DFTB+ The Fast Way of Doing Quantum Mechanics

Bálint Aradi

Bremen Center for Computational Materials Science University of Bremen

Scientific Computing Seminars Warwick, 2017

Outline

- Introduction
- DFTB-theory
- Parameterisation
- Extended Lagrangian Bohr-Oppenheimer molecular dynamics
- Basic Matrix Library

Bremen Center of Comp. Mat. Science

Mission of the BCCMS

Functional materials are the basis of key technologies

Atomic scale control requires **Quantum Mechanical Materials Modelling** Research Training Group QM³ http://www.rtg-qm3.de/

Chairs in the BCCMS

Founding Chair - 2006 **Computational Materials Science**

Thomas Frauenheim

Conrad-Naber Endowed Chair - 2008

Hybrid Materials Interfaces

Lucio Colombi Ciacchi

Vasily Ploshikhin

Airbus Endowed Chair – 2009/2010 **Integrative Materials and Process Simulation & Engineering**

Tim Wehling

Electronic Structure and Correlated Nanosystems – ECN 2012

Research focus of the BCCMS

DFTB in the method zoo

Approximate DFT for materials science

Diamond nucleation

SiCN-ceramics

Si-cluster growth

Retinal proteins

Hybrid interfaces

Inorganic nanotubes

Molecular electronics

From DFT to DFTB

Density Functional Theory

$$E = E[n(\mathbf{r})]$$

Kohn—Sham-picture

$$\boldsymbol{n}(\boldsymbol{r}) = \sum_{i} f_{i} |\psi_{i}(\boldsymbol{r})|^{2}$$

Foulkes—Haydock

$$n(\mathbf{r}) = n_0(\mathbf{r}) + \delta n(\mathbf{r})$$

Expansion of total energy up to second (or third) order in the fluctuation

$$E_{tot}[n_0 + \delta n] = E_{bs}[n_0] + E_{rep}[n_0] + E_2[n_0, \delta n^2] + O(\delta n^3)$$

From DFT to DFTB

$$E_{bs}[n_{0}] = \sum_{i}^{occ} f_{i} \langle \psi_{i} | -\frac{\Delta}{2} + V_{eff}[n_{0}] | \psi_{i} \rangle$$

$$V_{eff}[n_{0}] = V_{ext} + \int \frac{n_{0}(r)}{|r-r'|} + V_{xc}[n_{0}]$$

$$E_{rep}[n_{0}] = -\frac{1}{2} \int \int \frac{n_{0}n_{0}}{|r-r'|} + E_{xc}[n_{0}] - \int V_{xc}[n_{0}]n_{0} + \frac{1}{2} \sum_{A} \sum_{B \neq A} \frac{Z_{A}Z_{B}}{R_{AB}}$$

$$E_{2}[n_{0}, \delta n] = \frac{1}{2} \int \int \frac{1}{|r-r'|} + \frac{\delta^{2}E_{xc}}{\delta n \delta n'} \Big|_{n_{0}} \delta n \delta n'$$

Reference density = sum of compressed atomic densities

- $E_{\rm bs}$ and $E_2[n_0, \delta n]$ calculated explicitly (with approximations)
- E_{rep} fitted in order to correct errors due to approximations

Repulsive energy

Repulsive energy as superposition of pairwise interactions

$$E_{\text{rep}} = \frac{1}{2} \sum_{A} \sum_{B \neq A} E_{\text{rep}}^{AB} (|R_A - R_B|)$$

 Deviation from ab initio calculation tabulated as function of distance for every species pair in advance

$$E_{rep}^{AB} = E_{abinitio}(R_{AB}) - [E_{bs} + E_2](R_{AB})$$

To be calculated

 $E_{\rm bs} = \sum_{i} f_{i} \left\langle \psi_{i} \right| - \frac{\Delta}{2} + V_{\rm eff} \left| \psi_{i} \right\rangle \qquad \text{with} \qquad \left[H + V_{\rm eff} \right] \psi_{i} = \varepsilon_{i} \psi_{i}$

