DFTB+ The Fast Way of Doing Quantum Mechanics

Bálint Aradi
Bremen Center for Computational Materials Science
University of Bremen

BCCMS
Center for Computational Materials Science

Scientific Computing Seminars
Warwick, 2017

Outline

- Introduction
- DFTB-theory
- Parameterisation
- Extended Lagrangian Bohr-Oppenheimer molecular dynamics
- Basic Matrix Library

Bremen Center of Comp. Mat. Science

Vereinigtes Königreich

Flughafen Bremen O Bremen

$\stackrel{\text { Prag }}{0}$ Tsche

Mission of the BCCMS

Functional materials are the basis of key technologies

Atomic scale control requires Quantum Mechanical Materials Modelling Research Training Group QM ${ }^{3}$ http://www.rtg-qm3.de/

Chairs in the BCCMS

Founding Chair - 2006
 Computational Materials Science

Thomas Frauenheim

Conrad-Naber Endowed Chair - 2008
Hybrid Materials Interfaces

Lucio Colombi Ciacchi

Airbus Endowed Chair - 2009/2010 Integrative Materials and Process Simulation \& Engineering

Tim Wehling

Electronic Structure and Correlated
Nanosystems - ECN 2012

Research focus of the BCCMS

DFTB in the method zoo

Approximate DFT for materials science

Hybrid interfaces

SiCN-ceramics

Si-cluster growth

Retinal proteins

Inorganic nanotubes

Molecular electronics

From DFT to DFTB

- Density Functional Theory

$$
E=E[n(\boldsymbol{r})]
$$

- Kohn-Sham-picture

$$
n(\boldsymbol{r})=\sum_{i} f_{i}\left|\psi_{i}(\boldsymbol{r})\right|^{2}
$$

- Foulkes—Haydock

$$
n(\boldsymbol{r})=n_{0}(\boldsymbol{r})+\delta n(\boldsymbol{r})
$$

- Expansion of total energy up to second (or third) order in the fluctuation

$$
E_{\mathrm{tot}}\left[n_{0}+\delta n\right]=E_{\mathrm{bs}}\left[n_{0}\right]+E_{\mathrm{rep}}\left[n_{0}\right]+E_{2}\left[n_{0,} \delta n^{2}\right]+O\left(\delta n^{3}\right)
$$

From DFT to DFTB

$$
\begin{aligned}
& E_{\text {bs }}\left[n_{0}\right]=\sum_{i}^{\text {occ }} f_{i}\left\langle\psi_{i}\right|-\frac{\Delta}{2}+V_{\text {eff }}\left[n_{0}\right]\left|\psi_{i}\right\rangle \\
& \quad V_{\text {eff }}\left[n_{0}\right]=V_{\text {ext }}+\int_{0}^{\prime} \frac{n_{0}(\boldsymbol{r})}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}+V_{\mathrm{xc}}\left[n_{0}\right] \\
& E_{\text {rep }}\left[n_{0}\right]=-\frac{1}{2} \iint^{\prime} \frac{n_{0}^{\prime} n_{0}}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}+E_{\mathrm{xc}}\left[n_{0}\right]-\int V_{\mathrm{xc}}\left[n_{0}\right] n_{0}+\frac{1}{2} \sum_{A} \sum_{B \neq A} \frac{Z_{A} Z_{B}}{R_{A B}} \\
& \left.E_{2}\left[n_{0} \delta n\right]=\frac{1}{2} \iint^{\prime}\left|\frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}+\frac{\delta^{2} E_{\mathrm{xc}}}{\delta n \delta n^{\prime}}\right| n_{0} \right\rvert\, \delta n \delta n^{\prime}
\end{aligned}
$$

Like KSDFT, but depends only on reference density

- Reference density = sum of compressed atomic densities
- E_{bs} and $E_{2}\left[n_{0}, \delta n\right]$ calculated explicitly (with approximations)
- $E_{\text {rep }}$ fitted in order to correct errors due to approximations

Repulsive energy

- Repulsive energy as superposition of pairwise interactions

$$
E_{\text {rep }}=\frac{1}{2} \sum_{A} \sum_{B \neq A} E_{\text {rep }}^{A B}\left(\left|\boldsymbol{R}_{A}-\boldsymbol{R}_{\boldsymbol{B}}\right|\right)
$$

