Stochastic Simulation of Reaction-Diffusion Systems

Adam Noel

School of Engineering University of Warwick

WCPM Seminar 26 November, 2018 Why are we here?

(Some) comms engineers interested in reaction-diffusion systems

Why are we here?

(Some) comms engineers interested in reaction-diffusion systems

What have we done?

- Applied comms engineering to chemical signalling in fluids
- Developed a reaction-diffusion simulator for comms analysis

Why are we here?

(Some) comms engineers interested in reaction-diffusion systems

What have we done?

- Applied comms engineering to chemical signalling in fluids
- Developed a reaction-diffusion simulator for comms analysis

Where are we going?

Understand and control communication in "small" natural systems

Background

Participation Content of Conte

8 Recent Feature Development

Absorbing Surfaces Mesoscopic Flow

On-Going Work

Behavioural Dynamics Information Transfer

6 Conclusions

What is Communications Engineering?

Designing communication systems and measuring their performance

Examples of Molecular Communication

Neuromuscular Junction

Neurons control muscle contraction

Examples of Molecular Communication

Neuromuscular Junction

Quorum Sensing

Bacteria estimate population density

Neurons control muscle contraction

Biological Signalling

Communications and Signal Processing

Long-Term Question

How to design small systems with living and synthetic devices where we can predict and control behaviour?

Drug delivery

Drug delivery

In vivo Diagnostics

Drug delivery

In vivo Diagnostics

Lab-on-a-chip

Drug delivery

In vivo Diagnostics

Lab-on-a-chip

Chemical reactors

Drug delivery

In vivo Diagnostics

Lab-on-a-chip

Pollution monitoring

Chemical reactors

Molecular Communication Channels are Different

Nodes may be simple, molecules must be physically sent

Molecular Communication Channels are Different

Nodes may be simple, molecules must be physically sent

Molecular Communication Experiments

Tabletop Signalling¹

¹Farsad, Guo, Eckford, Proc. IEEE INFOCOM Workshops, Apr. 2014

²Krishnaswamy et al., Proc. IEEE ICC, Jun. 2013

Molecular Communication Experiments

Tabletop Signalling¹

¹Farsad, Guo, Eckford, *Proc. IEEE INFOCOM Workshops*, Apr. 2014 ²Krishnaswamy et al., *Proc. IEEE ICC*, Jun. 2013

Molecular Communication Experiments

Tabletop Signalling¹

Using Bacteria as Transceivers²

¹Farsad, Guo, Eckford, *Proc. IEEE INFOCOM Workshops*, Apr. 2014

²Krishnaswamy et al., Proc. IEEE ICC, Jun. 2013

Our Contributions to Channel Modelling

"Enhanced" Diffusion

Molecule Degradation¹

¹Noel, Cheung, Schober, *IEEE Trans. NanoBiosci.*, Mar. 2014 ²Noel, Cheung, Schober, *IEEE Trans. NanoBiosci.*, Sept. 2014

Our Contributions to Channel Modelling

"Enhanced" Diffusion

Molecule Degradation¹

Bulk Fluid Flow² Φ 4011 Number of molecules at RX 01 02 02 00 Flow Towards BX Number of molecules at RX 20 Baseline Baseline Flow Perpendicular to RX 10 0.040.06 0 0.020.08With Degrada Time 0.02 0 0.01 0.04Time

¹Noel, Cheung, Schober, *IEEE Trans. NanoBiosci.*, Mar. 2014
²Noel, Cheung, Schober, *IEEE Trans. NanoBiosci.*, Sept. 2014

Our Contributions to Channel Modeling

Point-to-Point Model Accuracy

Noel, Cheung, Schober, *Proc. IEEE ICC MoNaCom*, Jun. 2013 Noel, Makrakis, Hafid, *Proc. CSIT BSC*, Jun. 2016

Our Contributions to Channel Modeling

Point-to-Point Model Accuracy

Noel, Cheung, Schober, *Proc. IEEE ICC MoNaCom*, Jun. 2013 Noel, Makrakis, Hafid, *Proc. CSIT BSC*, Jun. 2016

Background

Participation Content of Conte

Recent Feature Development Absorbing Surfaces Mesoscopic Flow

On-Going Work

Behavioural Dynamics Information Transfer

5 Conclusions

Why Simulate Mol Comm Systems?

Generic reasons for simulation:

- Test assumptions
- · Verify expected behaviour
 - E.g., Channel response, bit error rate

Why Simulate Mol Comm Systems?