LCAO-Ansatz (usually with minimal basis)

$$\psi_{i} = \sum_{\mu} c_{i\mu} \phi_{\mu} (\mathbf{r} - \mathbf{R}_{A(\mu)}) \longrightarrow \sum_{\nu} (H_{\mu\nu} - \varepsilon_{i} S_{\mu\nu}) = 0$$
$$H_{\mu\nu} = \langle \phi_{\mu} | H | \phi_{\nu} \rangle \qquad S_{\mu\nu} = \langle \phi_{\mu} | \phi_{\nu} \rangle$$

Potential as sum of atomic contributions

$$V_{\text{eff}}[n_0] = \sum_A V_{\text{eff}}[n_0^A] = \sum_A V_{\text{eff}}^A$$

Neglecting crystal field and three center terms

$$H_{\mu_{A}\nu_{A}} = \left\langle \phi_{\mu} \middle| -\frac{\Delta}{2} + V_{\text{eff}}^{A} \middle| \phi_{\nu} \right\rangle + \sum_{B \neq A} \left\langle \phi_{\mu} \middle| V_{\text{eff}}^{B} \middle| \phi_{\nu} \right\rangle$$
$$H_{\mu_{A}\nu_{B}} = \left\langle \phi_{\mu} \middle| -\frac{\Delta}{2} + V_{\text{eff}}^{A} + V_{\text{eff}}^{B} \middle| \phi_{\nu} \right\rangle + \sum_{C \neq A \neq B} \left\langle \phi_{\mu} \middle| V_{\text{eff}}^{B} \middle| \phi_{\nu} \right\rangle$$

On-site elements = free atom eigenvalues

Potential superposition versus density superposition

$$V_{\text{eff}}[n_0^A] + V_{\text{eff}}[n_0^B] \longrightarrow V_{\text{eff}}[n_0^A + n_0^B]$$

Band structure energy

Final Hamiltonian

$$H_{\mu_{A}\nu_{A}} = \varepsilon_{\mu} \delta_{\mu\nu}$$
$$H_{\mu_{A}\nu_{B}} = \left\langle \phi_{\mu} \right| - \frac{\Delta}{2} + V_{\text{eff}} [n_{0}^{A} + n_{0}^{B}] \left| \phi_{\nu} \right\rangle$$

• Can be tabulated as function of distance for every species pair in advance

$$I = I^{2}H_{\rho\rho}^{\sigma}(r) + (1-l^{2})H_{\rho\rho}^{\pi}(r)$$

Non-SCC DFTB Workflow

Input

- Geometry
- Tabulated H and S
- Tabulated E_{rep}

- Table lookup for H and S
- Diagonalisation
- Table lookup for E_{rep}

Charge transfer between atoms not considered yet

Describing charge transfer (SCC-DFTB)

To be calculated

$$E_{2} = \frac{1}{2} \int \int \left| \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} + \frac{\delta^{2} E_{xc}}{\delta n(\boldsymbol{r}) \delta n(\boldsymbol{r}')} \right|_{n=n_{0}} \delta n(\boldsymbol{r}) \delta n(\boldsymbol{r}')$$

Density fluctuation = sum of atomic contributions

$$\delta n(\mathbf{r}) = \sum_{A} \delta n_{A}(\mathbf{r})$$

$$E_{2} = \frac{1}{2} \sum_{A} \sum_{B} \int \int f^{\text{hxc}}(\mathbf{r}, \mathbf{r}') \delta n_{A}(\mathbf{r}) \delta n_{B}(\mathbf{r}')$$

• Atomic charge fluctuation should be a charge monopole

$$\delta n_{A}(\mathbf{r}) = \Delta q_{A} f(\mathbf{r}) \qquad \longrightarrow \qquad E_{2} = \frac{1}{2} \sum_{A} \sum_{B} \gamma_{AB} \Delta q_{A} \Delta q_{B}$$

Describing charge transfer (SCC-DFTB)

