Information Theory in Biochemical Processes
How much information is there?

• Optogenetics lets us externally stimulate neurons
• What are the limits to generate any kind of spike train?
• We are constrained by a neuron’s membrane potential dynamics
Noel, Makrakis, Eckford, IEEE Trans. Biomed. Eng., Dec. 2018
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Information Transfer in Chemical Reactions

A E EA EAP

k1

k-1

k2

• Biochemical reactions occur with significant randomness
• Gillespie method initially intended for chemical reactions

• How much information can be transmitted in a reaction?
• How well can we statistically characterize the evolution of a

chemical reaction?
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Conclusions

Communications engineering can be applied to reaction-diffusion
modelling

We want to predict and control behaviour in small natural environments

Going Forward
Many open questions in behavioural dynamics and information transfer
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The End
Thank you for your time and attention!

Homepage: www.warwick.ac.uk/adamnoel

AcCoRD Simulator:
www.warwick.ac.uk/adamnoel/software/accord/
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Point vs Spherical Receiver

NRX (t) – number of molecules expected at RX as a function of time

3D Point Receiver Observation (Point TX) – “Classical” Result

NRX (t) =
NVRX

(4πDt)3/2 exp

(
− d2

4Dt

)

3D Spherical Receiver Observation (Point TX)

NRX (t) =
N
2

[
erf

(
rRX − d
2
√

Dt

)
+ erf

(
rRX + d
2
√

Dt

)]
+

N
d

√
Dt
π

[
exp

(
−(d + rRX)2

4Dt

)
− exp

(
−(d − rRX)2

4Dt

)]

Noel, Cheung, Schober, Proc. IEEE ICC MoNaCom, Jun. 2013
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Point vs Volume Transmitter

1D Receiver Observation (Point TX)

NRX (t) =
N
2
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erf
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rRX + d
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√

Dt

)
− erf

(
d − rRX

2
√

Dt

))

1D Receiver Observation (Volume TX)

NRX (t) =
N

2rTX

{√
Dt
π

[
exp

(
−
(xf + rRX)

2

4Dt

)
− exp

(
−
(xf − rRX)

2

4Dt

)
− exp

(
−
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2

4Dt

)

+ exp

(
−
(xi − rRX)

2

4Dt

)]
+

1
2

[
(xf + rRX) erf

(
xf + rRX

2
√

Dt

)

− (xi + rRX) erf

(
xi + rRX

2
√

Dt

)
−(xf − rRX) erf

(
xf − rRX

2
√

Dt

)
+ (xi − rRX) erf

(
xi − rRX

2
√

Dt

)]}

Noel, Makrakis, Hafid, Proc. CSIT BSC, Jun. 2016
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