Variational Coarse-graining and Mean First Passage Times in Markov State Models

Alessia Annibale*
work with Edina Rosta**, Adam Kells**

*Mathematics, King’s College London
**Chemistry, King’s College London

Warwick Centre for Predictive Modelling, 11 May 2020
Outline

1 Introduction
 • Motivation
 • Constructing Markov State Models

2 Clustering Methods
 • Perron Cluster Cluster Analysis
 • Effective rates
 • Projection techniques
 • Variational coarse-graining
 • MFPT in variational Coarse-graining
 • Limiting relaxation times

3 Conclusions
1 Introduction
 • Motivation
 • Constructing Markov State Models

2 Clustering Methods
 • Perron Cluster Cluster Analysis
 • Effective rates
 • Projection techniques
 • Variational coarse-graining
 • MFPT in variational Coarse-graining
 • Limiting relaxation times

3 Conclusions
Motivation

- Molecular Dynamics (MD) simulations employed to explore many fundamental processes in physics, chemistry and biology
Molecular Dynamics (MD) simulations employed to explore many fundamental processes in physics, chemistry and biology.
Motivation

- Molecular Dynamics (MD) simulations employed to explore many fundamental processes in physics, chemistry and biology.
Motivation

- Molecular Dynamics (MD) simulations employed to explore many fundamental processes in physics, chemistry and biology

- membrane crossing
Motivation

- Molecular Dynamics (MD) simulations employed to explore many fundamental processes in physics, chemistry, and biology.

- Membrane crossing

- Nucleation

Motivation

- Molecular Dynamics (MD) simulations employed to explore many fundamental processes in physics, chemistry and biology
 - membrane crossing
 - nucleation
 - protein folding

Often governed by rare transitions between metastable states: slow $O(1 \times 10^{-3})$ sec

Time step in MD set by molecular vibrations and collisions: fast $O(10^{-14})$ sec

⇒ too many integrations needed!

Statistical description of dynamics from relatively short simulations?

Markov State Models

Motivation

- Molecular Dynamics (MD) simulations employed to explore many fundamental processes in physics, chemistry and biology
 - membrane crossing
 - nucleation
 - protein folding

Often governed by **rare** transitions between metastable states: slow $O(1-10^3)$ sec
Motivation

- Molecular Dynamics (MD) simulations employed to explore many fundamental processes in physics, chemistry and biology
 - membrane crossing
 - nucleation
 - protein folding

- Often governed by **rare** transitions between metastable states: slow $O(1-10^3)\text{sec}$
- time **step** in MD set by molecular vibrations and collisions: fast $O(10^{-14})\text{sec}$
Motivation

- Molecular Dynamics (MD) simulations employed to explore many fundamental processes in physics, chemistry and biology
 - membrane crossing
 - nucleation
 - protein folding

- Often governed by rare transitions between metastable states: slow $O(1-10^3)$ sec
- time step in MD set by molecular vibrations and collisions: fast $O(10^{-14})$ sec \Rightarrow too many integrations needed!
Motivation

- Molecular Dynamics (MD) simulations employed to explore many fundamental processes in physics, chemistry and biology
 - membrane crossing
 - nucleation
 - protein folding

- Often governed by **rare** transitions between metastable states: slow $O(1-10^3)$ sec
- time **step** in MD set by molecular vibrations and collisions: fast $O(10^{-14})$ sec \implies too many integrations needed!
- **statistical description** of dynamics from relatively short simulations?
Motivation

- Molecular Dynamics (MD) simulations employed to explore many fundamental processes in physics, chemistry and biology
 - membrane crossing
 - nucleation
 - protein folding

- Often governed by **rare** transitions between metastable states: slow $O(1-10^3)$ sec
- time **step** in MD set by molecular vibrations and collisions: fast $O(10^{-14})$ sec \(\Rightarrow\) too many integrations needed!
- **statistical description** of dynamics from relatively short simulations?

Markov State Models

Outline

1 Introduction
 - Motivation
 - Constructing Markov State Models

2 Clustering Methods
 - Perron Cluster Cluster Analysis
 - Effective rates
 - Projection techniques
 - Variational coarse-graining
 - MFPT in variational Coarse-graining
 - Limiting relaxation times

3 Conclusions
Markov State Models (MSMs)

State-space: $S = \{1, \ldots, n\}$

Key assumption: memoryless

$$dp_i dt = \sum_{j \neq i} \left(K_{ij} p_j - K_{ji} p_i \right)$$

$$d p dt = K p \Rightarrow p(t + \tau) = Q(\tau) p(t)$$

Propagator $Q(\tau) = e^{K \tau}$:

$$Q_{ij}(\tau) = P(i, \tau | j, 0)$$

Maximum Likelihood:

$$L = \prod_{ij} Q_{ij}^{T_{ij}(\tau)}$$

$$\frac{d}{d \tau} Q_{ij}(\tau) \left[\log L - \sum_i \lambda_i (1 - \sum_j Q_{ji}) \right] = 0 \Rightarrow Q_{ij}(\tau) = T_{ij}(\tau) \sum_k T_{kj}(\tau)$$

Caveat: aggregation of states may hide barriers

need kinetically relevant RC
Markov State Models (MSMs)

Markov State Models (MSMs)

State-space: \(S = \{1, \ldots, n\} \)

Key assumption: memoryless

\[
dp_i dt = \sum_{j \neq i} \left(K_{ij} p_j - K_{ji} p_i \right) \quad \sum_{j \neq i} K_{ji} = -K_{ii}
\]

Propagator \(Q(\tau) = e^{K\tau} \):

\[
Q_{ij}(\tau) = P(i, \tau | j, 0)
\]

Maximum Likelihood:

\[
L = \prod_{ij} Q_{ij}^T(\tau)
\]

\[
\frac{d}{d\tau} Q_{ij}(\tau) \left[\log L - \sum_i \lambda_i (1 - \sum_j Q_{ji}) \right] = 0
\]

\[
Q_{ij}(\tau) = T_{ij}(\tau) \sum_k T_{kj}(\tau)
\]

Caveat: aggregation of states may hide barriers

need kinetically relevant RC

Markov State Models (MSMs)

- State-space: $S = \{1, \ldots, n\}$

Markov State Models (MSMs)

- State-space: \(S = \{1, \ldots, n\} \)
- Key assumption: memoryless

\[
\frac{dp_i}{dt} = \sum_{j(\neq i)} \left[K_{ij}p_j - K_{ji}p_i \right]
\]

Markov State Models (MSMs)

- State-space: $S = \{1, \ldots, n\}$
- Key assumption: memoryless

\[
\frac{dp_i}{dt} = \sum_{j(\neq i)} [K_{ij}p_j - K_{ji}p_i] \quad \sum_{j \neq i} K_{ji} = -K_{ii}
\]

\[
\frac{dp}{dt} = Kp \quad \Rightarrow \quad p(t + \tau) = Q(\tau)p(t)
\]
Markov State Models (MSMs)

- **State-space:** \(S = \{1, \ldots, n\} \)
- **Key assumption:** memoryless

\[
\frac{dp_i}{dt} = \sum_{j(\neq i)} [K_{ij}p_j - K_{ji}p_i] \quad \sum_{j \neq i} K_{ji} = -K_{ii}
\]

\[
\frac{dp}{dt} = Kp \quad \Rightarrow \quad p(t + \tau) = Q(\tau)p(t)
\]

- **Propagator** \(Q(\tau) = e^{K\tau} : Q_{ij}(\tau) = P(i, \tau | j, 0) \)

Markov State Models (MSMs)

- State-space: \(S = \{1, \ldots, n\} \)
- Key assumption: **memoryless**

\[
\frac{dp_i}{dt} = \sum_{j(\neq i)} [K_{ij}p_j - K_{ji}p_i] \quad \sum_{j \neq i} K_{ji} = -K_{ii}
\]

\[
\frac{dp}{dt} = \mathbf{Kp} \implies p(t + \tau) = Q(\tau)p(t)
\]

- Propagator \(Q(\tau) = e^{\mathbf{K}\tau} : Q_{ij}(\tau) = P(i, \tau | j, 0) \)

- **Maximum Likelihood:**

\[
\mathcal{L} = \prod_{ij} Q_{ij}^{T_{ij}(\tau)} \implies \frac{d}{dQ_{ij}} [\log \mathcal{L} - \sum_i \lambda_i (1 - \sum_j Q_{ji})] = 0 \implies Q_{ij}(\tau) = \frac{T_{ij}(\tau)}{\sum_k T_{kj}(\tau)}
\]

\(T_{ij}(\tau) = \text{nr transitions } j \rightarrow i \text{ in lag-time } \tau \)
Markov State Models (MSMs)

- State-space: \(S = \{1, \ldots, n\} \)
- Key assumption: memoryless

\[
\frac{dp_i}{dt} = \sum_{j(\neq i)} [K_{ij}p_j - K_{ji}p_i] \quad \sum_{j \neq i} K_{ji} = -K_{ii}
\]

\[
\frac{dp}{dt} = Kp \quad \Rightarrow \quad p(t + \tau) = Q(\tau)p(t)
\]

- Propagator \(Q(\tau) = e^{K\tau} \) : \(Q_{ij}(\tau) = P(i, \tau | j, 0) \)

- Maximum Likelihood:

\[
\mathcal{L} = \prod_{ij} Q_{ij}^{T_{ij}(\tau)} \quad \Rightarrow \quad \frac{d}{dQ_{ij}} [\log \mathcal{L} - \sum_i \lambda_i (1 - \sum_j Q_{ji})] = 0 \quad \Rightarrow \quad Q_{ij}(\tau) = \frac{T_{ij}(\tau)}{\sum_k T_{kj}(\tau)}
\]

\(T_{ij}(\tau) = \text{nr transitions} \ j \rightarrow i \ \text{in lag-time} \ \tau \)

- Caveat: aggregation of states may hide barriers
Markov State Models (MSMs)

- State-space: \(S = \{1, \ldots, n\} \)
- Key assumption: memoryless

\[
\frac{dp_i}{dt} = \sum_{j \neq i} [K_{ij} p_j - K_{ji} p_i] \quad \sum_{j \neq i} K_{ji} = -K_{ii}
\]

\[
\frac{dp}{dt} = Kp \quad \Rightarrow \quad p(t + \tau) = Q(\tau)p(t)
\]

- Propagator \(Q(\tau) = e^{K\tau} : Q_{ij}(\tau) = P(i, \tau | j, 0) \)

- Maximum Likelihood:

\[
\mathcal{L} = \prod_{ij} Q_{ij}^{T_{ij}(\tau)} \Rightarrow \frac{d}{dQ_{ij}} \left[\log \mathcal{L} - \sum_i \lambda_i (1 - \sum_j Q_{ji}) \right] = 0 \quad \Rightarrow \quad Q_{ij}(\tau) = \frac{T_{ij}(\tau)}{\sum_k T_{kj}(\tau)}
\]

\(T_{ij}(\tau) = \text{nr transitions } j \rightarrow i \text{ in lag-time } \tau \)

- Caveat: aggregation of states may hide barriers
- need kinetically relevant RC
Dependence on the lag-time τ

Choice of lag-time?

Smallest τ that ensures Markovianity

Chapman-Kolmogorov test:

$Q_n(\tau) = Q_n(\tau) \quad \text{[Recall:]} \quad Q(\tau) = e^{K\tau}$

In practice:

$\tau = -\frac{1}{\ln |\lambda|^{2}(\tau)} = -\frac{n\tau}{\ln |\lambda|^{2}(n\tau)}$

Rather subjective test, especially when dealing with finite statistics

necessary but not sufficient: should also test eigenvectors...

if timescale never level-off: likely poor discretization or poor choice of RC
Dependence on the lag-time τ

Choice of lag-time? Smallest τ that ensures Markovianity

Chapman-Kolmogorov test:

$Q_n(\tau) = Q(n\tau)$

[Recall: $Q(\tau) = e^{K\tau}$]

In practice:

$t_r = -\frac{\tau}{\ln|\lambda_2(\tau)|} = -\frac{n\tau}{\ln|\lambda_2(n\tau)|}$

Rather subjective test, especially when dealing with finite statistics.

Necessary but not sufficient: should also test eigenvectors.