Monopole charges calculated in Mulliken-approximation

$$q_{A} = \frac{1}{2} \sum_{\mu \in A} \sum_{\nu} \left(P_{\mu\nu} S_{\nu\mu} + S_{\mu\nu} P_{\nu\mu} \right) \qquad P_{\mu\nu} \sum_{i} f_{i} C_{i\mu} C_{i\nu}^{*}$$

Hamiltonian depends on the solution (wave function coefficients)

$$H_{\mu_{A}\nu_{B}} = \frac{1}{2} S_{\mu_{A}\nu_{B}} \sum_{c} (\gamma_{AC} + \gamma_{BC}) \Delta q_{C}$$

Charges iterated until self consistency has been reached

Problem: Some (e.g. X—H interactions) overestimated

Describing spin polarization

Fluctuation in the magnetization in monopole approximation

$$E_{\delta m} = \frac{1}{2} \sum_{A} \sum_{I \in A} \sum_{I' \in A} p_{AI} p_{AI'} W_{AII'} \qquad p_{AI} = q_{AI}^{up} - q_{AI}^{down}$$
$$H_{\mu_{AI} \nu_{Bk}}^{\sigma} = \frac{1}{2} \left(\sum_{m \in A} W_{AIm} p_{Am} + \sum_{m \in B} W_{Bkm} p_{Bm} \right)$$

- Spin coupling constants couple magnetizations on the same atom only
- Spin coupling constants from *ab initio* atom calculations (no adjustable parameters)

$$W_{Alm} = \frac{1}{2} \left(\frac{\partial \varepsilon_l^{\text{up}}}{\partial f_m^{\text{up}}} - \frac{\partial \varepsilon_l^{\text{up}}}{\partial f_m^{\text{down}}} \right)$$

Have been also extended to non-colinear spin

3rd order expansion in density (DFTB3)

• Third order expansion in the density

$$E_{3}[n_{0,}\delta n] = \frac{1}{6} \int \int \int \frac{\delta^{3} E_{xc}[n]}{\delta n \delta n' \delta n'} \bigg|_{n_{0,}n_{0,}n_{0}} \delta n \delta n' \delta n''$$

$$E_{3} \approx \frac{1}{2} \sum_{A} \sum_{B} \Delta q_{A}^{2} \Delta q_{b} \Gamma_{AB} \qquad \Gamma_{AB} = \frac{\partial \gamma_{AB}}{\partial q_{A}} \bigg|_{q_{A}^{0}}$$

Damping of the electrostatic interaction for hydrogen

$$\gamma_{AB} = \frac{1}{R_{AB}} - F(R_{AB}, U_A, U_B)h(R_{AB}, U_A, U_B)$$
$$h_{AB} = \exp\left[-\left(\frac{U_A + U_B}{2}\right)^{\zeta}R_{AB}^2\right]$$

Improved geometries and binding properties for biological molecules
 M. Gauss et al, J. Chem. Theory Comput. 7, 931 (2011)

Going beyond monopole approximation

Traditional SCC model

$$E_{2} = \frac{1}{2} \sum_{A} \sum_{B \neq A} \gamma_{AB} \delta q_{A} \delta q_{B}$$

Expansion up to higher moments

$$E_{\text{multi}} = \frac{1}{2} \sum_{A,B} \left[\gamma_{AB}^{(00)} \Delta q_A \Delta q_B + \gamma_{AB}^{(10)} \Delta \boldsymbol{d}_A \Delta \boldsymbol{q}_B + \gamma_{AB}^{(01)} \Delta \boldsymbol{q}_A \Delta \boldsymbol{d}_B + \gamma_{AB}^{(01)} \Delta \boldsymbol{d}_A \Delta \boldsymbol{q}_B + \gamma_{AB}^{(02)} \Delta \boldsymbol{q}_A \Delta \boldsymbol{q}_B + \gamma_{AB}^{(02)} \Delta \boldsymbol{q}_A \Delta \boldsymbol{q}_B + \dots \right]$$

First and second order contains:

- Monopole-dipole interaction
- Dipole-dipole and monopole-quadrupole interaction

Improves electrostatic interaction between atoms

Multipoles - first benchmarks

 Water dimer angle scan, varying intermolelucar angle without molecule distortion (no repulsive contribution)

Extending DFTB

- DFTB = Approximated DFT
- Extensions of DFT can be usually carried over to DFTB
- Several extensions already available (e.g. in DFTB+)
 - Linear response TD-DFT (Casida-formulation)
 - Electron transport via Greens function formalism
 - Range separated xc-functionals
 - (GW)
 - •:

When porting a DFT-feature to DFTB

- Is accuracy of DFTB enough
- Is the computational effort justifiable (e.g. can integral evaluation at run-time avoided)

Performance of DFTB+ (dense diag.)

