Connections Between Rare-event Simulation and Bayesian inference

F.A. DiazDelaO

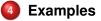
Institute for Risk and Uncertainty

About myself

- BSc in Applied Mathematics (ITAM)
- MSc in Statistics and Operational Research (Essex)
- PhD (Sheffield, 2007/Swansea)
- Postdoc (Swansea)
- Senior Lecturer. Institute for Risk and Uncertainty, School of Engineering (Liverpool, from 2018)
 - Collaborations with GE, Parker-Hannifin, Airbus, etc.
 - 3 PhD students, 1 Postdoc
 - EPSRC Fellow 2018-2021
 - Currently visiting fellow at the Alan Turing Institute.

Outline

3 BUS



Motivation

- Three important and challenging problems in modern science:
 - Identifying model parameters
 - Pating competitive models based on measured data
 - Estimating the probability of failure of a system
- By solving them we can perform structural system identification, develop high fidelity models, design robust structures, amongst many other things.

• Two questions:

- Can a link be established between the Bayesian updating problem and the engineering reliability problem?
- If so, can we develop a robust and efficient algorithm?

The Bayesian Updating Problem

- Let D be an experimental dataset and θ be the parameters of model M.
- Let $\mathcal{P}(\theta|\mathcal{M})$ be the prior distribution of θ .
- Aim: to find the posterior distribution of θ given \mathcal{D} and \mathcal{M} .

$$\mathcal{P}(oldsymbol{ heta}|\mathcal{D},\mathcal{M}) = rac{\mathcal{P}(\mathcal{D}|oldsymbol{ heta},\mathcal{M})\mathcal{P}(oldsymbol{ heta}|\mathcal{M})}{\mathcal{P}(\mathcal{D}|\mathcal{M})}$$

with $\mathcal{P}(\mathcal{D}|\mathcal{M}) = \int \mathcal{P}(\mathcal{D}|\theta, \mathcal{M}) \mathcal{P}(\theta|\mathcal{M}) d\theta$.

\$\mathcal{P}(\mathcal{D}|\mathcal{M})\$ is immaterial in this inference problem, but it is the main quantity of interest in model class selection as it provides the evidence.

The Engineering Reliability Problem

- Let $\mathcal{G} : \mathbb{R}^d \to \mathbb{R}$ be a system performance function.
- Aim: To estimate the **probability of failure**, i.e. the probability of demand exceeding the capacity of the system.
- Let y* be a critical value such that the system fails if y = G(x₁,...,x_d) > y*.
- The **failure domain** *F* can thus be defined as:

$$\mathsf{F} = \{ \mathsf{x} : \mathcal{G}(\mathsf{x}) > \mathsf{y}^* \}$$

• The engineering reliability problem can be formulated as computing the probability of failure:

$$p_F = \mathcal{P}(x \in F) = \int_F \pi(x) dx$$

- Developed by Au and Beck (2001) to simulate rare events and estimate small probabilities of failure.
- The idea is to decompose a rare event F into a sequence of progressively less rare events as:

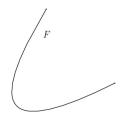
$$F = F_m \subset F_{m-1} \subset \ldots \subset F_1$$

where F_1 is a relatively frequent event.

 Given the above sequence of events, the small probability P(F) of the rare event can be represented as a product of larger probabilities as:

$$\mathcal{P}(F) = \mathcal{P}(F_m) = \mathcal{P}(F_1) \cdot \mathcal{P}(F_2|F_1) \cdot \ldots \cdot \mathcal{P}(F_m|F_{m-1})$$

Subset simulation explores the input space X by generating a relatively small number of i.i.d. samples x₀⁽¹⁾,..., x₀⁽ⁿ⁾ ~ π(x) and computing the corresponding system responses y₀⁽¹⁾,..., y₀⁽ⁿ⁾.



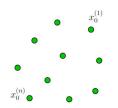
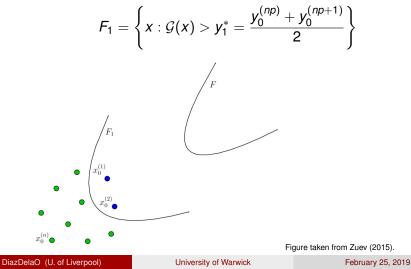


Figure taken from Zuev (2015).

