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Motivation

@ To simulate metal systems with thousands of atoms

@ Rough metal nanoparticles can have thousands of distinct binding sites
@ Cubic scaling DFT is too expensive on systems with £ 1000 atoms
@ ONETEP is linear scaling for insulators, cubic scaling for metals

@ Can we make it scale linearly for metals?
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Nanoparticles in Catalysis Southampton

School of Chemistry
Oxygen Reduction :
Beaction: Real nanoparticles are not strongly @ OxfordMaterials
0,+2H,~> 2H,0 faceted
ADF STEM: 2.5D atomic coordinates .
: < e
.4 -~
“H(, Z coordinates approximated by

Catalysis occurs on rfgg:callic nanoparticles ISR R R e LR
that are supported e.g. on an oxide yf

(Investigate NP using\
Molecular Dynamics

simulations and These datasets are then
\annealing approach y passed to us for analysis
in ONETEP

Predicting the Oxygen-Binding Properties of Platinum

Conventional Iy, different facets are modelled Na.\nopartlcle Ensemb!es by Co!nblnlng High-Precision Electron
Microscopy and Density Functional Theory

individual Iy using a slab model J.Aarons et al Nano Letters 2017 17 (7), 4003-4012



ON ETEP N general @ Based on density matrix DFT

H [{¢a(r)}, £°°] = Hy [{¢a(r)}] + Hyr [{¢a(0)}] + He, [{ga(r)}, K]
+ Hy [{¢a(r)}, K*°] + Hxc [{¢a(r)}, K]

where every term in the Kohn-Sham equation
Is written as a functional of the Non-
orthogonal Generalised Wannier Functions
(NGWFs) and/or the “density kernel”

The NGWFs are atom centric and local -
leading to sparse overlap and Hamiltonian
matrices

The density kernel is made sparse through a
spatial truncation

Two loop approach > NGWFs optimised in
outer loop, kernel in inner loop




Insulators in ONETEP: Overall picture

@ ONETEP’s basis is non-orthogonal 2>
Hamiltonian matrix and density matrix tensorial
transformation properties become important

@ Overlap matrix is the metric tensor = calculated
by taking the overlap integrals of NGWFs with
each other

@ Integrals required to generate Hamiltonian
matrix can be performed in linear scaling time
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NGWFs

@ ONETEP’'s NGWEFs are effectively electronic .
support functions analogous to electron
bands in plane-wave codes

@ Local in space and atom centric

@ Optimised in situ and represented in terms of a basis of
cardinal sine (p-sinc) functions

@ This basis set is equivalent to a plane-wave basis through a
rotation

@ Like a plane-wave basis it is systematically improvable through a
single parameter (kinetic energy cut-off)

@ Unlike a plane-wave basis, it is inherently localised



Density Kernel

"
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The density kernel (K%®) is a contravariant representation of the density
matrix in terms of the NGWFs

Eigenvalues of molecular orbital occupancy
ldempotent for insulators = Heaviside step function occupancy distribution

Can be produced by a “purification” transformation from an initial guess

K — 3KSK — 2KSKSK

Or variationally through the LNV scheme, where a modified energy functional
Is minimised, which drives the density kernel towards idempotency

Erny = tr[(3LSL — 2LSLSL)H]

The kernel can be made sparse...



Nearsightedness of Electronic Matter

@ Kohn-Sham DFT can be performed with linear scaling cost due to the principle
of “Nearsightnedness of Electronic Matter” introduced by Kohn

@ For insulators, elements of the density matrix decay exponentially with distance

/
pr,r)~e Tl 50 as |r—r'| >
@ We only calculate elements separated by < r

(r,r')=0 when |r—r|>r.y | HETEEEE
@ Goedecker : metals at finite temperature also exhibit exponential d " Riile Biit: 2o

W. Kohn, Phys. Rev. Lett. 76, 3168 (1996)



EDFT in ONETEP

10_ Number of non-zero matrix elements (x10~7)
@ Variational metals method £ [ {Hap)
implemented in ONETEP E O\
gt 2 1 {Sas}
é 6 0~"500 1000 1500 2000
@ Outer loop the same % Numberofi A, atons
% [ oo Diagonalization
: . =) 4| == Hamiltonian DD
@ Different inner loop: no longer > | - Hamiltonian DI
. - ~—= NGWF gradient
doing LNV, K not idempotent B g e
@ Start from Ba guess H & dlggonallse O I [T BT =
H — Number of Au atoms
apl—— e
N

@ Eigs = new density kernel e - Z Mo‘if(sz-)M; D
1

@ Then bw,!gl new H@@d line ﬁe@{yh H(n+1) H(n) )\A(n)



Some preliminaries...

@ We need to have partially occupied conduction states > minimising
Helmholtzfree energy 417 (-1 14,1 = Zfi (| T |abs) + /UeXt(r)n(r)dr

By nl+ E..[n]—TSH/f:}]
@ Entropy and Smearing!