If timescale never level-off: likely poor discretization or poor choice of RC.
Dependence on the lag-time τ

Choice of lag-time? Smallest τ that ensures Markovianity

Chapman-Kolmogorov test:

$$Q^n(\tau) = Q(n\tau)$$
[Recall: $Q(\tau) = e^{K\tau}$]
Dependence on the lag-time τ

Choice of lag-time? Smallest τ that ensures Markovianity

Chapman-Kolmogorov test:

$$Q^n(\tau) = Q(n\tau) \quad \text{[Recall: } Q(\tau) = e^{K\tau}]$$

In practice: $t_r = -\tau / \ln |\lambda_2(\tau)| = -n\tau / \ln |\lambda_2(n\tau)|$
Dependence on the lag-time τ

Choice of lag-time? Smallest τ that ensures Markovianity

Chapman-Kolmogorov test:

$$Q^n(\tau) = Q(n\tau)$$ \hspace{1cm} [Recall : $Q(\tau) = e^{K\tau}$]

In practice:

$$t_r = -\tau / \ln |\lambda_2(\tau)| = -n\tau / \ln |\lambda_2(n\tau)|$$

- Rather **subjective test**, especially when dealing with finite statistics

![Relaxation time vs. Lag time graph](image)

![Molecular structure diagram](image)
Dependence on the lag-time τ

Choice of lag-time? Smallest τ that ensures Markovianity

Chapman-Kolmogorov test:

$$Q^n(\tau) = Q(n\tau) \quad [\text{Recall: } Q(\tau) = e^{K\tau}]$$

In practice:

$$t_r = -\tau / \ln |\lambda_2(\tau)| = -n\tau / \ln |\lambda_2(n\tau)|$$

- Rather subjective test, especially when dealing with finite statistics
- necessary but not sufficient: should also test eigenvectors.
Dependence on the lag-time τ

Choice of lag-time? Smallest τ that ensures Markovianity

Chapman-Kolmogorov test:

$$Q^n(\tau) = Q(n\tau) \quad \text{[Recall: } Q(\tau) = e^{K\tau}]$$

In practice:

$$t_\tau = -\tau / \ln |\lambda_2(\tau)| = -n\tau / \ln |\lambda_2(n\tau)|$$

- Rather subjective test, especially when dealing with finite statistics
- necessary but not sufficient: should also test eigenvectors..
- if timescale never level-off: likely poor discretization or poor choice of RC
Dimensionality Reduction?

Often coarse-graining needed to gain physical intuition:

\[
S = \{1, \ldots, i, j, \ldots, n\} \quad \Rightarrow \quad S' = \{1, \ldots, I, J, \ldots, N\} \quad \text{with} \quad N < n
\]
Often coarse-graining needed to gain physical intuition:

\[S = \{1, \ldots, i, j, \ldots, n\} \Rightarrow S' = \{1, \ldots, I, J, \ldots, N\} \quad N < n \]

Dimensionality Reduction?

Often coarse-graining needed to gain physical intuition:

\[S = \{1, \ldots, i, j, \ldots, n\} \implies S' = \{1, \ldots, I, J, \ldots, N\} \quad N < n \]

\[
\begin{pmatrix}
1 & 0 & 0 \\
\vdots & \vdots & \vdots \\
1 & 0 & 0 \\
0 & 1 & 0 \\
\vdots & \vdots & \vdots \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\vdots & \vdots & \vdots \\
0 & 0 & 1 \\
\end{pmatrix}
\]

\[
P = A^T p
\]

Dimensionality Reduction?

Often coarse-graining needed to gain physical intuition:

\[S = \{ 1, \ldots, i, j, \ldots, n \} \Rightarrow S' = \{ 1, \ldots, I, J, \ldots, N \} \quad N < n \]

\[
A = \begin{pmatrix}
1 & 0 & 0 \\
\vdots & \vdots & \vdots \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
\end{pmatrix}
\]

\[
P = A^T P
\]

\[
\frac{dp}{dt} = Kp \quad \Rightarrow \quad \frac{dP}{dt} = \int_0^t d\tau R(t - \tau)P(\tau)
\]

Dimensionality Reduction?

Often coarse-graining needed to gain physical intuition:

\[S = \{1, \ldots, i, j, \ldots, n\} \implies S' = \{1, \ldots, I, J, \ldots, N\} \quad N < n \]

\begin{align*}
A &= \begin{pmatrix}
1 & 0 & 0 \\
\vdots & \vdots & \vdots \\
1 & 0 & 0 \\
0 & 1 & 0 \\
\vdots & \vdots & \vdots \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\vdots & \vdots & \vdots \\
0 & 0 & 1 \\
\end{pmatrix} \\
P &= A^T p
\end{align*}

\[
\frac{dp}{dt} = Kp \quad \Rightarrow \quad \frac{dP}{dt} = \int_0^t d\tau R(t - \tau)P(\tau) \quad \Rightarrow \quad \frac{dP}{dt} \simeq R_{\text{eff}}P
\]
Dimensionality Reduction?

Often coarse-graining needed to gain physical intuition:

\[S = \{1, \ldots, i, j, \ldots, n\} \Rightarrow S' = \{1, \ldots, I, J, \ldots, N\} \quad N < n \]

\[A = \begin{pmatrix} 1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \]

\[P = A^T p \]

\[\frac{dp}{dt} = Kp \Rightarrow \frac{dP}{dt} = \int_0^t d\tau R(t - \tau)P(\tau) \Rightarrow \frac{dP}{dt} \simeq R_{\text{eff}} P \]
1 Introduction
 • Motivation
 • Constructing Markov State Models

2 Clustering Methods
 • Perron Cluster Cluster Analysis
 • Effective rates
 • Projection techniques
 • Variational coarse-graining
 • MFPT in variational Coarse-graining
 • Limiting relaxation times

3 Conclusions
Clustering via PCCA

\[Q \phi^{(n)} = \lambda_n \phi^{(n)} \quad \psi^{(n)} Q = \lambda_n \psi^{(n)} \quad 1 = \lambda_1 > \lambda_2 > \ldots > \lambda_n \]
Clustering via PCCA

\[Q \phi^{(n)} = \lambda_n \phi^{(n)} \quad \psi^{(n)} Q = \lambda_n \psi^{(n)} \quad 1 = \lambda_1 > \lambda_2 > \ldots > \lambda_n \]
Clustering via PCCA

\[Q\phi^{(n)} = \lambda_n \phi^{(n)} \quad \psi^{(n)} Q = \lambda_n \psi^{(n)} \quad 1 = \lambda_1 > \lambda_2 > \ldots > \lambda_n \]

\[\phi^{(1)} = p^{eq} \]

\[\psi^{(1)} = 1_n^T \]
Clustering via PCCA

\[Q\phi^{(n)} = \lambda_n \phi^{(n)} \quad \psi^{(n)} Q = \lambda_n \psi^{(n)} \]

\[1 = \lambda_1 > \lambda_2 > \ldots > \lambda_n \]

\[\phi^{(1)} = p_{\text{eq}} \]

\[\psi^{(1)} = 1_n^T \]

\[\phi_i^{(n)} = p_{i\text{eq}} \psi_i^{(n)} \]

\[\sum_{j} \phi_j^{(n)} = 0 \quad \forall n > 1 \]

\[t_i = -\tau \ln |\lambda_i| \]

Often no clear spectral gap: How many important states? Only targeted at metastable states i.e. states with high occupation probability.
Clustering via PCCA

\[Q\phi^{(n)} = \lambda_n \phi^{(n)} \quad \psi^{(n)} Q = \lambda_n \psi^{(n)} \]

\[1 = \lambda_1 > \lambda_2 > \ldots > \lambda_n \]

\[\phi^{(1)} = p^{eq} \]

\[\psi^{(1)} = 1_n^T \]

\[\phi_i^{(n)} = p_i^{eq} \psi_i^{(n)} \]

\[\sum_j \phi_j^{(n)} = 0 \quad \forall \ n > 1 \]

Often no clear spectral gap: How many important states? Only targeted at metastable states i.e. states with high occupation probability.
Clustering via PCCA

\[
Q \phi^{(n)} = \lambda_n \phi^{(n)} \quad \psi^{(n)} Q = \lambda_n \psi^{(n)}
\]

\[1 = \lambda_1 > \lambda_2 > \ldots > \lambda_n\]

\[
\phi^{(1)} = p^{eq} \\
\psi^{(1)} = 1^T_n \\
\phi_i^{(n)} = p^{eq}_i \psi_i^{(n)} \\
\sum_j \phi_j^{(n)} = 0 \quad \forall \quad n > 1
\]

Clustering via PCCA

\[Q \phi^{(n)} = \lambda_n \phi^{(n)} \]
\[\psi^{(n)} Q = \lambda_n \psi^{(n)} \]
\[1 = \lambda_1 > \lambda_2 > \ldots > \lambda_n \]

\[\phi^{(1)} = p_{eq} \]
\[\psi^{(1)} = 1_n^T \]
\[\phi_i^{(n)} = p_{i eq} \psi_i^{(n)} \]
\[\sum_j \phi_j^{(n)} = 0 \quad \forall \ n > 1 \]
\[t_i = -\frac{\tau}{\ln |\lambda_i|} \]

Clustering via PCCA

\[Q \phi^{(n)} = \lambda_n \phi^{(n)} \]
\[\psi^{(n)} Q = \lambda_n \psi^{(n)} \]

\[1 = \lambda_1 > \lambda_2 > \ldots > \lambda_n \]

\[\phi^{(1)} = p^{\text{eq}} \]
\[\psi^{(1)} = 1^T_n \]
\[\phi_i^{(n)} = p^{\text{eq}}_i \psi_i^{(n)} \]

\[\sum_j \phi_j^{(n)} = 0 \quad \forall \ n > 1 \]
\[t_i = -\frac{\tau}{\ln |\lambda_i|} \]

Often no clear spectral gap: How many important states?

Clustering via PCCA

\[Q \phi^{(n)} = \lambda_n \phi^{(n)} \]

\[\psi^{(n)} Q = \lambda_n \psi^{(n)} \]

\[1 = \lambda_1 > \lambda_2 > \ldots > \lambda_n \]

\[\phi^{(1)} = \mathbf{p}^{eq} \]

\[\psi^{(1)} = 1^T_n \]

\[\phi_i^{(n)} = p^{eq}_i \psi^{(n)}_i \]

\[\sum_j \phi_j^{(n)} = 0 \ \forall \ n > 1 \]

\[t_i = -\frac{\tau}{\ln |\lambda_i|} \]

Often no clear spectral gap: How many important states?

Only targeted at metastable states i.e. states with high occupation probability
• **Transition states** key to control the kinetics of the system
- **Transition states** key to control the kinetics of the system
- Have **low occupation** probability but **high flux**

![Potential energy vs Reaction coordinate diagram](image)
- **Transition states** key to control the kinetics of the system
- Have **low occupation** probability but **high flux**
- Usually defined to have $1/2$ "comittor probability" to reach products before reactants
- **Transition states** key to control the kinetics of the system
 - Have **low occupation** probability but **high flux**
 - Usually defined to have $1/2$ “committor probability” to reach products before reactants

- no straightforward generalization to complex systems with many metastable states
- **Transition states** key to control the kinetics of the system
- Have **low occupation** probability but **high flux**
- Usually defined to have $1/2$ “committor probability” to reach products before reactants

![Potential energy diagram with Reactants, Transition state, Activated complex, and Products labeled along the reaction coordinate.]