DiazDelaO (U. of Liverpool)

University of Warwick

Let p ∈ (0, 1) such that np ∈ N. Define the first intermediate failure domain as:



9/43

- By construction, $x_0^{(1)}, \ldots, x_0^{(np)} \in F_1$, whilst $x_0^{(np+1)}, \ldots, x_0^{(n)} \notin F_1$.
- Thus, the Monte Carlo estimate for the probability of F₁ is given by

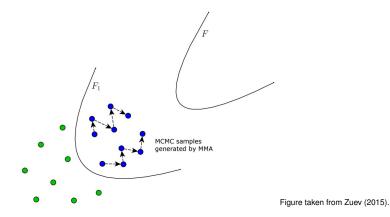
$$\mathcal{P}(F_1) \approx \frac{1}{n} \sum_{i=1}^n \mathcal{I}_{F_1}(x_0^{(i)}) = \rho$$

- *F*₁ provides a rough estimate to the failure domain *F*.
- Since $F \subset F_1$, the failure probability can be written as:

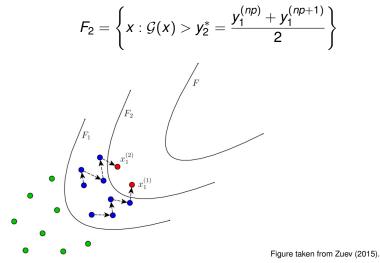
$$p_F = \mathcal{P}(F_1)\mathcal{P}(F|F_1)$$

 In the next stage, instead of sampling in the whole input space, SuS populates F₁.

- We start with $x_0^{(1)}, \ldots, x_0^{(np)} \sim \pi(x|F_1)$ and need to draw n np samples from $\pi(x|F_1)$.
- This is done with an MCMC scheme.



• Define the second intermediate failure domain as:



- By construction, $x_1^{(1)}, \ldots, x_1^{(np)} \in F_2$, whilst $x_1^{(np+1)}, \ldots, x_1^{(n)} \notin F_2$.
- Thus, the Monte Carlo estimate for the probability of F₂ given F₁ is equal to

$$\mathcal{P}(F_2|F_1) pprox rac{1}{n} \sum_{i=1}^n \mathcal{I}_{F_2}(x_0^{(i)}) = p$$

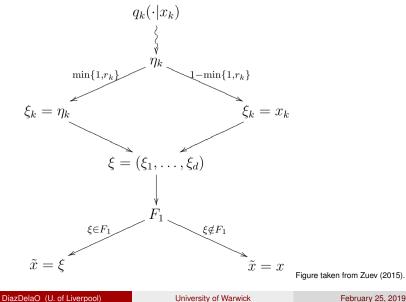
• Since $F \subset F_2 \subset F_1$, the failure probability can be written as:

$$p_F = \mathcal{P}(F_1)\mathcal{P}(F|F_1)$$

= $\mathcal{P}(F_1)\mathcal{P}(F_2|F_1)\mathcal{P}(F|F_2)$

• In the next stage, instead of sampling in the whole input space, SuS populates *F*₂.

Modified Metropolis Algorithm



Stopping Criterion

• The number of failure samples at the $\ell\text{-th}$ level is given by ${n \choose l}$

$$n_F(\ell) = \sum \mathcal{I}_F(x_\ell^{(I)})$$
. Observe the following:

- It is likely that $n_F(\ell) = 0$ for the first levels.
- In general, $n_F(\ell) \ge n_F(\ell-1)$. • $p_F = \mathcal{P}(F_1) \cdot \mathcal{P}(F_2|F_1) \cdot \ldots \cdot \mathcal{P}(F_\ell|F_{\ell-1}) \cdot \mathcal{P}(F|F_\ell)$ • $p_F \approx p^\ell \mathcal{P}(F|F_\ell)$
- The last term is estimated as $\mathcal{P}(F|F_{\ell}) \approx \frac{1}{n} \sum_{i=1}^{n} \mathcal{I}_{F}(x_{\ell}^{(i)}) = \frac{n_{F}(\ell)}{n}$.
- If n p(ℓ)/n ≥ p, then there are at least np failure samples. The current conditional level becomes the last level and the failure probability estimate becomes

$$p_F pprox p_F^{SuS} = p^\ell rac{n_F(\ell)}{n}$$

• Otherwise, define the next intermediate failure domain $F_{\ell+1}$.