Generic reasons for simulation:

- Test assumptions
- Verify expected behaviour
 - E.g., Channel response, bit error rate

Specifically for Mol Comm:

- Channels can be very complex
 - Physical space
 - Many phenomena
- Understand unfamiliar environments
- We can control/design the channel

Why Simulate Mol Comm Systems?

Generic reasons for simulation:

- Test assumptions
- · Verify expected behaviour
 - E.g., Channel response, bit error rate
- Specifically for Mol Comm:
 - Channels can be very complex
 - Physical space
 - Many phenomena
 - Understand unfamiliar environments
 - We can control/design the channel

Scales of Molecular Simulations

Scales of Molecular Simulations

Generic Simulators - Existing platforms from physical chemistry

Generic Simulators – Existing platforms from physical chemistry

Advantages:

- Advanced "sandbox" tools
- Open source and commercial platforms
- Options for all physical scales
- Many are maturely developed

Generic Simulators – Existing platforms from physical chemistry

Advantages:

- Advanced "sandbox" tools
- Open source and commercial platforms
- Options for all physical scales
- Many are maturely developed

Disadvantages (for molecular communication):

- Not designed for data transmission
- Not designed for channel statistics
- Not always spatially tunable

Popular Generic Simulators

Sample Commercial Platforms

COMSOL Multiphysics (Continuum)¹

ANSYS (Continuum)²

²https://www.ansys.com/products/fluids

Simulation of Reaction-Diffusion Systems

Images: ¹https://uk.comsol.com/multiphysics/what-is-mass-transfer

Popular Generic Simulators

Sample Open Source Platforms

Images: ¹https://doi.org/10.1186/1752-0509-6-76, ²https://doi.org/10.1371/journal.pcbi.1000705,

³https://lammps.sandia.gov/prepost.html

Simulation of Reaction-Diffusion Systems

Molecular Communication Simulators

Mol Comm Simulators - Developed within MC research community

Molecular Communication Simulators

Mol Comm Simulators - Developed within MC research community

Advantages:

- Designed for data transmission
- Designed for channel statistics
- Free if available

Molecular Communication Simulators

Mol Comm Simulators - Developed within MC research community

Advantages:

- Designed for data transmission
- Designed for channel statistics
- Free if available

Disadvantages:

- Most are not generic solvers
 - Implement specific environments
- No options for all scales
 - Development focused on microscopic; some mesoscopic
- Not as maturely developed
- Not all readily accessible

Reaction-Diffusion Sandbox for Communications

https://www.youtube.com/watch?v=xOGkKG8PsCE

Noel, Cheung, Schober, Makrakis, Hafid, Nano Commun. Networks, Mar. 2017

AcCoRD Simulator

AcCoRD (Actor-based Communication via Reaction-Diffusion)

- Flexible environmental design ("sandbox")
- Generate many independent realizations
- Release molecules based on modulated data
- Track number or locations of molecules

Simulation of Reaction-Diffusion Systems

Noel, Cheung, Schober, Makrakis, Hafid, Nano Commun. Networks, Mar. 2017.

Sandbox Environment Design with AcCoRD

AcCoRD: Actor-Based Communication via Reaction-Diffusion

https://www.youtube.com/watch?v=7QcN6eGrC4w

Github page: https://github.com/adamjgnoel/AcCoRD

Simulation of Reaction-Diffusion Systems

Noel, Cheung, Schober, Makrakis, Hafid, Nano Commun. Networks, Mar. 2017

Molecule Observation Distributions

Mean Behaviour

Background

2 The AcCoRD Simulator

8 Recent Feature Development

Absorbing Surfaces Mesoscopic Flow

4 On-Going Work

Behavioural Dynamics Information Transfer

5 Conclusions

Background

Participation Content of Conte

3 Recent Feature Development Absorbing Surfaces Mesoscopic Flow

On-Going Work

Behavioural Dynamics Information Transfer

6 Conclusions

· Receivers commonly modelled as absorbing surfaces

Wang, Noel, Yang, submitted to IEEE Trans. NanoBiosci., Aug. 2018

- Microscopic simulation displacements are straight lines
- "Simplistic Monte Carlo" (SMC; Arifler and Arifler, 2017)
- Final point within absorbing object is obvious

Wang, Noel, Yang, submitted to IEEE Trans. NanoBiosci., Aug. 2018

Wang, Noel, Yang, submitted to IEEE Trans. NanoBiosci., Aug. 2018

- Need small time steps Δt to model path
- Absorption takes LONG time to simulate accurately

Wang, Noel, Yang, submitted to IEEE Trans. NanoBiosci., Aug. 2018

"Refined Monte Carlo" (RMC; Arifler and Arifler, 2017)