- no straightforward generalization to complex systems with many metastable states
- **Algorithms** to automatically and reliably detect TSs?
Outline

1 Introduction
 - Motivation
 - Constructing Markov State Models

2 Clustering Methods
 - Perron Cluster Cluster Analysis
 - Effective rates
 - Projection techniques
 - Variational coarse-graining
 - MFPT in variational Coarse-graining
 - Limiting relaxation times

3 Conclusions
Enforcing Markovian description

\[\frac{dP}{dt} = RP \]
Enforcing Markovian description

\[\frac{dP}{dt} = RP \]

- Minimal requirement: \(RP^{eq} = 0 \) for \(P_I^{eq} = \sum_{i \in I} p_i^{eq} \)
Enforcing Markovian description

\[\frac{dP}{dt} = RP \]

- Minimal requirement: \(\mathbf{RP}^{\text{eq}} = 0 \) for \(P_{I}^{\text{eq}} = \sum_{i \in I} p_{i}^{\text{eq}} \)
- Impose detailed balance:

\[R_{IJ} P_{J}^{\text{eq}} = R_{JI} P_{I}^{\text{eq}} \]
Enforcing Markovian description

$$\frac{dP}{dt} = RP$$

- Minimal requirement: $$RP^{eq} = 0$$ for $$P_I^{eq} = \sum_{i \in I} p_i^{eq}$$
- Impose detailed balance:

$$R_{IJ}P_J^{eq} = R_{JI}P_I^{eq} \Rightarrow \text{leaves freedom!}$$
Enforcing Markovian description

\[\frac{dP}{dt} = RP \]

- Minimal requirement: \(RP_{\text{eq}} = 0 \) for \(P_{\text{eq}} = \sum_{i \in I} p_i^{\text{eq}} \)

- Impose detailed balance:

\[R_{IJ} P_{eq}^J = R_{JI} P_{eq}^I \Rightarrow \text{leaves freedom!} \]

- Local equilibrium:

\[R_{IJ} P_{eq}^J = \sum_{i \in I, j \in J} K_{ij} p_{eq}^j \]
Enforcing Markovian description

\[\frac{dP}{dt} = RP \]

- Minimal requirement: \(RP^{eq} = 0 \) for \(P^{eq} = \sum_{i \in I} p_{i}^{eq} \)
- Impose detailed balance:
 \[R_{IJ}P_{J}^{eq} = R_{JI}P_{I}^{eq} \Rightarrow \text{leaves freedom!} \]
- Local equilibrium:
 \[R_{IJ}P_{J}^{eq} = \sum_{i \in I, j \in J} K_{ij}p_{j}^{eq} \]
- MSMs defined in discrete time \(\Rightarrow \) Markov matrix
 \[Q_{CG}^{i,j}(\tau)P_{J}^{eq} = \sum_{i \in I, j \in J} Q_{ij}(\tau)p_{j}^{eq} \]
Enforcing Markovian description

\[
\frac{dP}{dt} = RP
\]

- Minimal requirement: \(RP_{eq} = 0 \) for \(P_{eq} = \sum_{i \in I} p_{i}^{eq} \)
- Impose detailed balance:
 \[
 R_{IJ} P_{J}^{eq} = R_{JI} P_{I}^{eq} \Rightarrow \text{leaves freedom!}
 \]
- Local equilibrium:
 \[
 R_{IJ} P_{J}^{eq} = \sum_{i \in I, j \in J} K_{ij} p_{j}^{eq}
 \]
- MSMs defined in discrete time \(\Rightarrow\) Markov matrix
 \[
 Q_{IJ}^{CG}(\tau) P_{J}^{eq} = \sum_{i \in I, j \in J} Q_{ij}(\tau) p_{j}^{eq}
 \]
 \[
 C_{ij}(\tau) = \langle \theta_{i}(\tau)\theta_{j}(0) \rangle, \quad \theta_{i}(t) = \begin{cases} 1 & n(t) \in i \\ 0 & n(t) \text{ otherwise} \end{cases}
 \]
Enforcing Markovian description

\[\frac{dP}{dt} = RP \]

- Minimal requirement: \(RP^{eq} = 0 \) for \(P_I^{eq} = \sum_{i \in I} p_i^{eq} \)
- Impose detailed balance:
 \[R_{IJ} P_J^{eq} = R_{JI} P_I^{eq} \Rightarrow \text{leaves freedom!} \]
- Local equilibrium:
 \[R_{IJ} P_J^{eq} = \sum_{i \in I, j \in J} K_{ij} p_j^{eq} \]
- MSMs defined in discrete time \(\Rightarrow \) Markov matrix
 \[Q_{IJ}^{CG}(\tau) P_J^{eq} = \sum_{i \in I, j \in J} Q_{ij}(\tau) p_j^{eq} = \sum_{i \in I, j \in J} C_{ij}(\tau) \]
 \[C_{ij}(\tau) = \langle \theta_i(\tau) \theta_j(0) \rangle, \quad \theta_i(t) = \begin{cases} 1 & n(t) \in i \\ 0 & n(t) \text{ otherwise} \end{cases} \]
Enforcing Markovian description

\[\frac{dP}{dt} = RP \]

- Minimal requirement: \(RP^{eq} = 0 \) for \(P_I^{eq} = \sum_{i \in I} p_i^{eq} \)
- Impose detailed balance:
 \[R_{IJ} P^eq_J = R_{JI} P^eq_I \implies \text{leaves freedom!} \]
- Local equilibrium:
 \[R_{IJ} P^eq_J = \sum_{i \in I, j \in J} K_{ij} p_j^{eq} \]
- MSMs defined in discrete time \(\implies \) Markov matrix

\[C^{CG}_{IJ}(\tau) = Q^{CG}_{IJ}(\tau) P^{eq}_J = \sum_{i \in I, j \in J} Q_{ij}(\tau) p_j^{eq} = \sum_{i \in I, j \in J} C_{ij}(\tau) \]

\[C_{ij}(\tau) = \langle \theta_i(\tau) \theta_j(0) \rangle, \quad \theta_i(t) = \begin{cases} 1 & n(t) \in i \\ 0 & \text{otherwise} \end{cases} \]
Enforcing Markovian description

\[
\frac{dP}{dt} = RP
\]

- Minimal requirement: \(RP_{\text{eq}} = 0 \) for \(P_{I}^{\text{eq}} = \sum_{i \in I} p_{i}^{\text{eq}} \)

- Impose detailed balance:

\[
R_{IJ}P_{J}^{\text{eq}} = R_{JI}P_{I}^{\text{eq}} \Rightarrow \text{leaves freedom!}
\]

- Local equilibrium:

\[
R_{IJ}P_{J}^{\text{eq}} = \sum_{i \in I, j \in J} K_{ij}p_{j}^{\text{eq}}
\]

- MSMs defined in discrete time \(\Rightarrow \) Markov matrix

\[
C_{IJ}^{CG}(\tau) = Q_{IJ}^{CG}(\tau)P_{J}^{\text{eq}} = \sum_{i \in I, j \in J} Q_{ij}(\tau)p_{j}^{\text{eq}} = \sum_{i \in I, j \in J} C_{ij}(\tau)
\]

\[
C_{ij}(\tau) = \langle \theta_{i}(\tau)\theta_{j}(0) \rangle, \quad \theta_{i}(t) = \begin{cases} 1 & n(t) \in i \\ 0 & n(t) \text{ otherwise} \end{cases}
\]

exact correlations at chosen lag-time
Hummer-Szabo method

- Occupancy-number connected correlator

\[C_{ij}(t) = \langle \theta_i(t)\theta_j(0) \rangle - \langle \theta_i(t) \rangle \langle \theta_j(0) \rangle, \]

\[Q(t) = e^{Kt}C_{ij}(t) = [e^{Kt}]_{ij}p_{eq}^j - p_{eq}^i p_{eq}^j \]

\[\hat{C}_{ij}(s) = (sI_n - K)^{-1}_{ij}p_{eq}^j - p_{eq}^i \]

Equate areas underneath correlations:

\[\hat{f}(s) = \int_0^\infty dt f(t) e^{-st} \]

\[\hat{C}_{CGIJ}(0) = \sum_{i \in I, j \in J} \hat{C}_{ij}(0) \]

\[\hat{p}(s) = (sI_n - \hat{R}(s))^{-1} p(0) \]

\[\hat{C}_{CGIJ}(s) = [(sI_n - \hat{R}(s))^{-1} - 1]_{IJ}p_{eq}^J - 1_s p_{eq}^I p_{eq}^J \]

Hummer-Szabo method

- Occupancy-number connected correlator

\[C_{ij}(t) = \langle \theta_i(t)\theta_j(0) \rangle - \langle \theta_i(t) \rangle \langle \theta_j(0) \rangle, \quad Q(t) = e^{Kt} \]

\[C_{ij}(t) = [e^{Kt}]_{ij} p_j^{eq} - p_i^{eq} p_j^{eq} \]
Hummer-Szabo method

- Occupancy-number connected correlator
 \[C_{ij}(t) = \langle \theta_i(t)\theta_j(0) \rangle - \langle \theta_i(t) \rangle \langle \theta_j(0) \rangle, \quad Q(t) = e^{Kt} \]

 \[C_{ij}(t) = [e^{Kt}]_{ij} p_{eq}^j - p_{eq}^i p_{eq}^j \]

- Equate areas underneath correlations:
 \[\int_0^\infty dt \ C_{IJ}^{CG}(t) = \sum_{i \in I, j \in J} \int_0^\infty dt \ C_{ij}(t) \]
Hummer-Szabo method

- Occupancy-number connected correlator

\[C_{ij}(t) = \langle \theta_i(t)\theta_j(0) \rangle - \langle \theta_i(t) \rangle \langle \theta_j(0) \rangle, \quad Q(t) = e^{Kt} \]

\[C_{ij}(t) = [e^{Kt}]_{ij} p_{eq}^j - p_{eq}^i p_{eq}^j \]

- Equate areas underneath correlations:

\[\hat{f}(s) = \int_0^\infty dt \ f(t)e^{-st} \]

\[\int_0^\infty dt \ C_{IJ}^{CG}(t) = \sum_{i \in I, j \in J} \int_0^\infty dt \ C_{ij}(t) \quad \Rightarrow \quad \hat{C}_{IJ}^{CG}(0) = \sum_{i \in I, j \in J} \hat{C}_{ij}(0) \]
Hummer-Szabo method

- Occupancy-number connected correlator

\[C_{ij}(t) = \langle \theta_i(t)\theta_j(0) \rangle - \langle \theta_i(t) \rangle \langle \theta_j(0) \rangle, \quad Q(t) = e^{Kt} \]

\[C_{ij}(t) = [e^{Kt}]_{ij}p_{eq}^j - p_{eq}^i p_{eq}^j \quad \Rightarrow \quad \hat{C}_{ij}(s) = [(sI_n - K)^{-1}]_{ij}p_{eq}^j - \frac{1}{s}p_{eq}^i p_{eq}^j \]

- Equate areas underneath correlations: \(\hat{f}(s) = \int_0^\infty dt f(t)e^{-st} \)

\[\int_0^\infty dt \ C_{I,J}^{CG}(t) = \sum_{i \in I, j \in J} \int_0^\infty dt \ C_{ij}(t) \quad \Rightarrow \quad \hat{C}_{I,J}^{CG}(0) = \sum_{i \in I, j \in J} \hat{C}_{ij}(0) \]
Hummer-Szabo method

- Occupancy-number connected correlator
 \[C_{ij}(t) = \langle \theta_i(t)\theta_j(0) \rangle - \langle \theta_i(t) \rangle \langle \theta_j(0) \rangle, \quad Q(t) = e^{Kt} \]
 \[C_{ij}(t) = [e^{Kt}]_{ij}p_{j}^{\text{eq}} - p_{i}^{\text{eq}}p_{j}^{\text{eq}} \implies \hat{C}_{ij}(s) = [(sI_n - K)^{-1}]_{ij}p_{j}^{\text{eq}} - \frac{1}{s}p_{i}^{\text{eq}}p_{j}^{\text{eq}} \]

- Equate areas underneath correlations:
 \[\hat{f}(s) = \int_0^\infty dt f(t)e^{-st} \]
 \[\int_0^\infty dt C_{1J}^{\text{CG}}(t) = \sum_{i \in I, j \in J} \int_0^\infty dt C_{ij}(t) \implies \hat{C}_{1J}^{\text{CG}}(0) = \sum_{i \in I, j \in J} \hat{C}_{ij}(0) \]
 \[\frac{dp}{dt} = Kp \implies \hat{p}(s) = (sI_n - K)^{-1}p(0) \]
Hummer-Szabo method

- Occupancy-number connected correlator

\[C_{ij}(t) = \langle \theta_i(t)\theta_j(0) \rangle - \langle \theta_i(t) \rangle \langle \theta_j(0) \rangle, \quad Q(t) = e^{Kt} \]

\[C_{ij}(t) = [e^{Kt}]_{ij}p^\text{eq}_j - p^\text{eq}_i p^\text{eq}_j \Rightarrow \hat{C}_{ij}(s) = [(sI_n - K)^{-1}]_{ij}p^\text{eq}_j - \frac{1}{s}p^\text{eq}_i p^\text{eq}_j \]

- Equate areas underneath correlations:

\[\hat{f}(s) = \int_0^\infty dt f(t)e^{-st} \]

\[\int_0^\infty dt C_{I,J}^{CG}(t) = \sum_{i \in I, j \in J} \int_0^\infty dt C_{ij}(t) \Rightarrow \hat{C}_{I,J}^{CG}(0) = \sum_{i \in I, j \in J} \hat{C}_{ij}(0) \]

\[\frac{dp}{dt} = Kp \Rightarrow \hat{p}(s) = (sI_n - K)^{-1}p(0) \]