One total energy calculation (11 SCC) + force

www.dftbplus.org

libDFTB+

- Separate core DFTB-functionality into a standalone library
- Two level API
 - Full (black box) DFTB-calculator (QM/MM codes)
 Currently being integrated into CHARMM, Gromacs, Amber
 - Low-leve API, e.g. Hamiltonian element generator (for QM codes)

• Permissive **L-GPL** license (non-commercial/commercial usage possible)

www.dftbplus.org github.com/dftbplus

Bottlenecks in DFTB

Creating parameters

- Number of repulsives goes with N_{TYPE}^2
- Various "automatic" fitting techniques
- Creating repulsive from atomic parameters

Electrostatics

- Currently conventional Ewald-summation: $O(N^2)$
- Could be replace with particle mesh Ewald or fast multipole: N log(N)

Solving the generalised eigenvalue problem

- Currently via LAPACK / ScaLAPACK: O(N³)
- Various approximative techniques as in DFT can reach O(N)

Self-consistency iterations

- Constant prefactor of about 10 during MD simulation
- Extended Born-Oppenheimer Lagrangian can make it superfluous

Parameterization

- Electronic parameters
- Repulsive term

Electronic parameters

To be calculated

Free isolated atom with compression potential

$$\left[-\frac{1}{2}\Delta + V_{A} + \left(\frac{r}{r_{A}}\right)^{n}\right]\psi_{i}^{A}(\mathbf{r}) = E_{i}^{A}\psi_{i}^{A}(\mathbf{r})$$

Two types of compression radii for every species

- Density compression
- Wave function compression

$$r_{A,I}^{d}, r_{B}^{d}, \dots$$

 $r_{A,I}^{w}, r_{A,I'}^{w}, \dots, r_{B,I}^{w}, r_{B,I'}^{w}, \dots$

Sanity check: Band structure

Repulsive term

To be calculated

$$E_{rep} = \frac{1}{2} \sum_{A} \sum_{B \neq A} E_{rep}^{AB} (|\mathbf{R}_{A} - \mathbf{R}_{B}|)$$

Individual repulsive interaction for each dimer interaction

$$\boldsymbol{E}_{\mathrm{rep}}^{\mathrm{AB}}(\boldsymbol{R}_{\mathrm{AB}}) = \boldsymbol{E}_{\mathrm{ab\,initio}}(\boldsymbol{R}_{\mathrm{AB}}) - [\boldsymbol{E}_{\mathrm{bs}} + \boldsymbol{E}_{2} + \boldsymbol{E}_{\mathrm{\delta}m} + \dots](\boldsymbol{R}_{\mathrm{AB}})$$

Repulsive term

Fitting difficulties

- Choosing right fit system(s)
- Choosing right test systems, evaluting quality of parametrization
- Nr. of interactions to fit increases quadratically with number of elements

Automated fitting frameworks available

- ADPT: Chien-Pin Chou, Henryk Witek and colaborators https://bitbucket.org/solccp/adpt_core
- SKOPT: Stanislav Markov in colaboration with BCCMS https://bitbucket.org/stanmarkov/skopt

Alternative approach: Pairwise repulsive from (fitted) atomic parameters

- Theoretically, entire periodic table can be "easily" covered
- Quality usually lower than specially tuned sets

Au-Au bulk phases

FCC						
		$E_{\rm formation}$ (eV)		d (
	Phase	PWs-DFT	DFTB	PWs-DFT	DFTB	
	FCC	0 by definition		2.936	2.887	
	BCC	+0.012	+0.023	2.854	2.819	
	A15	+0.127	+0.147	2.645-3.240	2.618-3.207	
	SC	+0.178	+0.051	2.740	2.695	
	Diamond	+0.710	+0.397	2.663	2.627	