BUS

Bayesian Updating with Structural reliability methods

• BUS (Straub and Papaioannou, 2014) connects the Bayesian updating and structural reliability problems.

Algorithm 1 Rejection Sampling

Input: Prior distribution $\pi(\theta)$ Likelihood $\mathcal{L}(\theta) = \mathcal{P}(\mathcal{D}|\theta)$ $u \sim \mathcal{U}[0, 1]$ $c \in \mathbb{R}$ such that $c\mathcal{L}(\theta) < 1$

Output: Posterior distribution $\pi(\theta|\mathcal{D})$

- 1: Draw θ from $\pi(\theta)$, and *u* from $\mathcal{U}[0, 1]$
- 2: if $u < c\mathcal{L}(\theta)$ then
- 3: Accept θ
- 4: **else**
- 5: Go to Step 1
- 6: end if

Proof

•
$$\theta \sim \pi(\theta), u \sim \mathcal{U}[0, 1] = \mathcal{I}(0 \leq u \leq 1)$$

- The joint pdf of θ and u is $\pi(\theta)\mathcal{I}(0 \le u \le 1)$
- The algorithm only accepts if $u < c\mathcal{L}(\theta)$, and produces

$$p(u,\theta) = \frac{\pi(\theta)\mathcal{I}(0 \le u \le 1)\mathcal{I}(u < c\mathcal{L}(\theta))}{\int \int \pi(\theta)\mathcal{I}(0 \le u \le 1)\mathcal{I}(u < c\mathcal{L}(\theta))dud\theta}$$
$$= \mathcal{P}_{F}^{-1}\pi(\theta)\mathcal{I}(0 \le u \le 1)\mathcal{I}(u < c\mathcal{L}(\theta))$$

• Thus, the marginal of θ is

$$p(\theta) = \int_0^1 p(u, \theta) du$$

= $\mathcal{P}_F^{-1} \pi(\theta) \int_0^1 \mathcal{I}(0 \le u \le 1) \mathcal{I}(u < c\mathcal{L}(\theta)) du$
= $\mathcal{P}_F^{-1} \pi(\theta) c\mathcal{L}(\theta) \propto \pi(\theta|\mathcal{D})$

DiazDelaO (U. of Liverpool)

- The acceptance rate is generally low \Rightarrow use subset simulation!
- The 'failure event' is

$$F = \{u < c\mathcal{L}(\theta)\}$$
$$= \{c\mathcal{L}(\theta) - u > 0\}$$
$$= \{Y > 0\}$$

• Problem 1: It is not trivial to find an optimal *c*.

• Problem 2: *c* must be chosen from the beginning.

BUS

Modified BUS

Instead of

$$\mathsf{F} = \{ u < c\mathcal{L}(\theta) \}$$

we could redefine

$$F = \left\{ \frac{\mathcal{L}(\theta)}{u} > \frac{1}{c} \right\}$$
$$= \left\{ Y > \frac{1}{c} \right\}$$

• However, $Y = \frac{\mathcal{L}(\theta)}{u}$ is not a good choice since $\mathbb{E}[Y] = \mathbb{E}[\mathcal{L}(\theta)]\mathbb{E}[u^{-1}]$ with $\mathbb{E}[u^{-1}] = \int_0^1 u^{-1} du = \ln u|_0^1$.