- Clustered dynamics non-Markovian:

\[\frac{dP}{dt} = \int_0^t R(t - \tau)P(\tau)d\tau \]
Hummer-Szabo method

- Occupancy-number connected correlator
 \[C_{ij}(t) = \langle \theta_i(t) \theta_j(0) \rangle - \langle \theta_i(t) \rangle \langle \theta_j(0) \rangle, \quad Q(t) = e^{Kt} \]
 \[C_{ij}(t) = [e^{Kt}]_{ij} p_{eq}^j - p_{eq}^i p_{eq}^j \quad \Rightarrow \quad \hat{C}_{ij}(s) = [(sI_n - K)^{-1}]_{ij} p_{eq}^j - \frac{1}{s} p_{eq}^i p_{eq}^j \]

- Equate areas underneath correlations:
 \[\hat{f}(s) = \int_0^\infty dt f(t) e^{-st} \]
 \[\int_0^\infty dt C_{I,J}^{CG}(t) = \sum_{i \in I, j \in J} \int_0^\infty dt C_{i,j}(t) \quad \Rightarrow \quad \hat{C}_{I,J}^{CG}(0) = \sum_{i \in I, j \in J} \hat{C}_{i,j}(0) \]
 \[\frac{dp}{dt} = Kp \quad \Rightarrow \quad \hat{p}(s) = (sI_n - K)^{-1} p(0) \]

- Clustered dynamics non-Markovian:
 \[\frac{dP}{dt} = \int_0^t R(t - \tau) P(\tau) d\tau \quad \Rightarrow \quad \hat{P}(s) = (sI_N - \hat{R}(s))^{-1} P(0) \]
Hummer-Szabo method

- Occupancy-number connected correlator

\[C_{ij}(t) = \langle \theta_i(t)\theta_j(0) \rangle - \langle \theta_i(t) \rangle \langle \theta_j(0) \rangle, \quad Q(t) = e^{Kt} \]

\[C_{ij}(t) = [e^{Kt}]_{ij}p_{eq}^i - p_{eq}^i p_{eq}^j \quad \Rightarrow \quad \hat{C}_{ij}(s) = [(sI_n - K)^{-1}]_{ij}p_{eq}^i - \frac{1}{s}p_{eq}^i p_{eq}^j \]

- Equate areas underneath correlations: \(\hat{f}(s) = \int_0^\infty dt f(t)e^{-st} \)

\[\int_0^\infty dt \, C_{iJ}^{CG}(t) = \sum_{i \in I, j \in J} \int_0^\infty dt \, C_{ij}(t) \quad \Rightarrow \quad \hat{C}_{iJ}^{CG}(0) = \sum_{i \in I, j \in J} \hat{C}_{ij}(0) \]

\[\frac{dp}{dt} = Kp \quad \Rightarrow \quad \hat{p}(s) = (sI_n - K)^{-1}p(0) \]

- Clustered dynamics non-Markovian:

\[\frac{dP}{dt} = \int_0^t R(t-\tau)P(\tau)d\tau \quad \Rightarrow \quad \hat{P}(s) = (sI_N - \hat{R}(s))^{-1}P(0) \]

\[\hat{C}_{iJ}^{CG}(s) = [(sI_n - \hat{R}(s))^{-1}]_{iJ}P_{eq}^i p_{eq}^j - \frac{1}{s}P_{eq}^i p_{eq}^j \]

1 Introduction
 • Motivation
 • Constructing Markov State Models

2 Clustering Methods
 • Perron Cluster Cluster Analysis
 • Effective rates
 • Projection techniques
 • Variational coarse-graining
 • MFPT in variational Coarse-graining
 • Limiting relaxation times

3 Conclusions
Projection method

Projection on to some sub-space via operator \mathcal{P} ($Q = I_n - \mathcal{P}$):

\[
\frac{dp}{dt} = Kp \quad u = \mathcal{P}p, \quad v = p - u = Qp
\]

\[
\frac{du}{dt} = \mathcal{P}Ku + \mathcal{P}Kv
\]

\[
\frac{dv}{dt} = QKu + QKv
\]
Projection method

Projection on to some sub-space via operator \mathcal{P} ($Q = I_n - \mathcal{P}$):

$$\frac{dp}{dt} = Kp \quad \text{u} = \mathcal{P}p, \quad \text{v} = p - u = Qp$$

$$\frac{du}{dt} = \mathcal{P}Ku + \mathcal{P}Kv$$

$$\frac{dv}{dt} = QKu + QKv$$

Solve for v (with $v(0) = 0$), and sub into eqn for u:

$$\frac{du}{dt} = \int_0^t M(t - \tau)u(\tau)d\tau,$$

with memory kernel

$$M(t - \tau) = \mathcal{P}K\delta(t - \tau) + \mathcal{P}Ke^{QK(t-\tau)}QK$$
Projection method

Projection on to some sub-space via operator \mathcal{P} ($Q = I_n - \mathcal{P}$):

$$\frac{dp}{dt} = Kp \quad u = \mathcal{P}p, \quad v = p - u = Qp$$

$$\frac{du}{dt} = \mathcal{P}Ku + \mathcal{P}Kv$$

$$\frac{dv}{dt} = QKu + QKv$$

Solve for v (with $v(0) = 0$), and sub into eqn for u:

$$\frac{du}{dt} = \int_0^t M(t - \tau)u(\tau) d\tau,$$

with memory kernel

$$M(t - \tau) = \mathcal{P}K\delta(t - \tau) + \mathcal{P}Ke^{QK(t-\tau)}QK$$

or

$$\hat{M}(s) = s\mathcal{P}K(sI - K + \mathcal{P}K)^{-1}$$
Def macrostates: $P = A^T p$

$$\frac{dP}{dt} = \int_{0}^{t} R(t - \tau)P(\tau)d\tau$$
Def macrostates: $\mathbf{P} = \mathbf{A}^T \mathbf{p}$

$$\frac{d\mathbf{P}}{dt} = \int_0^t \mathbf{R}(t-\tau)\mathbf{P}(\tau) d\tau \quad \Rightarrow \quad s\hat{\mathbf{P}}(s) - \mathbf{P}(0) = \hat{\mathbf{R}}(s)\mathbf{P}(s)$$
Def macrostates: \(P = A^T \mathbf{p} \)

\[
\frac{dP}{dt} = \int_0^t R(t - \tau)P(\tau)d\tau \quad \Rightarrow \quad s\hat{P}(s) - P(0) = \hat{R}(s)P(s)
\]

- Projection corresponding to clustering protocol \(A \)?
Def macrostates: \(\mathbf{P} = \mathbf{A}^T \mathbf{p} \)

\[
\frac{d\mathbf{P}}{dt} = \int_0^t \mathbf{R}(t - \tau)\mathbf{P}(\tau)d\tau \quad \Rightarrow \quad s\hat{\mathbf{P}}(s) - \mathbf{P}(0) = \hat{\mathbf{R}}(s)\mathbf{P}(s)
\]

- Projection corresponding to clustering protocol \(\mathbf{A} \)?
- Relation between \(\hat{\mathbf{R}}(s) \) and \(\mathbf{K} \)?
Def macrostates: \(P = A^T p \)

\[
\frac{dP}{dt} = \int_0^t R(t - \tau) P(\tau) d\tau \quad \Rightarrow \quad s\hat{P}(s) - P(0) = \hat{R}(s)P(s)
\]

- Projection corresponding to clustering protocol \(A \)?
- Relation between \(\hat{R}(s) \) and \(K \)?
- \(u = \mathcal{P} p, \quad s\hat{u}(s) - u(0) = \hat{M}(s)\hat{u}(s) \)
Def macrostates: \(\mathbf{P} = \mathbf{A}^T \mathbf{p} \)

\[
\frac{d\mathbf{P}}{dt} = \int_0^t \mathbf{R}(t - \tau)\mathbf{P}(\tau)d\tau \quad \Rightarrow \quad s\hat{\mathbf{P}}(s) - \mathbf{P}(0) = \hat{\mathbf{R}}(s)\mathbf{P}(s)
\]

- Projection corresponding to clustering protocol \(\mathbf{A} \)?
- Relation between \(\hat{\mathbf{R}}(s) \) and \(\mathbf{K} \)?
- \(\mathbf{u} = \mathcal{P}\mathbf{p}, \quad s\hat{\mathbf{u}}(s) - \mathbf{u}(0) = \hat{\mathbf{M}}(s)\hat{\mathbf{u}}(s) \)
- Assume \(n \times N \) matrix \(\mathbf{H} \): \(\mathbf{u} = \mathbf{H}\mathbf{p} \quad \Rightarrow \quad \mathcal{P} = \mathbf{HA}^T \)
Def macrostates: $\mathbf{P} = \mathbf{A}^T \mathbf{p}$

$$\frac{d\mathbf{P}}{dt} = \int_0^t \mathbf{R}(t - \tau)\mathbf{P}(\tau) d\tau \Rightarrow s\hat{\mathbf{P}}(s) - \mathbf{P}(0) = \hat{\mathbf{R}}(s)\mathbf{P}(s)$$

- Projection corresponding to clustering protocol \mathbf{A}?
- Relation between $\hat{\mathbf{R}}(s)$ and \mathbf{K}?

$$\mathbf{u} = \mathcal{P}\mathbf{p}, \quad s\hat{\mathbf{u}}(s) - \mathbf{u}(0) = \hat{\mathbf{M}}(s)\hat{\mathbf{u}}(s)$$

- Assume $n \times N$ matrix \mathbf{H}: $\mathbf{u} = \mathbf{H}\mathbf{p}$ \Rightarrow $\mathcal{P} = \mathbf{H}\mathbf{A}^T$

- Also, $\mathcal{P}^2 = \mathcal{P}$ \Rightarrow $\mathbf{A}^T\mathbf{H} = \mathbf{I}_N$
Def macrostates: $\mathbf{P} = \mathbf{A}^T \mathbf{p}$

$$\frac{d\mathbf{P}}{dt} = \int_0^t \mathbf{R}(t - \tau) \mathbf{P}(\tau) d\tau \quad \Rightarrow \quad s\mathbf{P}(s) - \mathbf{P}(0) = \hat{\mathbf{R}}(s) \mathbf{P}(s)$$

- Projection corresponding to clustering protocol \mathbf{A}?
- Relation between $\hat{\mathbf{R}}(s)$ and \mathbf{K}?

$\mathbf{u} = \mathcal{P}\mathbf{p}, \quad s\hat{\mathbf{u}}(s) - \mathbf{u}(0) = \hat{\mathbf{M}}(s)\hat{\mathbf{u}}(s)$

Assume $n \times N$ matrix \mathbf{H}: $\mathbf{u} = \mathbf{H}\mathbf{p} \quad \Rightarrow \quad \mathcal{P} = \mathbf{H}\mathbf{A}^T$

- Also, $\mathcal{P}^2 = \mathcal{P} \quad \Rightarrow \quad \mathbf{A}^T \mathbf{H} = \mathbf{I}_N \quad \Rightarrow \quad \hat{\mathbf{R}}(s) = \mathbf{A}^T \hat{\mathbf{M}}(s) \mathbf{H}$

Retrieve local equilibrium
Def macrostates: \(\mathbf{P} = \mathbf{A}^{T} \mathbf{p} \)

\[
\frac{d\mathbf{P}}{dt} = \int_{0}^{t} \mathbf{R}(t - \tau)\mathbf{P}(\tau)d\tau \Rightarrow s\hat{\mathbf{P}}(s) - \mathbf{P}(0) = \hat{\mathbf{R}}(s)\mathbf{P}(s)
\]

- Projection corresponding to clustering protocol \(\mathbf{A} \)?
- Relation between \(\hat{\mathbf{R}}(s) \) and \(\mathbf{K} \)?