 Assume sphere is flat infinite plane and check absorption probability

$$\Pr_{\rm RMC} = \exp\left(-\frac{l_{\rm i}l_{\rm f}}{D\Delta t}\right)$$

Wang, Noel, Yang, submitted to IEEE Trans. NanoBiosci., Aug. 2018

"A priori Monte Carlo" (APMC)

Check for absorption **BEFORE** diffusing

$$\Pr_{\text{APMC}} = rac{r_{ ext{r}}}{r_0} \operatorname{erfc} \left(rac{r_0 - r_{ ext{r}}}{\sqrt{4D\Delta t}}
ight)$$

More accurate for large time steps and when far from receiver

Wang, Noel, Yang, submitted to IEEE Trans. NanoBiosci., Aug. 2018

Performance

Wang, Noel, Yang, submitted to IEEE Trans. NanoBiosci., Aug. 2018

Performance with Different Δt

Performance with Multiple Receivers (Limited Analytical Results)

• Distance $r_0 = 100 \,\mu \text{m}, \, \Delta t = 0.2 \,\text{s}$

Wang, Noel, Yang, submitted to IEEE Trans. NanoBiosci., Aug. 2018

Background

Participation Content of Conte

Becent Feature Development

Absorbing Surfaces Mesoscopic Flow

On-Going Work

Behavioural Dynamics Information Transfer

6 Conclusions

- Track number of molecules of each type in each subvolume
- Reaction and diffusion events change molecule counts

- Track number of molecules of each type in each subvolume
- Reaction and diffusion events change molecule counts

0	0	0	0	0	0
0	1	0	0	1	0
0	0	1	0	0	0
0	0	0	0	0	0

- Track number of molecules of each type in each subvolume
- Reaction and diffusion events change molecule counts

0	0	0	0	0	0
0	1 -	► 0	0	1	0
0	0	1	0	0	0
0	0	0	0	0	0

- Track number of molecules of each type in each subvolume
- Reaction and diffusion events change molecule counts

0	0	0	0	0	0
0	0	1	0	1	0
0	0	1	0	0	0
0	0	0	0	0	0

- Track number of molecules of each type in each subvolume
- Reaction and diffusion events change molecule counts
| 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|
| 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |

- Track number of molecules of each type in each subvolume
- Reaction and diffusion events change molecule counts

0	0	0	0	0	0
0	0	1	0	1	0
0	0	1	0	0	0
0	1	0	0	0	0

- Track number of molecules of each type in each subvolume
- Reaction and diffusion events change molecule counts

0	0	0	0	0	0
0	0	1	0	1	0
0	0	1	0	0	0
0	1	0	0	0	0

- Track number of molecules of each type in each subvolume
- Reaction and diffusion events change molecule counts

0	0	0	0	0	0
0	0	2	0	1	0
0	0	0	0	0	0
0	1	0	0	0	0

- Track number of molecules of each type in each subvolume
- Reaction and diffusion events change molecule counts

0	0	0	0	0	0
0	0	2	0	1	0
0	0	0	0	0	0
0	1	0	0	0	0

- Track number of molecules of each type in each subvolume
- Reaction and diffusion events change molecule counts

0	0	0	0	0	0
0	0	2	0	0	0
0	0	0	0	0	0
0	1	0	0	0	0

- Track number of molecules of each type in each subvolume
- Reaction and diffusion events change molecule counts

Mesoscopic simulations need rates to predict when events occur

- Every event has a propensity α
 - α depends on the rate *k*, i.e., $\alpha = f(k)$
- For transitions between subvolumes, propensity is $\alpha = kU$
 - U number of molecules of same type within subvolume

Gillespie, Phys. Chem., Dec. 1977; Bernstein, Physical Review E, Apr. 2005

Mesoscopic simulations need rates to predict when events occur

- Every event has a propensity α
 - α depends on the rate *k*, i.e., $\alpha = f(k)$
- For transitions between subvolumes, propensity is $\alpha = kU$
 - U number of molecules of same type within subvolume

Next event time is then

$$t_{\text{next}} = -\frac{\log u}{\alpha}$$

where u is a uniform RV $u \in (0, 1]$

Different ways to deal with large number of potential events

Gillespie, Phys. Chem., Dec. 1977; Bernstein, Physical Review E, Apr. 2005

- v flow speed perpendicular to subvolume face (assume positive)
- *D* diffusion coefficient
- k_w transition rate in direction of flow
- k_a transition rate against direction of flow