Modified BUS

Proposal (DiazDelaO et al., 2017): Define

$$F = \left\{ \ln \left[\frac{\mathcal{L}(\theta)}{u} \right] > -\ln c \right\}$$
$$= \{Y > b\}$$

Theorem

Let $\theta \in \mathbb{R}^n$ and $u \in \mathbb{R}$ be independent random variables such that $\theta \sim \pi(\theta)$ and $u \sim U[0, 1]$. Let $\mathcal{L}(\theta)$ be a likelihood function and \mathcal{D} a data set. Let $Y \equiv \ln \left[\frac{\mathcal{L}(\theta)}{u}\right]$. Thus, for all $b > b_{min} \in \mathbb{R}$: **1** $p(\theta|Y > b) = \pi(\theta|\mathcal{D})$

$$P(\mathcal{D}) \equiv \mathcal{P}_{\mathcal{D}} = e^{b} \mathcal{P}(Y > b)$$

Proof

• $p(\theta|Y > b) = \pi(\theta|\mathcal{D})$

The proof is analogous to the previous rejection proof since

$$\mathcal{I}(Y > b) = \mathcal{I}(u < c\mathcal{L}(\theta))$$

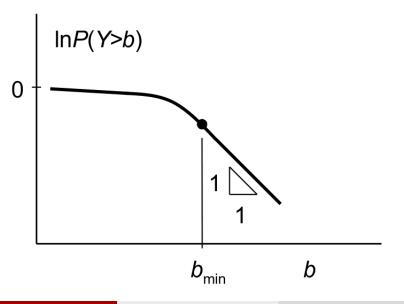
2
$$\mathcal{P}(\mathcal{D}) \equiv \mathcal{P}_D = e^b \mathcal{P}(Y > b)$$

To prove this, note that

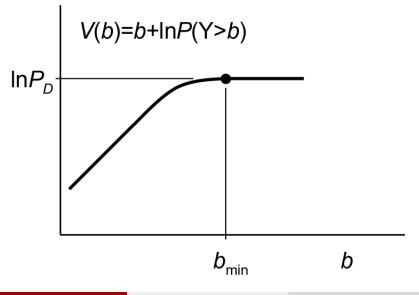
$$\begin{aligned} \mathcal{P}(Y > b) &= \int \int \pi(\theta) \mathcal{I}(0 \le u \le 1) \mathcal{I}(\ln\left[\frac{\mathcal{L}(\theta)}{u}\right] > b) du d\theta \\ &= \int \pi(\theta) \int_0^1 \mathcal{I}(u < e^{-b} \mathcal{L}(\theta)) du d\theta \\ &= e^{-b} \int \pi(\theta) \mathcal{L}(\theta) d\theta = e^{-b} \mathcal{P}_D \end{aligned}$$

DiazDelaO (U. of Liverpool)

Characteristic Trends



Characteristic Trends



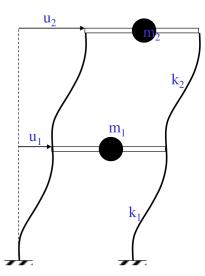
BUS

DiazDelaO (U. of Liverpool)

University of Warwick

February 25, 2019 23/43

Example



- Consider the following two DOF shear building model.
- The stiffnesses are given by $\theta_1 \bar{k}_1$ and $\theta_2 \bar{k}_2$ for $\bar{k}_i = 29.7 \times 10^6$ N/m.
- The joint prior distribution for θ₁ y θ₂ is assumed to be the product of two lognormals with modes 1.3 and 0.8 and unit standard deviation.
- Our goal is to identify θ₁ and θ₂ given modal data.

Example

• The likelihood is given by

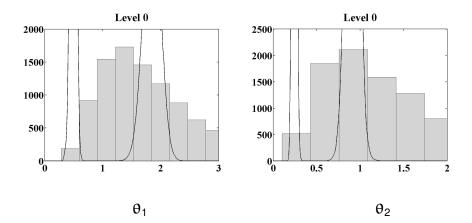
$$\mathcal{L}(\mathbf{ heta}) \propto \exp\left\{-rac{J(\mathbf{ heta})}{2\sigma_{\epsilon}^2}
ight\}$$