\(\mathbf{u} = \mathcal{P}\mathbf{p} \), \(s\hat{\mathbf{u}}(s) - \mathbf{u}(0) = \hat{\mathbf{M}}(s)\hat{\mathbf{u}}(s) \)

Assume \(n \times N \) matrix \(\mathbf{H} \): \(\mathbf{u} = \mathbf{H}\mathbf{p} \) \(\Rightarrow \) \(\mathcal{P} = \mathbf{H}\mathbf{A}^{T} \)

Also, \(\mathcal{P}^{2} = \mathcal{P} \) \(\Rightarrow \) \(\mathbf{A}^{T}\mathbf{H} = \mathbf{I}_{N} \) \(\Rightarrow \) \(\hat{\mathbf{R}}(s) = \mathbf{A}^{T}\hat{\mathbf{M}}(s)\mathbf{H} \)

\[
\hat{\mathbf{R}}(s) = s\mathbf{A}^{T}\mathbf{K}(s\mathbf{I}_{n} - \mathbf{K} + \mathbf{H}\mathbf{A}^{T}\mathbf{K})^{-1}\mathbf{H}
\]
Def macrostates: \(P = A^T \mathbf{p} \)

\[
\frac{dP}{dt} = \int_0^t \mathbf{R}(t - \tau)P(\tau)d\tau \quad \Rightarrow \quad s\hat{P}(s) - P(0) = \hat{\mathbf{R}}(s)P(s)
\]

- Projection corresponding to clustering protocol \(A \)?
- Relation between \(\hat{\mathbf{R}}(s) \) and \(\mathbf{K} \)?

\(\mathbf{u} = \mathcal{P}\mathbf{p}, \quad s\hat{\mathbf{u}}(s) - \mathbf{u}(0) = \hat{\mathbf{M}}(s)\hat{\mathbf{u}}(s) \)

Assume \(n \times N \) matrix \(\mathbf{H} \): \(\mathbf{u} = \mathcal{P}\mathbf{p} \quad \Rightarrow \quad \mathcal{P} = \mathbf{H}A^T \)

Also, \(\mathcal{P}^2 = \mathcal{P} \quad \Rightarrow \quad A^T \mathbf{H} = \mathbf{I}_N \quad \Rightarrow \quad \hat{\mathbf{R}}(s) = A^T \hat{\mathbf{M}}(s) \mathbf{H} \)

\[
\hat{\mathbf{R}}(s) = sA^T \mathbf{K}(s\mathbf{I}_n - \mathbf{K} + \mathbf{H}A^T \mathbf{K})^{-1} \mathbf{H}
\]

DB:

\[
\hat{\mathbf{R}}(s)\mathbf{D}_N = \mathbf{D}_N \hat{\mathbf{R}}^T(s), \quad (\mathbf{D}_N)_{IJ} = \mathbf{P}^\text{eq}_I \delta_{IJ}
\]

\[
\mathbf{H} = \mathbf{D}_n \mathbf{A} \mathbf{D}_N^{-1} \quad \text{with} \quad (\mathbf{D}_n)_{ij} = \mathbf{p}^\text{eq}_i
\]
Def macrostates: \(P = A^T p \)

\[
\frac{dP}{dt} = \int_0^t R(t - \tau)P(\tau)d\tau \Rightarrow s\hat{P}(s) - P(0) = \hat{R}(s)P(s)
\]

- Projection corresponding to clustering protocol \(A \)?
- Relation between \(\hat{R}(s) \) and \(K \)?

\[
u = Pp, \quad s\hat{u}(s) - u(0) = \hat{M}(s)\hat{u}(s)
\]

Assume \(n \times N \) matrix \(H \):

\[
u = HP \Rightarrow P = HA^T
\]

Also, \(P^2 = P \Rightarrow A^T H = I_N \Rightarrow \hat{R}(s) = A^T \hat{M}(s)H
\]

\[
\hat{R}(s) = sA^T K(sI_n - K + H A^T K)^{-1} H
\]

DB:

\[
\begin{align*}
\hat{R}(s)D_N &= D_N \hat{R}^T(s), \\
(D_N)_{IJ} &= P_{I}^{eq} \delta_{IJ}
\end{align*}
\]

\[
H = D_n A D_n^{-1}
\]

with \((D_n)_{ij} = p_{i}^{eq}\)

for \(s \to \infty \):

\[
\hat{R}(\infty) = A^T K H
\]

\[
\hat{R}(\infty)D_N = A^T K D_n A
\]
Def macrostates: \(\mathbf{P} = \mathbf{A}^T \mathbf{p} \)

\[
\frac{d\mathbf{P}}{dt} = \int_0^t \mathbf{R}(t - \tau) \mathbf{P}(\tau) d\tau \quad \Rightarrow \quad s\hat{\mathbf{P}}(s) - \mathbf{P}(0) = \hat{\mathbf{R}}(s) \mathbf{P}(s)
\]

- Projection corresponding to clustering protocol \(\mathbf{A} \)?
- Relation between \(\hat{\mathbf{R}}(s) \) and \(\mathbf{K} \)?

\(\mathbf{u} = \mathcal{P} \mathbf{p}, \quad s\hat{\mathbf{u}}(s) - \mathbf{u}(0) = \hat{\mathbf{M}}(s) \hat{\mathbf{u}}(s) \)

Assume \(n \times N \) matrix \(\mathbf{H} \):

\[\mathbf{u} = \mathbf{H} \mathbf{p} \quad \Rightarrow \quad \mathcal{P} = \mathbf{H} \mathbf{A}^T \]

Also,

\[\mathcal{P}^2 = \mathcal{P} \quad \Rightarrow \quad \mathbf{A}^T \mathbf{H} = \mathbf{I}_N \quad \Rightarrow \quad \hat{\mathbf{R}}(s) = \mathbf{A}^T \hat{\mathbf{M}}(s) \mathbf{H} \]

\[\hat{\mathbf{R}}(s) = s \mathbf{A}^T \mathbf{K} (s \mathbf{I}_n - \mathbf{K} + \mathbf{H} \mathbf{A}^T \mathbf{K})^{-1} \mathbf{H} \]

DB:

\[
\begin{align*}
\hat{\mathbf{R}}(s) \mathbf{D}_N &= \mathbf{D}_N \hat{\mathbf{R}}^T(s), \\
(\mathbf{D}_N)_{IJ} &= P_{I}^{eq} \delta_{IJ}
\end{align*}
\]

\[\mathbf{H} = \mathbf{D}_n \mathbf{A} \mathbf{D}_N^{-1} \quad \text{with} \quad (\mathbf{D}_n)_{ij} = P_{i}^{eq} \]

for \(s \to \infty \):

\(\hat{\mathbf{R}}(\infty) = \mathbf{A}^T \mathbf{K} \mathbf{H} \)

\[R_{IJ} P_{J}^{eq} = [\hat{\mathbf{R}}(\infty) \mathbf{D}_N]_{IJ} = [\mathbf{A}^T \mathbf{K} \mathbf{D}_n \mathbf{A}]_{IJ} = \sum_{i \in I, j \in J} K_{ij} P_{j}^{eq} \]
Def macrostates: \(\mathbf{P} = \mathbf{A}^T \mathbf{p} \)

\[
\frac{d\mathbf{P}}{dt} = \int_0^t \mathbf{R}(t - \tau) \mathbf{P}(\tau) d\tau \Rightarrow s\dot{\mathbf{P}}(s) - \mathbf{P}(0) = \hat{\mathbf{R}}(s) \mathbf{P}(s)
\]

- Projection corresponding to clustering protocol \(\mathbf{A} \)?
- Relation between \(\hat{\mathbf{R}}(s) \) and \(\mathbf{K} \)?

\(\mathbf{u} = \mathcal{P} \mathbf{p}, \quad s\dot{\mathbf{u}}(s) - \mathbf{u}(0) = \hat{\mathbf{M}}(s) \mathbf{u}(s) \)

- Assume \(n \times N \) matrix \(\mathbf{H} \): \(\mathbf{u} = \mathbf{H} \mathbf{p} \quad \Rightarrow \quad \mathcal{P} = \mathbf{H} \mathbf{A}^T \)

- Also, \(\mathcal{P}^2 = \mathcal{P} \quad \Rightarrow \quad \mathbf{A}^T \mathbf{H} = \mathbf{I}_N \quad \Rightarrow \quad \hat{\mathbf{R}}(s) = \mathbf{A}^T \hat{\mathbf{M}}(s) \mathbf{H} \)

\[
\hat{\mathbf{R}}(s) = s \mathbf{A}^T \mathbf{K}(s\mathbf{I}_n - \mathbf{K} + \mathbf{H} \mathbf{A}^T \mathbf{K})^{-1} \mathbf{H}
\]

- DB:
 \[
 \hat{\mathbf{R}}(s) \mathbf{D}_N = \mathbf{D}_N \mathbf{R}^T(s), \quad (\mathbf{D}_N)_{IJ} = P_{IJ}^{\text{eq}} \delta_{IJ}
 \]

\[
\mathbf{H} = \mathbf{D}_n \mathbf{A} \mathbf{D}_N^{-1} \quad \text{with} \quad (\mathbf{D}_n)_{ij} = p_{ij}^{\text{eq}}
\]

- for \(s \rightarrow \infty \): \(\hat{\mathbf{R}}(\infty) = \mathbf{A}^T \mathbf{K} \mathbf{H} \)

\[
R_{IJ} P_{J}^{\text{eq}} = [\hat{\mathbf{R}}(\infty) \mathbf{D}_N]_{IJ} = [\mathbf{A}^T \mathbf{K} \mathbf{D}_N \mathbf{A}]_{IJ} = \sum_{i \in I, j \in J} K_{ij} p_{j}^{\text{eq}}
\]

Retrieve local equilibrium
general s: $A^T (sI_n - K)^{-1} D_n A = (sI_N - \hat{R}(s))^{-1} D_N$
general s: $A^T (sI_n - K)^{-1} D_n A = (sI_N - \hat{R}(s))^{-1} D_N$

Subtract off $s^{-1} A^T D_n D_n^T A = s^{-1} D_N D_N^T$

$A^T \left((sI_n - K)^{-1} D_n - \frac{1}{s} D_n D_n^T \right) A = (sI_N - \hat{R}(s))^{-1} D_N - \frac{1}{s} D_N D_N^T$
general s: $A^T(sI_n - K)^{-1}D_nA = (sI_N - \hat{R}(s))^{-1}D_N$

Subtract off $s^{-1}A^TD_nD_{n}^TA = s^{-1}D_ND_N^T$

$A^T\left((sI_n - K)^{-1}D_n - \frac{1}{s}D_nD_{n}^T\right)A = (sI_N - \hat{R}(s))^{-1}D_N - \frac{1}{s}D_ND_N^T$

Equating **Laplace transformed correlations** naturally arises!

$$\sum_{i \in I} \sum_{j \in J} \hat{C}_{ij}(s) = \hat{C}_{IJ}^{CG}(s) \quad \hat{f}(s) = \int_0^\infty dt \, f(t)e^{-st}$$

when **projections preserve detailed balance**
general s: $A^T(sI_n - K)^{-1}D_nA = (sI_N - \hat{R}(s))^{-1}D_N$

Subtract off $s^{-1}A^TD_nD_n^TA = s^{-1}D_ND_N^T$

$A^T\left((sI_n - K)^{-1}D_n - \frac{1}{s}D_nD_n^T\right)A = (sI_N - \hat{R}(s))^{-1}D_N - \frac{1}{s}D_ND_N^T$

Equating **Laplace transformed correlations** naturally arises!

$$\sum_{i \in I} \sum_{j \in J} \hat{C}_{ij}(s) = \hat{C}_{IJ}^G(s) \quad \hat{f}(s) = \int_0^\infty dt f(t)e^{-st}$$

when **projections preserve detailed balance**

LE and HS correspond to $s \to \infty$ and $s \to 0$, same

$$\mathcal{P} = D_nAD_N^{-1}A^T$$
general s: $A^T(sI_n - K)^{-1}D_nA = (sI_N - \hat{R}(s))^{-1}D_N$

Subtract off $s^{-1}A^TD_nD_n^TA = s^{-1}D_ND_N^T$

$$A^T((sI_n - K)^{-1}D_n - \frac{1}{s}D_nD_n^T)A = (sI_N - \hat{R}(s))^{-1}D_N - \frac{1}{s}D_ND_N^T$$

Equating **Laplace transformed correlations** naturally arises!