Au clus	u clusters		a					
		Au ₂	Au _{4a}	Au _{4b}	Au ₈	Au ₂₀		
	Au–Au (Å), DFT	2.54	a: 2.55	a: 2.71	a: 2.65	a: 2.73		
			b: 2.71	b: 2.65	b: 2.78	b: 2.69		
			c: 2.61			c: 2.96		
						d: 2.83		
	Au–Au (Å), DFTB	2.53	a: 2.54	a: 2.59	a: 2.58	a: 2.60		
			b: 2.59	b: 2.59	b: 2.66	b: 2.65		
			c: 2.57			c: 2.73		
						d: 2.69		
	HLG (eV), DFT	2.01	0.95	0.99	1.46	1.76		
	HLG (eV), DFTB	2.05	1.08	0.82	1.20	1.96		
	Eformation (eV), DFT	-1.11	-1.45	-1.47	-1.91	-2.25		
	Eformation (eV), DFTB	-1.42	-1.94	-2.00	-2.49	-2.97		
	E _{formation} (eV), exp	-1.10 ^[67] ,						
		$-1.15^{[68]}$						

PDOS

Frontier orbitals

	Тор		
	DFT	DFTB	
Au–Au (Å)	Au1-Au2: 2.64	Au1-Au2: 2.57	
	Au1-Au3: 2.69	Au1-Au3: 2.59	
	Au2-Au3: 2.69	Au2-Au3: 2.59	
Au–S (Å)	Au3-S: 2.26	Au3-S: 2.28	
S–C (Å)	1.84	1.83	
Au–S–C (°)	Au3-S-C: 105.3	Au3-S-C: 111.2	

	Bridge		
	DFT	DFTB	
Au–Au (Å)	Au1-Au2: 2.72	Au1-Au2: 2.61	
	Au1-Au3: 2.72	Au1-Au3: 2.58	
	Au2-Au3: 2.72	Au2-Au3: 2.58	
Au–S (Å)	Au1-S: 2.47	Au2-S: 2.45	
	Au1-S: 2.47	Au2-S: 2.45	
S–C (Å)	1.84	1.83	
Au–S–C (°)	Au1-S-C: 105.0	Au1-S-C: 111.4	
	Au2-S-C: 105.8	Au2-S-C: 110.9	

PDOS

Relative stability	Tilt angle: 53.9°		Tilt angle: -53.9°	
(kcal/mol)	DFT	DFTB	DFT	DFTB
Bridge	0	0	0	0
Hollow HCP	4.85	3.43	8.32	9.68
Hollow FCC	16.2	11.3	5.55	3.23
Тор	42.9	44.2	43.0	46.1

DFT

DFTB

Unphysical high energy region

Can you trust DFTB?

- No!
- Unless it has been validated (method + parameterization) for your problem

Problematic cases

- Situations, which are problematic for DFT (although sometimes DFTB is better due to error compensation, c.f. band gap of semiconductors)
- Configurations which are very different from those used to obtain the parameters (e.g. bulk vs. surface vs. molecule)

How to apply DFTB for your problems

- Check on small system sizes agains ab initio (or experiment)
- Scale up to large system sizes or long time scales

MD on the Born-Oppenheimer surface

- Geometry at t_0
- SCF (SCC) to get electronic ground state (energy, forces)
- Integration of equations of motion
- New geometry at $t_0 + \delta t$

Problem

Good accuracy requires many (~ 10 - 20) SCC iterations

Task

Given the last k geometries and converged densities/charges:

$$R(t-\delta t), \dots, R(t-k\,\delta t)$$
 and $n(t-\delta t), \dots, n(t-k\,\delta t)$

predict a good charge guess for current geometry R(t)