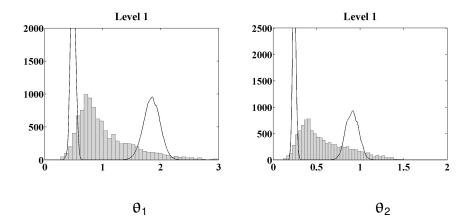
where

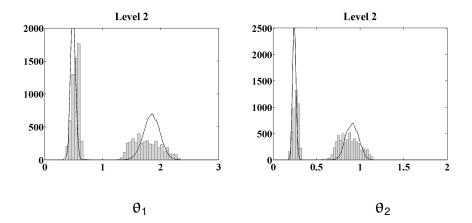
$$J(\boldsymbol{\theta}) = \sum_{j=1}^{2} \lambda_{j}^{2} \Big[\frac{f_{j}^{2}}{\tilde{f}_{j}^{2}} - 1 \Big]^{2}$$

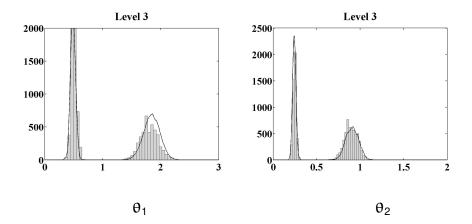
•
$$\mathcal{D} = \left\{ \tilde{f}_1, \tilde{f}_2 \right\} = \{3.13, 9.83\}$$
Hz

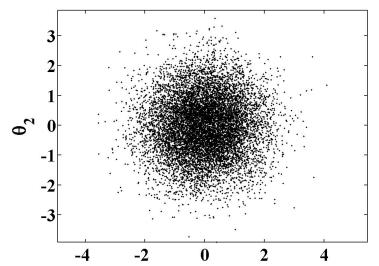
• *f*₁ y *f*₂ are natural frequencies obtained through finite element modelling.



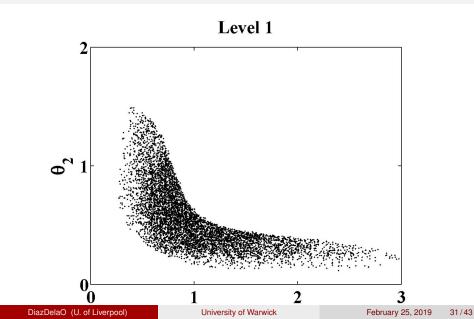


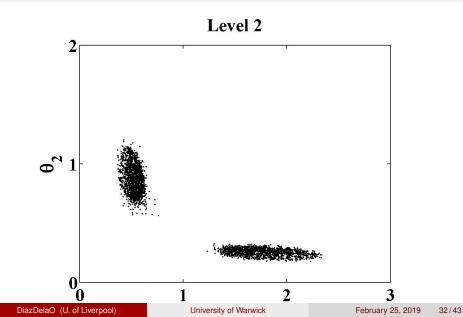


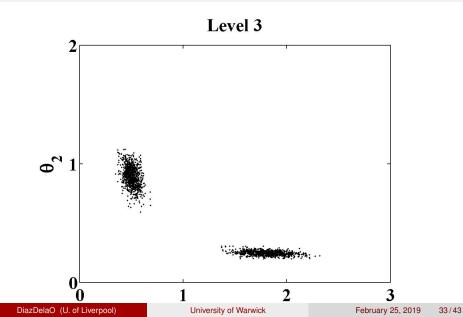




DiazDelaO (U. of Liverpool)

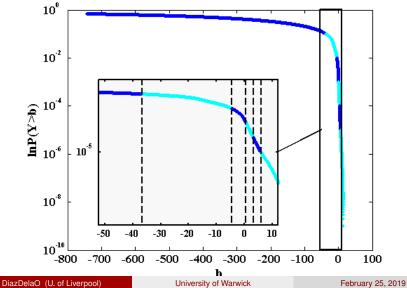






Examples

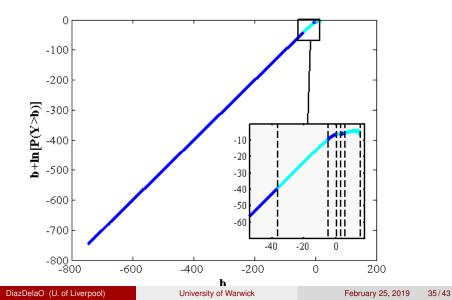
MBUS



34/43

Examples

MBUS



Automatic Stopping Criterion

We know that

$$P_{F_k} = e^{-b_k} P_D$$

Let B_k = {θ : L(θ) > e^{b_k}} be an inadmissible set. We can prove that

$$P_{F_k} = P_{\theta}\{B_k\} + e^{-b_k} P_D P_{\theta|D}\{B_k^c\}$$

Moreover, we can prove that

$$\varnothing \subset \ldots \subset B_{k+1} \subset B_k,$$

- By defining $a_k = P_{\theta}\{B_k\}$ we have a monotone decreasing sequence of values such that $a_k \searrow 0$.
- Therefore, we can stop the algorithm for a small enough value of *a_k* which can be determined with an "outer" SuS run.