$$\sum_{i \in I} \sum_{j \in J} \hat{C}_{ij}(s) = \hat{C}^{CG}_{IJ}(s) \quad \hat{f}(s) = \int_0^\infty dt f(t)e^{-st}$$

when **projections preserve detailed balance**

LE and HS correspond to $s \to \infty$ and $s \to 0$, same

$$\mathcal{P} = D_nAD_N^{-1}A^T$$

$s \to 0$:

$$\hat{R} = P^{eq}1_N^T - D_N[A^T(p^{eq}1_n^T - K)^{-1}D_nA]^{-1}$$
Outline

1 Introduction
 • Motivation
 • Constructing Markov State Models

2 Clustering Methods
 • Perron Cluster Cluster Analysis
 • Effective rates
 • Projection techniques
 • Variational coarse-graining
 • MFPT in variational Coarse-graining
 • Limiting relaxation times

3 Conclusions
In fact, can build Markovian approximations that preserve other properties of correlation functions:

$$\sum_{i \in I} \sum_{j \in J} \int_{\tau_1}^{\tau_2} C_{ij}(\tau) d\tau = \int_{\tau_1}^{\tau_2} C_{IJ}^{CG}(\tau) d\tau$$
In fact, can build **Markovian approximations** that preserve other properties of correlation functions:

\[
\sum_{i \in I} \sum_{j \in J} \int_{\tau_1}^{\tau_2} C_{ij}(\tau) d\tau = \int_{\tau_1}^{\tau_2} C_{IJ}^{CG}(\tau) d\tau
\]

A variational principle applies to the second largest eigenvalue of \(R \)

\[
|\mu_2| \geq |\lambda_2|
\]

with

\[
\begin{align*}
K \phi^{(i)} &= \lambda_i \phi^{(i)} \\
R \Phi(I) &= \mu_I \Phi(I)
\end{align*}
\]
In fact, can build Markovian approximations that preserve other properties of correlation functions:

$$\sum_{i \in I} \sum_{j \in J} \int_{\tau_1}^{\tau_2} C_{ij}(\tau) d\tau = \int_{\tau_1}^{\tau_2} C_{IJ}^{CG}(\tau) d\tau$$

A variational principle applies to the second largest eigenvalue of R

$$|\mu_2| \geq |\lambda_2|$$

with

$$\begin{cases} K\phi^{(i)} = \lambda_i \phi^{(i)} \\ R\Phi(I) = \mu_I \Phi(I) \end{cases}$$

Second eigenvalue as a variational parameter

- Second eigenvalue has been shown to decrease with increasing lag-time and finer discretization

[Prinz et al, JCP (2011); Sarich, Noe, Schütte MMS (2010), Djurdjevac, Sarich, Schütte (2012), Noe & Nüske, MMS (2013)]

"In contrast to previous practice, it becomes clear that the best MSM is not obtained by the most metastable discretization, but the MSM can be much improved if non-metastable states are introduced near the transition states"
Second eigenvalue as a variational parameter

- Second eigenvalue has been shown to decrease with increasing lag-time and finer discretization

[Prinz et al, JCP (2011); Sarich, Noe, Schütte MMS (2010), Djurdjevac, Sarich, Schütte (2012), Noe & Nüske, MMS (2013)]

"In contrast to previous practice, it becomes clear that the best MSM is not obtained by the most metastable discretization, but the MSM can be much improved if non-metastable states are introduced near the transition states"
Second eigenvalue as a variational parameter

- Second eigenvalue has been shown to decrease with increasing lag-time and finer discretization

[Prinz et al, JCP (2011); Sarich, Noe, Schutte MMS (2010), Djurdjevac, Sarich, Schütte (2012), Noe & Nüske, MMS (2013)]
Second eigenvalue as a variational parameter

- Second eigenvalue has been shown to decrease with increasing lag-time and finer discretization

“In contrast to previous practice, it becomes clear that the best MSM is not obtained by the most metastable discretization, but the MSM can be much improved if non-metastable states are introduced near the transition states”

[Prinz et al, JCP (2011); Sarich, Noe, Schutte MMS (2010), Djurdjevac, Sarich, Schütte (2012), Noe & Nüske, MMS (2013)]
Variational coarse-graining

- Idea: choose A that minimizes $|\mu_2|$
Variational coarse-graining

- Idea: choose A that minimizes $|\mu_2|$
Variational coarse-graining

- Idea: choose A that minimizes $|\mu_2|$

[Image of three graphs showing potential energy functions]

[Martini et al., PRX 7, 031060 (2017)]
Variational coarse-graining

- **Idea:** choose A that minimizes $|\mu_2|$

- Minimization of $|\mu_2|$ correctly identifies **key metastable states & transition states**, as one increases the number of clusters.

[Martini et al., PRX 7, 031060 (2017)]
Variational coarse-graining

- Idea: choose A that minimizes $|\mu_2|$

Minimization of $|\mu_2|$ correctly identifies key metastable states & transition states, as one increases the number of clusters.

Aim: define minimal variationally optimal transition network consisting of key metastable & transition states.

[Source: Martini et al., PRX 7, 031060 (2017)]
Outline

1 Introduction
 • Motivation
 • Constructing Markov State Models

2 Clustering Methods
 • Perron Cluster Cluster Analysis
 • Effective rates
 • Projection techniques
 • Variational coarse-graining
 • MFPT in variational Coarse-graining
 • Limiting relaxation times

3 Conclusions
Can we understand optimal position of the boundaries and width of TS in a quantitative way?

First look at optimal position of first boundary $a \Rightarrow 2$-state clustering:

$$\tau_2(a) = \int_0^\infty C_{11}(t) C_{11}(0) dt = \int_0^\infty \langle \delta \theta_1(0) \delta \theta_1(t) \rangle \langle \delta \theta_1(0) \rangle dt,$$

$$\theta_1(x) = \begin{cases} 1 & x \leq a \\ 0 & x > a \end{cases}$$

[Chandler, JCP (1978), Skinner & Wolynes, JCP (1978), Perico et al., JCP (1993)]

Can expand integral of correlation in terms of potential

$$\int_0^\infty \langle \delta \theta_i(0) \delta \theta_i(t) \rangle dt = \int_{-\infty}^\infty dx \ De^{-\beta v(x)} \left[\int_\infty^x \delta \theta_i(y) e^{-\beta v(y)} dy \right]^2 \int_{-\infty}^\infty e^{-\beta v(x)} dx$$

[Szabo, Shulten and Shulten, JCP (1980), Bicout & Szabo, JCP (1997)]
Can we understand optimal positions of the boundaries and the width of TS in a quantitative way?

First look at optimal position of first boundary a

$\tau_2(a) = \int_0^\infty C_{11}(t)C_{11}(0) dt = \int_0^\infty \langle \delta \theta_1(0) \delta \theta_1(t) \rangle dt, \quad \theta_1(x) = \begin{cases} 1 & x \leq a \\ 0 & x > a \end{cases}$

[Chandler, JCP (1978), Skinner & Wolynes, JCP (1978), Perico et al., JCP (1993)]

Can expand integral of correlation in terms of potential

$\int_0^\infty \langle \delta \theta_i(0) \delta \theta_i(t) \rangle dt = \int_{-\infty}^\infty dx De - \beta v(x) \left[\int_{-\infty}^x \delta \theta_i(y) e^{-\beta v(y)} dy \right]^2 \int_{-\infty}^\infty e^{-\beta v(x)} dx$

[Szabo, Shulten and Shulten, JCP (1980), Bicout & Szabo, JCP (1997)]
Can we understand optimal position of the boundaries?
Optimal boundary positions

- Can we understand optimal position of the boundaries?
- & width of TS in a quantitative way?

- First look at optimal position of first boundary
- $\tau_2(a) = \int_0^\infty C_{11}(t) C_{11}(0) dt = \int_0^\infty \langle \delta \theta_1(0) \delta \theta_1(t) \rangle dt$, $\theta_1(x) = \{ 1 \text{ if } x < a, 0 \text{ if } x > a \} [\text{Chandler, JCP (1978), Skinner & Wolynes, JCP (1978), Perico et al., JCP (1993)}]

- Can expand integral of correlation in terms of potential $\int_0^\infty \langle \delta \theta_i(0) \delta \theta_i(t) \rangle dt = \int_{-\infty}^\infty dx D e^{-\beta v(x)} \left[\int_0^x \delta \theta_i(y) e^{-\beta v(y)} dy \right]^2 \int_{-\infty}^\infty e^{-\beta v(x)} dx [\text{Szabo, Shulten and Shulten, JCP (1980), Bicout & Szabo, JCP (1997)}]$
Can we understand optimal position of the boundaries?

& width of TS in a quantitative way?

First look at optimal position of first boundary a
Optimal boundary positions

- Can we understand optimal position of the boundaries?
- & width of TS in a quantitative way?

First look at optimal position of first boundary a

\Rightarrow 2-state clustering:

$$\tau_2(a) = \int_0^\infty \frac{C_{11}(t)}{C_{11}(0)} dt = \int_0^\infty \frac{\langle \delta \theta_1(0) \delta \theta_1(t) \rangle}{\langle \delta \theta_1(0)^2 \rangle} dt,$$

$$\theta_1(x) = \begin{cases}
1 & x \leq a \\
0 & x > a
\end{cases}$$

[Chandler, JCP (1978), Skinner & Wolynes, JCP (1978), Perico et al., JCP (1993)]
Optimal boundary positions

- Can we understand optimal position of the boundaries?
- & width of TS in a quantitative way?

First look at optimal position of first boundary a

\Rightarrow 2-state clustering:

$$\tau_2(a) = \int_0^\infty \frac{C_{11}(t)}{C_{11}(0)} \, dt = \int_0^\infty \frac{\langle \delta \theta_1(0) \delta \theta_1(t) \rangle}{\langle \delta \theta_1(0)^2 \rangle} \, dt, \quad \theta_1(x) = \begin{cases} 1 & x \leq a \\ 0 & x > a \end{cases}$$

[Chandler, JCP (1978), Skinner & Wolynes, JCP (1978), Perico et al., JCP (1993)]

- Can expand integral of correlation in terms of potential

$$\int_0^\infty \langle \delta \theta_i(0) \delta \theta_i(t) \rangle \, dt = \int_{-\infty}^\infty \frac{dx}{De^{-\beta v(x)}} \left[\int_x^\infty \delta \theta_i(y) e^{-\beta v(y)} \, dy \right]^2 \int_{-\infty}^\infty e^{-\beta v(x)} \, dx$$

[Szabo, Shulten and Shulten, JCP (1980), Bicout & Szabo, JCP (1997)]
mean first passage time to reach barrier at a starting in 2

$$t_{a2} = \int_a^\infty \frac{dx}{Dp_2(x)} \left[\int_x^\infty dy p_2(y) \right] , \quad \text{with} \quad p_2(x) = \frac{e^{-\beta v(x)}}{\int_a^\infty e^{-\beta v(x)} dx}$$
mean first passage time to reach barrier at a starting in 2

$$t_{a2} = \int_a^\infty \frac{dx}{Dp_2(x)} \left[\int_x^\infty dy p_2(y) \right], \quad \text{with} \quad p_2(x) = \frac{e^{-\beta v(x)}}{\int_a^\infty e^{-\beta v(x)} dx}$$

Use properties of step functions and some algebra

$$\tau_2(a) = P_{1eq} t_{a2} + P_{2eq} t_{a1}$$
mean first passage time to reach barrier at \(a \) starting in 2

\[
t_{a2} = \int_a^\infty \frac{dx}{Dp_2(x)} \left[\int_x^\infty dy \, p_2(y) \right], \quad \text{with} \quad p_2(x) = \frac{e^{-\beta v(x)}}{\int_a^\infty e^{-\beta v(x)} dx}
\]

- Use properties of step functions and some algebra

\[
\tau_2(a) = P_{1}^{eq} t_{a2} + P_{2}^{eq} t_{a1}
\]

- Can explicitly differentiate!

\[
\frac{d\tau_2(a)}{da} = 0 \quad \Rightarrow \quad P_{1}^{eq} t_{a2} = P_{2}^{eq} t_{a1}
\]

• **mean first passage time** to reach barrier at \(a \) starting in 2

\[
t_{a2} = \int_a^\infty \frac{dx}{Dp_2(x)} \left[\int_x^\infty dy p_2(y) \right], \quad \text{with} \quad p_2(x) = \frac{e^{-\beta v(x)}}{\int_a^\infty e^{-\beta v(x)} \, dx}
\]

• Use properties of step functions and some algebra

\[
\tau_2(a) = P_{1eq}^t a_2 + P_{2eq}^t a_1
\]

• Can explicitly differentiate!

\[
\frac{d\tau_2(a)}{da} = 0 \quad \Rightarrow \quad \boxed{P_{1eq}^t a_2 = P_{2eq}^t a_1}
\]