Diffusion Only (v = 0)

$$k_{\rm a} = k_{\rm w} = \frac{D}{h^2}$$

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018

- v flow speed perpendicular to subvolume face (assume positive)
- *D* diffusion coefficient
- k_w transition rate in direction of flow
- k_a transition rate against direction of flow

Diffusion Only (v = 0)

$$k_{a} = k_{w} = \frac{D}{h^{2}}$$
 $k_{w} = \frac{D}{h^{2}} + \frac{v}{h}$
 $k_{a} = \frac{D}{h^{2}}$

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018

- *v* flow speed perpendicular to subvolume face (assume positive)
- D diffusion coefficient
- k_w transition rate in direction of flow
- k_a transition rate against direction of flow

$$\begin{array}{ll} \text{"Naive" Flow Model} & \text{Proposed Flow Model} \\ \text{Diffusion Only } (v=0) \\ k_{a}=k_{w}=\frac{D}{h^{2}} \\ k_{a}=\frac{D}{h^{2}} \\ k_{a}=\frac{D}{h^{2}} \\ \end{array} \qquad \begin{array}{ll} k_{w}=\frac{D}{h^{2}}+\frac{v}{h} \\ k_{a}=\frac{D}{h^{2}}-\frac{v}{2h} \\ k_{a}=\frac{D}{h^{2}}-\frac{v}{2h} \end{array}$$

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018

Implementation

· Need to make sure transition rates aren't negative

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018

Performance

• Subvolume size $h = 1 \,\mu$ m, flow speed v = 0.1 mm/s

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018

Performance

• Subvolume size $h = 1 \,\mu$ m, flow speed v = 0.1 mm/s

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018

Performance

• Subvolume size $h = 1 \,\mu$ m, flow speed v = 0.1 mm/s

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018

Dependence on Subvolume Size

• Flow speed v = 0.4 mm/s, distance $l_{RX} = 2 \,\mu$ m

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018

Dependence on Subvolume Size

• Flow speed v = 0.4 mm/s, distance $l_{RX} = 2 \,\mu$ m

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018

Dependence on Subvolume Size

• Flow speed v = 0.4 mm/s, distance $l_{RX} = 2 \,\mu$ m

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018

Dependence on Subvolume Size

• Flow speed v = 0.4 mm/s, distance $l_{RX} = 2 \,\mu$ m

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018

Time-Varying Statistics

• Flow speed v = 0.1 mm/s, distance $l_{RX} = 10 \,\mu m$

Noel, Makrakis, IEEE Trans. NanoBiosci., Oct. 2018

Background

2 The AcCoRD Simulator

Becent Feature Development Absorbing Surfaces Mesoscopic Flow

On-Going Work

Behavioural Dynamics Information Transfer

5 Conclusions

Question

How to design small systems with both living and synthetic devices where we can predict and control behaviour?

Biology

Communications and Signal Processing

Question

How to design small systems with both living and synthetic devices where we can predict and control behaviour?

Biology

Communications and Signal Processing

On-going topics

Use communications and signal processing tools to model:

- Behavioural dynamics of the system
- Devices' ability to share information (including living "devices")

Behaviour in Microscopic Cellular Populations

Heterogeneous Quorum Sensing

Noel, Fang, Yang, Makrakis, Eckford, https://arxiv.org/abs/1711.04870

Behaviour in Microscopic Cellular Populations

Heterogeneous Quorum Sensing

Tumour Growth and Development

Cell Type C

Noel, Fang, Yang, Makrakis, Eckford, https://arxiv.org/abs/1711.04870

Behaviour in Microscopic Cellular Populations

Heterogeneous Quorum Sensing Tumour Growth and Development Cell Type A Tissue Cells Cell Type B Tumor Cells Cell Type C

The Idea

Noisy signalling contributes uncertainty for us to mitigate or enhance

Noel, Fang, Yang, Makrakis, Eckford, https://arxiv.org/abs/1711.04870

Information Theory in Biochemical Processes

How much information is there?

- Optogenetics lets us externally stimulate neurons
- What are the limits to generate any kind of spike train?
- We are constrained by a neuron's membrane potential dynamics

Noel, Makrakis, Eckford, IEEE Trans. Biomed. Eng., Dec. 2018

Information Transfer in Chemical Reactions

$$\bigcirc_{A} \bigoplus_{E} \stackrel{\underline{k_{i}}}{\underbrace{\leftarrow}}_{\underline{k_{i}}} \bigoplus_{EA} \stackrel{\underline{k_{2}}}{\longrightarrow} \bigotimes_{A_{p}} \bigoplus_{E}$$

- Biochemical reactions occur with significant randomness
 - Gillespie method initially intended for chemical reactions
- How much information can be transmitted in a reaction?
- How well can we **statistically characterize the evolution** of a chemical reaction?