Lagrangian of the Born-Oppenheimer-MD

Usual BO-Lagrangian

$$L^{\rm BO}(\boldsymbol{R}, \boldsymbol{\dot{R}}) = \frac{1}{2} \sum_{A} M_{A} \boldsymbol{\dot{R}}_{A}^{2} - U_{\rm SCF}[\boldsymbol{R}; n]$$

 $U_{\rm SCF}$ converged energy of electronic system

n converged charges for given geometry (not a dynamic variable)

Equation of motion

$$M_{A}\ddot{\mathbf{R}} = \frac{-\partial U_{\text{SCF}}[\mathbf{R};n]}{\partial \mathbf{R}_{A}}$$

Note:

- SCC convergence only reached up to a certain limit
- $U_{SCF}[R; n]$ (and consequently forces) never exact

Extended Lagrangian BO-MD

Goal: Propagating el. Degrees of freedom in time while staying on the Born-Oppenheimer-surface

Auxiliary dynamical variable (approx. density): D
 → D should evolve in quadratic potential around true density n

$$L^{XBO}(\mathbf{R}, \dot{\mathbf{R}}, D, \dot{D}) = L^{BO} + \frac{\mu}{2} \operatorname{Tr}[\dot{D}^{2}] - \frac{\mu \omega^{2}}{2} \operatorname{Tr}[(n-D)^{2}]$$

- μ Fictitious mass for electronic degrees
- ω Steepness of potential

Equations of motion

$$M_{A}\ddot{\mathbf{R}} = -\frac{\partial U_{\text{SCF}}}{\partial \mathbf{R}_{A}} - \mu \omega^{2} \operatorname{Tr}[(n-D)\frac{\partial n}{\partial \mathbf{R}_{A}}]$$
$$\mu \ddot{D} = \mu \omega^{2}(n-D)$$

Extended Lagrangian BO-MD

Setting fictitious mass to zero:

$$L^{XBO} \rightarrow L^{BO} \qquad M_A \ddot{\mathbf{R}} = -\frac{\partial U_{SCF}[\mathbf{R}; n]}{\partial \mathbf{R}_A}$$
$$\ddot{\mathbf{D}} = \omega^2 (n-D)$$

- D does not change the nuclear motion (auxiliary)
- Dynamics of D independent from fictitious mass
- If D(t) and n(t) close: D(t) good initial guess for SCC procedure

Stability

- Optimal (highest) $\kappa = \delta t^2 \omega^2 = \kappa_0$ can be calculated for which procedure is still stable
- $\kappa > \kappa_0$: Method can become unstable (*D* diverging from *n*)
- $\kappa \ll \kappa_0$: Average distance between *D* and *n* big (leaving BO-surface)

Fast (SCC-free) XLBOMD

Integration of equation of motion (Verlet algorithm):

$$D_{n+1} = 2D_n - D_{n-1} + \kappa (n_n - D_n)$$

If energy functional convex in the vicinity of n:

$$n \rightarrow (1-c)D+c\Sigma$$

$$D_{n+1} = 2D_n - D_{n-1} + C \kappa (\Sigma_n - D_n)$$

- Integration scheme stable, as long as charges after first diagonalisation yield lower energies as before
- Only one diagonalisation per time step necessary

Note: Not supposed to work for systems with SCC-instabilities

- 16 imidazol molecules
- Periodic boundary conditions
- Γ-point sampling
- Timestep: 0.5 fs
- c: 0.5

- Thermalization at 400 K with Nosé-Hoover chain
- NVE dynamics with SCC-free XLBOMD (one diagonalisation per time step) for 50 ps

Total energy fluctuation ($T_e = 300 \text{ K}$)

Total energy fluctuation ($T_e = 300 \text{ K}$)

Total energy fluctuation ($T_e = 300$ K)

Vibrational DOS from velocity autocorrelation ($T_{e} = 300$ K)

- 128 atom supercell
- Periodic boundary conditions
- 2 x 2 x 2 Monkhorst-Pack sampling
- Timestep: 1.0 fs
- c: 0.25

- Thermalization at 2000 K with Nosé-Hoover chain
- NVE dynamics with SCC-free XLBOMD (one diagonalisation per time step) for 50 ps