• Combine with DB & \(\tau_2 = 1/(R_{12} + R_{21}) \) get **effective rates**

\[
R_{12} + R_{21} = \frac{1}{2P_{1eq}^t a_2} \quad \Rightarrow \quad R_{12} = \frac{1}{2t_{a2}}, \quad R_{21} = \frac{1}{2t_{a1}}
\]
mean first passage time to reach barrier at \(a \) starting in 2

\[
t_{a2} = \int_{a}^{\infty} \frac{dx}{Dp_{2}(x)} \left[\int_{x}^{\infty} dy p_{2}(y) \right], \quad \text{with} \quad p_{2}(x) = \frac{e^{-\beta v(x)}}{\int_{a}^{\infty} e^{-\beta v(x)} dx}
\]

Use properties of step functions and some algebra

\[
\tau_{2}(a) = P_{1}^{eq} t_{a2} + P_{2}^{eq} t_{a1}
\]

Can explicitly differentiate!

\[
\frac{d\tau_{2}(a)}{da} = 0 \quad \Rightarrow \quad P_{1}^{eq} t_{a2} = P_{2}^{eq} t_{a1}
\]

Combine with DB & \(\tau_{2} = 1/(R_{12} + R_{21}) \) get effective rates

\[
R_{12} + R_{21} = \frac{1}{2P_{1}^{eq} t_{a2}} \quad \Rightarrow \quad R_{12} = \frac{1}{2t_{a2}}, \quad R_{21} = \frac{1}{2t_{a1}}
\]

Transparent interpretation: fluxes crossing the boundary in each direction must equate!
• mean first passage time to reach barrier at \(a \) starting in 2

\[
t_a^2 = \int_a^\infty \frac{dx}{Dp_2(x)} \left[\int_x^\infty dy \, p_2(y) \right], \quad \text{with} \quad p_2(x) = \frac{e^{-\beta v(x)}}{\int_a^\infty e^{-\beta v(x)} \, dx}
\]

• Use properties of step functions and some algebra

\[
\tau_2(a) = P_1^{eq} t_a^2 + P_2^{eq} t_a^1
\]

• Can explicitly differentiate!

\[
\frac{d\tau_2(a)}{da} = 0 \quad \Rightarrow \quad P_1^{eq} t_a^2 = P_2^{eq} t_a^1
\]

• Combine with DB & \(\tau_2 = 1/(R_{12} + R_{21}) \) get effective rates

\[
R_{12} + R_{21} = \frac{1}{2P_1^{eq} t_a^2} \quad \Rightarrow \quad R_{12} = \frac{1}{2t_a^2}, \quad R_{21} = \frac{1}{2t_a^1}
\]

• Transparent interpretation: fluxes crossing the boundary in each direction must equate!

• for 3-state clustering, symmetric potential (boundaries \(\pm a \))

\[
P_1^{eq} t_{-aa} = t_{-a1}
\]
Test on analytical potential

Arrhenius rates:

$$K_{ij} = \frac{A e^{-\left(\frac{V_i - V_j}{2kBT} \right)}}{i = j}$$

MFPT computed via Meyer method

$$t_{ji} = \tau_{Q_{ji}}(\tau) + \sum_{k \neq j} Q_{ki}(\tau)(t_{jk} + \tau)$$

Test on analytical potential

Arrhenius rates:

\[K_{ij} = A e^{- \frac{(V_i - V_j)}{2k_B T}} \]
Test on analytical potential

Arrhenius rates:

\[K_{ij} = A e^{-\frac{(V_i - V_j)}{2k_B T}} \]

[Kells, Mihálka, Annibale, Rosta, J. *Chem. Phys.* (2019)]

MFPT computed via Meyer method

\[t_{ji} = \tau Q_{ji}(\tau) + \sum_{k(\neq j)} Q_{ki}(\tau)(t_{jk} + \tau) \]
Test on symmetric potentials

Two-state clustering

Three-state clustering
Simulations of Alanine Pentapeptide (Ala$_5$)

Martini, et al., PRX (2017)

Estimating MFPT: T_1, \ldots, T_k crossing times

\[
\sum_i \frac{k/2}{\sum_i^N_i} = \frac{\sum_i^k (N_i + 1)N_i/2}{\sum_i^k N_i}
\]

k crossing events

\[
N_i = (T_{i+1} - T_i)/\tau
\]
Simulations of Ala$_5$

Error bars are obtained from 4 equal segments of the MD simulation trajectory. [Kells et al., JCP (2019)]
Boundary position dependence on lag-time

- With one boundary, LE and HS give the same result
- With two boundaries, LE converge to HS at large lag-time

Martini et al., PRX (2017)

Can we use functional dependence of eigenvalue on the lag-time, to infer the true relaxation time?
Boundary position dependence on lag-time

- With one boundary, LE and HS give the same result.
- With two boundaries, LE converge to HS at large lag-time.

[Martini et al., PRX (2017)]
Boundary position dependence on lag-time

- With one boundary, LE and HS give the same result
- With two boundaries, LE converge to HS at large lag-time

[Martini et al., PRX (2017)]
Boundary position dependence on lag-time

- With one boundary, LE and HS give the same result
- With two boundaries, LE converge to HS at large lag-time

[Martini et al., PRX (2017)]

Can we use functional dependence of eigenvalue on the lag-time, to infer the true relaxation time?
Outline

1 Introduction
 - Motivation
 - Constructing Markov State Models

2 Clustering Methods
 - Perron Cluster Cluster Analysis
 - Effective rates
 - Projection techniques
 - Variational coarse-graining
 - MFPT in variational Coarse-graining
 - Limiting relaxation times

3 Conclusions
Limiting relaxation time

\[Q \phi^{(i)} = \lambda_i \phi^{(i)} \quad \psi^{(i)} Q = \lambda_i \psi^{(i)} \quad \phi_n^{(i)} = p_{n}^{eq} \psi_n^{(i)} \]
Limiting relaxation time

\[Q \phi^{(i)} = \lambda_i \phi^{(i)} \quad \psi^{(i)} Q = \lambda_i \psi^{(i)} \quad \phi^{(i)} = p_{eq} \psi^{(i)} \]

- Normalised correlation function of \(f, g \) in MSM \(Q^{CG} \)

\[C(f, g, \tau, Q^{CG}) = \frac{\sum_{I=2}^{N} e^{\mu I \tau} (g \cdot \Phi^{(I)})(f \cdot \Phi^{(I)})}{\sum_{I=2}^{N} (g \cdot \Phi^{(I)})(f \cdot \Phi^{(I)})} \]
Limiting relaxation time

\[Q\phi^{(i)} = \lambda_i \phi^{(i)} \quad \psi^{(i)} Q = \lambda_i \psi^{(i)} \quad \phi^{(i)}_n = p_{n_{eq}} \psi^{(i)}_n \]

- Normalised correlation function of \(f, g \) in MSM \(Q^{CG} \)

\[C(f, g, \tau, Q^{CG}) = \frac{\sum_{I=2}^{N} e^{\mu_I \tau} (g \cdot \Phi^{(I)})(f \cdot \Phi^{(I)})}{\sum_{I=2}^{N} (g \cdot \Phi^{(I)})(f \cdot \Phi^{(I)})} \]

- Set \(f = g = \Psi^{(2)} \): \(C(\Psi^{(2)}, \Psi^{(2)}, \tau, Q^{CG}) = e^{\mu_2 \tau} \)
Limiting relaxation time

\[Q\phi^{(i)} = \lambda_i \phi^{(i)} \quad \psi^{(i)} Q = \lambda_i \psi^{(i)} \quad \phi_n^{(i)} = p_{eq} \psi_n^{(i)} \]

- Normalised correlation function of \(f, g \) in MSM \(Q^{CG} \)

\[
C(f, g, \tau, Q^{CG}) = \frac{\sum_{I=2}^{N} e^{\mu_I \tau} (g \cdot \Phi^{(I)})(f \cdot \Phi^{(I)})}{\sum_{I=2}^{N} (g \cdot \Phi^{(I)})(f \cdot \Phi^{(I)})}
\]

- Set \(f = g = \Psi^{(2)} \):

\[
C(\Psi^{(2)}, \Psi^{(2)}, \tau, Q^{CG}) = e^{\mu_2 \tau}
\]

- Project MSM eigenvector onto full dimensional space \(\Psi^{(2)} A^T \)

\[
C(\Psi^{(2)} A^T, \Psi^{(2)} A^T, \tau, Q) = \frac{\sum_{i=2}^{\infty} e^{\lambda_i \tau} (\Psi^{(2)} A^T \cdot \phi^{(i)})(\Psi^{(2)} A^T \cdot \phi^{(i)})}{\sum_{i=2}^{\infty} (\Psi^{(2)} A^T \cdot \phi^{(i)})(\Psi^{(2)} A^T \cdot \phi^{(i)})} = \sum_{i=2}^{\infty} A_i e^{\lambda_i \tau}
\]
Limiting relaxation time \[\text{[Kells, Annibale, Rosta, JCP (2018)]}\]

\[Q \phi^{(i)} = \lambda_i \phi^{(i)} \]
\[\psi^{(i)} Q = \lambda_i \psi^{(i)} \]
\[\phi_n^{(i)} = \rho_n \psi_n^{(i)} \]

- Normalised correlation function of \(f, g\) in MSM \(Q^{\text{CG}}\):

\[C(f, g, \tau, Q^{\text{CG}}) = \frac{\sum_{I=2}^{N} e^{\mu I \tau} (g \cdot \Phi(I)) (f \cdot \Phi(I))}{\sum_{I=2}^{N} (g \cdot \Phi(I)) (f \cdot \Phi(I))} \]

- Set \(f = g = \Psi^{(2)}\):

\[C(\Psi^{(2)}, \Psi^{(2)}, \tau, Q^{\text{CG}}) = e^{\mu_2 \tau} \]

- Project MSM eigenvector onto full dimensional space \(\Psi^{(2)} A^T\):

\[C(\Psi^{(2)} A^T, \Psi^{(2)} A^T, \tau, Q) = \frac{\sum_{i=2}^\infty e^{\lambda_i \tau} (\Psi^{(2)} A^T \cdot \phi^{(i)})(\Psi^{(2)} A^T \cdot \phi^{(i)})}{\sum_{i=2}^\infty (\Psi^{(2)} A^T \cdot \phi^{(i)})(\Psi^{(2)} A^T \cdot \phi^{(i)})} = \sum_{i=2}^\infty A_i e^{\lambda_i \tau} \]

- \(\tau \gg 1\):

\[e^{\mu_2 \tau} \approx A_2 e^{\lambda_2 \tau} \quad \Rightarrow \quad \mu_2 = \lambda_2 + \frac{\epsilon}{\tau} \quad \text{with} \quad \epsilon = \log A_2 \]
\[Q \phi^{(i)} = \lambda_i \phi^{(i)} \quad \psi^{(i)} Q = \lambda_i \psi^{(i)} \quad \phi_n^{(i)} = p_{eq}^{(i)} \psi_n^{(i)} \]

- Normalised correlation function of \(f, g \) in MSM \(Q^{CG} \)

\[
C(f, g, \tau, Q^{CG}) = \frac{\sum_{I=2}^{N} e^{\mu I \tau} (g \cdot \Phi^{(I)})(f \cdot \Phi^{(I)})}{\sum_{I=2}^{N} (g \cdot \Phi^{(I)})(f \cdot \Phi^{(I)})}
\]

- Set \(f = g = \Psi^{(2)} \): \(C(\Psi^{(2)}, \Psi^{(2)}, \tau, Q^{CG}) = e^{\mu_2 \tau} \)

- Project MSM eigenvector onto full dimensional space \(\Psi^{(2)} A^T \)

\[
C(\Psi^{(2)} A^T, \Psi^{(2)} A^T, \tau, Q) = \frac{\sum_{i=2}^{\infty} e^{\lambda_i \tau} (\Psi^{(2)} A^T \cdot \phi^{(i)})(\Psi^{(2)} A^T \cdot \phi^{(i)})}{\sum_{i=2}^{\infty} (\Psi^{(2)} A^T \cdot \phi^{(i)})(\Psi^{(2)} A^T \cdot \phi^{(i)})} = \sum_{i=2}^{\infty} A_i e^{\lambda_i \tau}
\]