GPE Hyper-parameters

Build the surrogate with data from training runs

$$\mathcal{D} = \{(\mathbf{y}_1, \mathbf{\vec{x}}_1), \ldots, (\mathbf{y}_n, \mathbf{\vec{x}}_n)\}.$$

Assumed structure on the output

$$\eta(\vec{x}) = \underbrace{h(\vec{x})^{T}\beta}_{\text{Global trend}} + \underbrace{Z(\vec{x}|\sigma^{2},\phi)}_{\text{Local variations}}$$

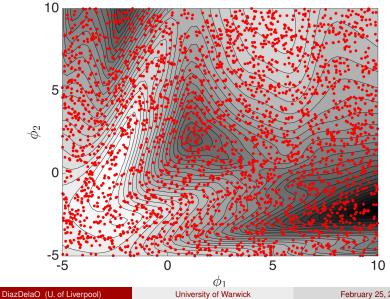
Covariance function (kernel)

$$k(\vec{x}, \vec{x}'|\phi) = \sigma^2 \exp\left\{-\frac{1}{2}\sum_{i=1}^p \frac{(x_i - x_i')^2}{\phi_i}\right\}.$$

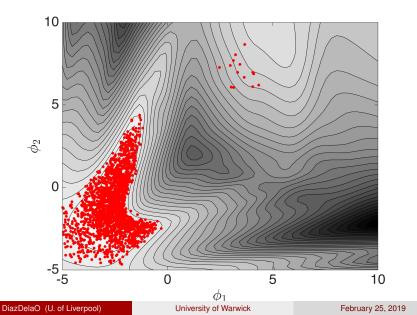
• Hyper-parameters:
$$\theta = \{\beta, \sigma^2, \phi\}$$

Examples

GPE Hyper-parameters

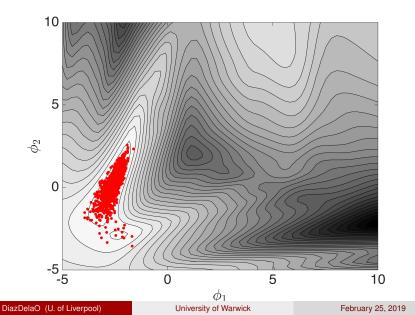


GPE Hyper-parameters



39/43

GPE Hyper-parameters



40/43

Summary

- BUS (Straub and Papaioannou, 2014) bridges the gap between the reliability problem and the Bayesian inference problem.
- As it is formulated, BUS requires the choice of a multiplier that, chosen incorrectly, the performance of the algorithm is affected.
- DiazDelaO et al. (2017) redefine the failure event, expressing the driving variable without the need of the multiplier.
- The implementation no longer requires a predetermined value of the multiplier, thus eliminating the need to rerun the algorithm in case an inadmissible or inefficient value is chosen.
- Different stopping criteria can be implemented.

References

- Au, S.K. and Beck, J. (2001) Estimation of small failure probabilities in high dimensions by subset simulation, *Probabilistic Engineering Mechanics*, 16 (4), 263-277.
- Straub, D. and Papaioannou, I. (2014) Bayesian updating with structural reliability methods, *Journal of Engineering Mechanics*.
- DiazDelaO, F.A., Garbuno-Inigo, A., Au. S.K., Yoshida, I. (2017) Bayesian updating and model class selection with subset simulation, *CMAME*.
- Zuev, K.M. (2015) Subset Simulation Method for Rare Event Estimation: An Introduction, *Encyclopedia of Earthquake Engineering*.

Thank you!