Total energy fluctuation:

Total energy fluctuation:

Total energy fluctuation:

Vibrational DOS from velocity autocorrelation

Getting density without diagonalisation

SP2-algorithm

Recursive expansion of the Fermi-operator

 $P = \theta[\mu I - H]$ $\boldsymbol{\theta}[\boldsymbol{\mu}\boldsymbol{I} - \boldsymbol{H}] = \lim_{i \to \infty} \boldsymbol{f}_i(\boldsymbol{f}_{i-1}(\dots \boldsymbol{f}_0(\boldsymbol{X}_0)))$ $f_{i}(\boldsymbol{X}_{i}) = \begin{cases} \boldsymbol{X}_{i}^{2} & \text{if } \operatorname{Tr}(\boldsymbol{X}) \leq N_{\text{occ}} \\ 2\boldsymbol{X}_{i} - \boldsymbol{X}_{i}^{2} & \text{if } \operatorname{Tr}(\boldsymbol{X}) > N_{\text{occ}} \end{cases}$ $\boldsymbol{X}_{0} = \frac{\boldsymbol{\epsilon}_{\max} \boldsymbol{I} - \boldsymbol{H}}{\boldsymbol{\epsilon}_{\max} - \boldsymbol{\epsilon}_{\min}}$ $\operatorname{Tr}(\boldsymbol{X}) \simeq \boldsymbol{N}_{\operatorname{occ}}$ Recursively applied until Gershgorin circle theorem $P \simeq X$

60

Getting density without diagonalisation

Algorithm 1 Pseudocode for the SP2 algorithm.

```
procedure SP2(tol, \mathbf{H}, \mathbf{P}, N_{\text{occ}})
      Estimate \epsilon_{\min} and \epsilon_{\max} from H
      \mathbf{X} = (\epsilon_{\max} \mathbf{I} - \mathbf{H}) / (\epsilon_{\max} - \epsilon_{\min})
      Trace X = Tr[X]
      for i = 1 : i_{\text{max}} do
              TraceXold = TraceX
             \mathbf{X}_{tmp} = \mathbf{X}^2
             if (\text{TraceX} - N_{\text{occ}}) \leq 0 then
                     \mathbf{X} = 2\mathbf{X} - \mathbf{X}_{tmp}
              else
                      \mathbf{X} = \mathbf{X}_{tmp}
             end if
             if |\text{TraceX} - N_{\text{occ}}| \leq \text{tol then}
                      break
              end if
      end for
      \mathbf{P} = \mathbf{X}
end procedure
```


type(bml_matrix) :: a

call bml_zero_matrix(bml_matrix_dense, bml_precision_double,&
 & 100, a)

https://github.com/lanl/bml

ELLPACK-R format

• Less compact than other sparse formats (e.g. compressed sparse format)

- Simple strided access for each row
- Simplified parallelism
- No insertion costs

https://github.com/lanl/bml

Sparse Matrix

Gustavson algorithm for matrix-matrix multiplication

- Optimal for multi-core architectures
- Parallelises well over rows on shared memory architectures
- Requires large row buffers (may not fit into the cache)
- Matrix elements may become unordered

https://github.com/lanl/bml

Merged based matrix-matrix multiplication

- Requires only $O(m^2)$ storage
- Completes in log(m) steps
- Memory access regular, requires only contiguous blocks of size m
- Good when cache sizes are rather small

https://github.com/lanl/bml

Low-storage merge based matrix-matrix multiply

- Requires only O(m) storage
- Completes in *m* 1 steps
- Memory access regular, requires only contiguous blocks of size m
- Good when cache sizes are extremely small

https://github.com/lanl/bml

https://github.com/lanl/bml

- Density Functional Tight Binding is an efficient and versatile QM simulation framework
- DFTB offers DFT-like calculations at much lower costs
- Due to approximations and fitted parameters less transferable than DFT
- Extended Lagrangian Born-Oppenheimer MD can be used to speed up molecular dynamics simulations by sparing self-consistency cycles
- SP2-algorithm based on the BML-library enables O(N)-scaling with system size.