- \(\tau \gg 1: \) \(e^{\mu_2 \tau} \approx A_2 e^{\lambda_2 \tau} \implies \mu_2 = \lambda_2 + \frac{\epsilon}{\tau} \) with \(\epsilon = \log A_2 \)

\[
\lambda_2^{-1} = t_{\text{relax}}, \quad \mu_2^{-1} = t_{\text{relax}}^{\text{MSM}}, \quad t_{\text{relax}}^{\text{MSM}} = \frac{\tau t_{\text{relax}}}{\tau + \epsilon t_{\text{relax}}}
\]
Limiting relaxation time \[\text{[Kells, Annibale, Rosta, JCP (2018)]} \]

\[
Q\phi^{(i)} = \lambda_i \phi^{(i)} \quad \psi^{(i)} Q = \lambda_i \psi^{(i)} \quad \phi_n^{(i)} = p_{n\text{eq}} \psi_n^{(i)}
\]

- Normalised correlation function of \(f, g \) in MSM \(Q^{CG} \)

\[
C(f, g, \tau, Q^{CG}) = \frac{\sum_{I=2}^{N} e^{\mu I \tau} (g \cdot \Phi^{(I)})(f \cdot \Phi^{(I)})}{\sum_{I=2}^{N} (g \cdot \Phi^{(I)})(f \cdot \Phi^{(I)})}
\]

- Set \(f = g = \Psi^{(2)} \):

\[
C(\Psi^{(2)}, \Psi^{(2)}, \tau, Q^{CG}) = e^{\mu 2 \tau}
\]

- Project MSM eigenvector onto full dimensional space \(\Psi^{(2)} A^T \)

\[
C(\Psi^{(2)} A^T, \Psi^{(2)} A^T, \tau, Q) = \sum_{i=2}^{\infty} e^{\mu i \tau} (\Psi^{(2)} A^T \cdot \phi^{(i)})(\Psi^{(2)} A^T \cdot \phi^{(i)}) = \sum_{i=2}^{\infty} A_i e^{\mu i \tau}
\]

- \(\tau \gg 1 \):

\[
e^{\mu 2 \tau} \approx A_2 e^{\lambda_2 \tau} \quad \Rightarrow \quad \mu_2 = \lambda_2 + \frac{\epsilon}{\tau} \quad \text{with} \quad \epsilon = \log A_2
\]

\[
\lambda_2^{-1} = t_{\text{relax}}, \quad \mu_2^{-1} = t^{\text{MSM}_{\text{relax}}}, \quad t_{\text{relax}}^{\text{MSM}} = \frac{\tau t_{\text{relax}}}{\tau + \epsilon t_{\text{relax}}}
\]

- fit to data \(\Rightarrow \) get \(t_{\text{relax}} \) and \(\epsilon \)
Limiting relaxation time [Kells, Annibale, Rosta, JCP (2018)]

\[Q\phi^{(i)} = \lambda_i \phi^{(i)} \quad \psi^{(i)} Q = \lambda_i \psi^{(i)} \quad \phi_n^{(i)} = p_n^{\text{eq}} \psi_n^{(i)} \]

- Normalised correlation function of \(f, g \) in MSM \(Q^{CG} \)

\[
C(f, g, \tau, Q^{CG}) = \frac{\sum_{I=2}^{N} e^{\mu I \tau} (g \cdot \Phi^{(I)}) (f \cdot \Phi^{(I)})}{\sum_{I=2}^{N} (g \cdot \Phi^{(I)}) (f \cdot \Phi^{(I)})}
\]

- Set \(f = g = \Psi^{(2)} \):

\[
C(\Psi^{(2)}, \Psi^{(2)}, \tau, Q^{CG}) = e^{\mu 2 \tau}
\]

- Project MSM eigenvector onto full dimensional space \(\Psi^{(2)} A^T \)

\[
C(\Psi^{(2)} A^T, \Psi^{(2)} A^T, \tau, Q) = \frac{\sum_{i=2}^{\infty} e^{\lambda_i \tau} (\Psi^{(2)} A^T \cdot \phi^{(i)}) (\Psi^{(2)} A^T \cdot \phi^{(i)})}{\sum_{i=2}^{\infty} (\Psi^{(2)} A^T \cdot \phi^{(i)}) (\Psi^{(2)} A^T \cdot \phi^{(i)})} = \sum_{i=2}^{\infty} A_i e^{\lambda_i \tau}
\]

- \(\tau \gg 1 \):

\[
e^{\mu 2 \tau} \approx A_2 e^{\lambda_2 \tau} \quad \Rightarrow \mu_2 = \lambda_2 + \frac{\epsilon}{\tau} \quad \text{with} \quad \epsilon = \log A_2
\]

\[
\lambda_2^{-1} = t_{\text{relax}}, \quad \mu_2^{-1} = t_{\text{relax}}^{\text{MSM}}, \quad t_{\text{relax}}^{\text{MSM}} = \frac{\tau t_{\text{relax}}}{\tau + \epsilon t_{\text{relax}}}
\]

- fit to data \(\Rightarrow \) get \(t_{\text{relax}} \) and \(\epsilon \)

- \(\epsilon \) useful indicator of how Markovian selected variable is!
Test on analytical potential [Kells, Annibale, Rosta, JCP (2018)]

2-state MSM: 100 trajectory length αt_{relax}: left $\alpha = 0.5$, right $\alpha = 2$

3-state MSM
Simulation of Ala$_5$

<table>
<thead>
<tr>
<th>LT=1</th>
<th>LT=1000</th>
<th>EPSILON LIMITING RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.5</td>
<td>516.1</td>
</tr>
<tr>
<td>2</td>
<td>952.2</td>
<td>2700.7</td>
</tr>
<tr>
<td>3</td>
<td>25.5</td>
<td>567.7</td>
</tr>
<tr>
<td>4</td>
<td>687.2</td>
<td>3353.6</td>
</tr>
<tr>
<td>5</td>
<td>33.9</td>
<td>515.8</td>
</tr>
<tr>
<td>6</td>
<td>653.2</td>
<td>2813.0</td>
</tr>
<tr>
<td>7</td>
<td>65.8</td>
<td>424.7</td>
</tr>
<tr>
<td>8</td>
<td>490.0</td>
<td>1929.3</td>
</tr>
<tr>
<td>9</td>
<td>27.1</td>
<td>302.9</td>
</tr>
<tr>
<td>10</td>
<td>189.5</td>
<td>740.5</td>
</tr>
</tbody>
</table>

[Kells, Annibale, Rosta, JCP (2018)]
Simulation of Ala5

Data: four 250ns simulations, started at different initial conditions, $\Delta = 1$ps

Results for ϕ_3
Simulation of Ala5

Data: four 250ns simulations, started at different initial conditions, $\Delta = 1$ps

ϵ may help discriminate between "good" and "bad" RC

Results for ϕ_3

<table>
<thead>
<tr>
<th>COORDINATE</th>
<th>LT=1</th>
<th>LT=1000</th>
<th>EPSILON</th>
<th>LIMITING RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Φ_1)</td>
<td>6.5</td>
<td>516.1</td>
<td>1.81</td>
<td>6976.3</td>
</tr>
<tr>
<td>2 (Ψ_1)</td>
<td>952.2</td>
<td>2700.7</td>
<td>0.23</td>
<td>4711.3</td>
</tr>
<tr>
<td>3 (Φ_2)</td>
<td>25.5</td>
<td>567.7</td>
<td>1.75</td>
<td>6042.0</td>
</tr>
<tr>
<td>4 (Ψ_2)</td>
<td>687.2</td>
<td>3353.6</td>
<td>0.17</td>
<td>6571.1</td>
</tr>
<tr>
<td>5 (Φ_3)</td>
<td>33.9</td>
<td>515.8</td>
<td>2.01</td>
<td>6875.1</td>
</tr>
<tr>
<td>6 (Ψ_3)</td>
<td>653.2</td>
<td>2813.0</td>
<td>0.22</td>
<td>5101.8</td>
</tr>
<tr>
<td>7 (Φ_4)</td>
<td>65.8</td>
<td>424.7</td>
<td>2.47</td>
<td>9421.1</td>
</tr>
<tr>
<td>8 (Ψ_4)</td>
<td>490.0</td>
<td>1929.3</td>
<td>0.47</td>
<td>5325.4</td>
</tr>
<tr>
<td>9 (Φ_5)</td>
<td>27.1</td>
<td>302.9</td>
<td>3.43</td>
<td>11303.5</td>
</tr>
<tr>
<td>10 (Ψ_5)</td>
<td>189.5</td>
<td>740.5</td>
<td>1.06</td>
<td>5594.0</td>
</tr>
</tbody>
</table>
Simulation of Ala5

Data: four 250ns simulations, started at different initial conditions, \(\Delta = 1 \text{ps} \)

Results for \(\phi_3 \)

\[\begin{array}{c|cccc}
\text{COORDINATE} & \text{LT}=1 & \text{LT}=1000 & \text{EPSILON} & \text{LIMITING RT} \\
1 (\Phi_1) & 6.5 & 516.1 & 1.81 & 6976.3 \\
2 (\Psi_1) & 952.2 & 2700.7 & 0.23 & 4711.3 \\
3 (\Phi_2) & 25.5 & 567.7 & 1.75 & 6042.0 \\
4 (\Psi_2) & 687.2 & 3353.6 & 0.17 & 6571.1 \\
5 (\Phi_3) & 33.9 & 515.8 & 2.01 & 6875.1 \\
6 (\Psi_3) & 653.2 & 2813.0 & 0.22 & 5101.8 \\
7 (\Phi_4) & 65.8 & 424.7 & 2.47 & 9421.1 \\
8 (\Psi_4) & 490.0 & 1929.3 & 0.47 & 5325.4 \\
9 (\Phi_5) & 27.1 & 302.9 & 3.43 & 11303.5 \\
10 (\Psi_5) & 189.5 & 740.5 & 1.06 & 5594.0 \\
\end{array}\]

\(\epsilon \) may help discriminate between "good" and "bad" RC

[Kells, Annibale, Rosta, JCP (2018)]
1 Introduction
 • Motivation
 • Constructing Markov State Models

2 Clustering Methods
 • Perron Cluster Cluster Analysis
 • Effective rates
 • Projection techniques
 • Variational coarse-graining
 • MFPT in variational Coarse-graining
 • Limiting relaxation times

3 Conclusions
Suggested Markovian Approximations of Coarse-grained descriptions based on projections
Conclusion

- Suggested Markovian Approximations of Coarse-grained descriptions based on projections
- Proved a variational principle for second largest eigenvalue
Conclusion

- Suggested Markovian Approximations of Coarse-grained descriptions based on projections
- Proved a variational principle for second largest eigenvalue
- Identification of the minimum required number of metastable states and TSs for an optimally coarse grained network
Conclusion

- Suggested Markovian Approximations of Coarse-grained descriptions based on projections
- Proved a variational principle for second largest eigenvalue
- Identification of the minimum required number of metastable states and TSs for an optimally coarse grained network
- For 1D diffusion in potential, transparent interpretation in terms of MFPTs
Suggested Markovian Approximations of Coarse-grained descriptions based on projections

Proved a variational principle for second largest eigenvalue

Identification of the minimum required number of metastable states and TSs for an optimally coarse grained network

For 1D diffusion in potential, transparent interpretation in terms of MFPTs

Proposed a method to infer true relaxation time from (optimal) MSMs
Acknowledgements

KCL:
- Adam Kells (PhD Student)
- Dr Edina Rosta (Chemistry)
- Zsuzsanna É Mihályka (PhD Student, ELTE)
- Gerhard Hummer (MPI Frankfurt)
- Attila Szabo (LCP, NIDDK, NIH)

THANKS for LISTENING!
Acknowledgements

KCL:
Adam Kells (PhD Student)
Dr Edina Rosta (Chemistry)
Acknowledgements

KCL:
Adam Kells (PhD Student)
Dr Edina Rosta (Chemistry)
Acknowledgements

KCL:
Adam Kells (PhD Student)
Dr Edina Rosta (Chemistry)

Zsuzsanna É Mihálka (PhD Student, ELTE)
Gerhard Hummer (MPI Frankfurt)
Attila Szabo (LCP, NIDDK, NIH)

THANKS for LISTENING!
Acknowledgements

KCL:
Adam Kells (PhD Student)
Dr Edina Rosta (Chemistry)

Zsuzsanna É Mihálka (PhD Student, ELTE)
Gerhard Hummer (MPI Frankfurt)
Attila Szabo (LCP, NIDDK, NIH)

THANKS for LISTENING!