Background

2 The AcCoRD Simulator

Recent Feature Development Absorbing Surfaces Mesoscopic Flow

On-Going Work

Behavioural Dynamics Information Transfer

6 Conclusions

Communications engineering can be applied to reaction-diffusion modelling

Communications engineering can be applied to reaction-diffusion modelling

We want to predict and control behaviour in small natural environments

Communications engineering can be applied to reaction-diffusion modelling

We want to predict and control behaviour in small natural environments

Going Forward

Many open questions in behavioural dynamics and information transfer

- Primary collaborators on simulation work:
 - D. Makrakis (University of Ottawa)
 - J. Yang, Y. Wang (Australian National University)
- Funding
 - Natural Sciences and Engineering Research Council of Canada (NSERC)

Homepage: www.warwick.ac.uk/adamnoel

AcCoRD Simulator:

www.warwick.ac.uk/adamnoel/software/accord/

 $\overline{N}_{RX}(t)$ – number of molecules expected at RX as a function of time

3D Point Receiver Observation (Point TX) – "Classical" Result

$$\overline{N}_{\mathsf{RX}}\left(t
ight) = rac{NV_{\mathsf{RX}}}{(4\pi Dt)^{3/2}} \exp\left(-rac{d^2}{4Dt}
ight)$$

3D Spherical Receiver Observation (Point TX)

$$\overline{N}_{\mathsf{RX}}(t) = \frac{N}{2} \left[\operatorname{erf}\left(\frac{r_{\mathsf{RX}} - d}{2\sqrt{Dt}}\right) + \operatorname{erf}\left(\frac{r_{\mathsf{RX}} + d}{2\sqrt{Dt}}\right) \right] \\ + \frac{N}{d}\sqrt{\frac{Dt}{\pi}} \left[\exp\left(-\frac{(d + r_{\mathsf{RX}})^2}{4Dt}\right) - \exp\left(-\frac{(d - r_{\mathsf{RX}})^2}{4Dt}\right) \right]$$

Noel, Cheung, Schober, Proc. IEEE ICC MoNaCom, Jun. 2013

1D Receiver Observation (Point TX)

$$\overline{N}_{\mathsf{RX}}(t) = \frac{N}{2} \left(\operatorname{erf}\left(\frac{r_{\mathsf{RX}} + d}{2\sqrt{Dt}}\right) - \operatorname{erf}\left(\frac{d - r_{\mathsf{RX}}}{2\sqrt{Dt}}\right) \right)$$

1D Receiver Observation (Volume TX)

$$\begin{split} \overline{N}_{\mathsf{RX}}\left(t\right) &= \frac{N}{2r_{\mathsf{TX}}} \left\{ \sqrt{\frac{Dt}{\pi}} \left[\exp\left(-\frac{(x_{\mathsf{f}} + r_{\mathsf{RX}})^2}{4Dt}\right) - \exp\left(-\frac{(x_{\mathsf{f}} - r_{\mathsf{RX}})^2}{4Dt}\right) - \exp\left(-\frac{(x_{\mathsf{i}} + r_{\mathsf{RX}})^2}{4Dt}\right) \right. \\ &+ \exp\left(-\frac{(x_{\mathsf{i}} - r_{\mathsf{RX}})^2}{4Dt}\right) \right] + \frac{1}{2} \left[(x_{\mathsf{f}} + r_{\mathsf{RX}}) \operatorname{erf}\left(\frac{x_{\mathsf{f}} + r_{\mathsf{RX}}}{2\sqrt{Dt}}\right) \\ &- (x_{\mathsf{i}} + r_{\mathsf{RX}}) \operatorname{erf}\left(\frac{x_{\mathsf{i}} + r_{\mathsf{RX}}}{2\sqrt{Dt}}\right) - (x_{\mathsf{f}} - r_{\mathsf{RX}}) \operatorname{erf}\left(\frac{x_{\mathsf{f}} - r_{\mathsf{RX}}}{2\sqrt{Dt}}\right) + (x_{\mathsf{i}} - r_{\mathsf{RX}}) \operatorname{erf}\left(\frac{x_{\mathsf{i}} - r_{\mathsf{RX}}}{2\sqrt{Dt}}\right) \right] \right\} \end{split}$$

Noel, Makrakis, Hafid, Proc. CSIT BSC, Jun. 2016