@ Let’s assume that we're dealing with contra-covariant quantities Kaﬁ aﬁ

@ Either multiply from the right by the metric / inverse metric or solve a linear
equation — was shown to be representable with same sparsity patterns

@ Eliminates the need for orthogonalization



FOE instead of Dia%onalisation

@ Write f(g, L4, 5) — = in terms of matrices, not eigs

K= (I + e<H—“I>5) =

@ And get:

@ Extremely ill-conditioned if we were to do this directly with a matrix
exponential technique and an inversion.

@ Instead, expand the Fermi-Dirac function]\?s a polynomial expansion, typically

Chebyshevs:
y ) A Ti(X)

- To(X) = I
el : e
{a@} = 1 4+ ecos(x) Tp1(X) = 2XT,(X) — Tp_1(X)



It gets easier with temperature...f(¢) =

@ Increased smearing = fewer terms in R ,
expansion = faster FOE
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@ But we probably don’t want extremely hot
electrons

Occupancy

@ Is there a way to run the FOE at a hot
temperature and recover the cold target !
reSUIt? °% 1 5 | 0 S ‘ 10

Hamiltonian Eigenvalue

fe, m,p) = = 5 (1 +tanh({e — p}53/2))

e = ele—p)B = 5
@ Hyperbolic double angle formula: Ztanh(H’)
tanh®(H’) + I

L OH ) —



cAvRtTaY

B B i o <y - e
ﬁoﬂm‘,—#na © r———

%_.nmw,-'—‘ 7

0

200

400

600

Eigenvalue index

800

1000

1200




0.8

o
(@)
|

Occupancy

©
N
I

0 200 400 600 800 1000 1200

Eigenvalue index




cAvRtTaY

1
0.8F |
i
> 0.6 |
c
T
o
=
O
@)
O 0.4+ |
0.2F ]
0 | | | | |
0 200 400 600 800 1000 1200

Eigenvalue index




cAvRtTaY

1
0.8+ |
i s
>0.6F l
-
q]
o
3
Q
Q
Q0.4+ |
0.2+ ]
0 | | | |
0 200 400 600 800 1000 1200

Eigenvalue index




Entropy

@ Matrix equivalent involves two logarithms
of matrices:

S=trKInfiE Tl K)]

@ Too expensive: expand again, this time its
better conditioned = eigs all between 0
and 1. Any accuracy we like with few

terms.

@ Cannot use s; = leﬂ(fz) - []. — f@]ll’l(l - fz)

= ey
2
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Density Kernel Sparsity

@ Need kernel sparsity for linear-scaling, finite temperature metals
@ Can we use the series expansion to inform our choice?

G Truncate the expansion early and use this sparsity pattern throughout
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Density Kernel Sparsity

@ Pattern derived from truncated polynomial expansion = a power of H
@ Accuracy increases with power

G We used H? in our testing. H® may be necessary for productlon calculatlons
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Finding the Chemical Potential
Method for FOE = implemented in ONETEP + Entropy

9
"
S
9

"

Need also to calculate electron number conserving chemical potential

. . I
Starting from a guess we can root-find : AN, = N, — trace (I = e(H_MI)5>

In a numerical root finder, we would have to calculate the FOE many times at

different chemical potentials = expensive!

We can use more matrix hyperbolic trigonometry to correct a density kernel

for the chemical potential:

— (((H —ul)B) | BAuI
2 e o

)

P & tanh(258)]

2

-

= tanh( %)Pﬂ,uﬁ



Finding the Chemical Potential 2

@ This equation contains a matrix inversion.

@ Instead, we again expand this expression as a Chebyshev series using the scalar
equivalent: ey T+ ¢  on the domain [-1:1]

el
@ To speed up the root finding further, we can also use derivatives %° _ _ 5 (=22
ON, 5; ( : 2)) op 4
=l iTace
oLt 4 P

@ This gives the change in chemical potential necessary each step

@ With this we can use a safeguarded Newton-Raphson method rather than a
straight bisection method



Validation

@ Does it work?

Ptxs Pt147

11-4914.74211 |-13137.32070
71-4914.74475|-13137.33179
1078 ]-4914.74445 | -13137.33169

@ We tried running on cuboctahedral platinum

@ Compared the convergence with chemical potential stopping criteria with
EDFT with diagonalisation in ONETEP:

@ With diagonalisation, we get -4914.74442 E,, for a Pt;; nanoparticle. With a
147-atom Pt nanoparticle we calculated an energy of -13137.33174 E, with a
diagonalization based technique. —

@ These tests were run without sparsity in the density kernel




Scaling

@ To test scaling, we used the H? sparsity pattern for K

@ We used truncated octahedral palladium nanoparticles of “2000 to ~13000
atoms

@ We could not test diagonalisation up to the larger sizes, so opted to run a
single EDFT inner loop and multiply by the predicted number of steps to get
the estimated timings

@ We ran all tests 4 times and with 4 EDFT inner loop iterations to average the
time per iteration



Scalin :
€= - e ya—
d(x)=8.563%107x* + 1.124%10"x’ o= - /
AQUA-FOE sl /
£(x)=2.530 + 0.002x === o
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Conclusion

@ Linear scaling metals calculations are possible now with ONETEP

@ More work needs doing on the sparsity patterns

@ Chris Skylaris (Southampton) is now planning to use these methods in anger
to run production calculations

@ There are many performance gains to be made