- Deviation from ab initio calculation tabulated as function of distance for every species pair in advance

$$
E_{\text {rep }}^{A B}=E_{\text {abinitio }}\left(R_{A B}\right)-\left[E_{\mathrm{bs}}+E_{2}\right]\left(R_{A B}\right)
$$

$$
\begin{aligned}
E_{\text {rep }}= & E_{\text {rep }}^{c \mathrm{C}}\left(\left|\boldsymbol{R}_{1}-\boldsymbol{R}_{2}\right|\right)+\ldots \\
& E_{\text {rep }}^{c H}\left(\left|\boldsymbol{R}_{1}-\boldsymbol{R}_{3}\right|\right)+\ldots \\
& E_{\text {rep }}^{\text {rH }}\left(\left|\boldsymbol{R}_{3}-\boldsymbol{R}_{4}\right|\right)+\ldots
\end{aligned}
$$

Band structure energy

- To be calculated

$$
E_{\mathrm{bs}}=\sum_{i} f_{i}\left|\psi_{i}\right|-\frac{\Delta}{2}+V_{\text {eff }}\left|\psi_{i}\right\rangle \quad \text { with } \quad\left[H+V_{\text {eff }}\right] \psi_{i}=\varepsilon_{i} \psi_{i}
$$

- LCAO-Ansatz (usually with minimal basis)

$$
\begin{aligned}
\psi_{i}=\sum_{\mu} c_{i \mu} \phi_{\mu}\left(\boldsymbol{r}-\boldsymbol{R}_{A(\mu)}\right) \longrightarrow & \sum_{v}\left(H_{\mu v}-\varepsilon_{i} S_{\mu v}\right)=0 \\
& H_{\mu v}=\left\langle\phi_{\mu}\right| H\left|\phi_{v}\right\rangle \quad S_{\mu v}=\left\langle\phi_{\mu} \mid \phi_{v}\right\rangle
\end{aligned}
$$

- Potential as sum of atomic contributions

$$
V_{\text {eff }}\left[n_{0}\right]=\sum_{A} V_{\text {eff }}\left[n_{0}^{A}\right]=\sum_{A} V_{\text {eff }}^{A}
$$

Band structure energy

- Neglecting crystal field and three center terms

$$
\begin{aligned}
& H_{\mu_{A} v_{A}}=\left\langle\phi_{\mu}\right|-\frac{\Delta}{2}+V_{\text {eff }}^{A}\left|\phi_{\nu}\right\rangle+\sum_{B \neq A}\left\langle\phi_{\mu}\right| V_{\text {eff }}^{B}\left|\phi_{\nu}\right\rangle \\
& H_{\mu_{A} v_{B}}=\left\langle\phi_{\mu}\right|-\frac{\Delta}{2}+V_{\text {eff }}^{A}+V_{\text {eff }}^{B}\left|\phi_{v}\right\rangle+\sum_{C \neq A \neq B}\left\langle\phi_{\mu}\right| V_{\text {eff }}^{B}\left|\phi_{\nu}\right\rangle
\end{aligned}
$$

- On-site elements = free atom eigenvalues

$$
H_{\mu_{A} v_{A}}=\varepsilon_{\mu} \delta_{\mu \nu} \longrightarrow \text { correct dissociation limit }
$$

- Potential superposition versus density superposition

$$
V_{\text {eff }}\left[n_{0}^{A}\right]+V_{\text {eff }}\left[n_{0}^{B}\right] \longleftrightarrow V_{\text {eff }}\left[n_{0}^{A}+n_{0}^{B}\right]
$$

Band structure energy

- Final Hamiltonian

$$
\begin{aligned}
& H_{\mu_{A} v_{A}}=\varepsilon_{\mu} \delta_{\mu v} \\
& H_{\mu_{A} v_{B}}=\left\langle\phi_{\mu}\right|-\frac{\Delta}{2}+V_{\text {eff }}\left[n_{0}^{A}+n_{0}^{B}\right]\left|\phi_{v}\right\rangle
\end{aligned}
$$

- Can be tabulated as function of distance for every species pair in advance

Non-SCC DFTB Workflow

Input

- Geometry
- Tabulated H and S
- Tabulated $E_{\text {rep }}$

Calculation

- Table lookup for H and S
- Diagonalisation
- Table lookup for $E_{\text {rep }}$

Output

- Energy, forces
- Band structure
- Eigenvectors, density
- :

Describing charge transfer (SCC-DFTB)

- To be calculated

$$
E_{2}=\frac{1}{2} \iint^{\prime}\left(\frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}+\left.\frac{\delta^{2} E_{\mathrm{xc}}}{\delta n(\boldsymbol{r}) \delta n\left(\boldsymbol{r}^{\prime}\right)}\right|_{n=n_{0}}\right) \delta n(\boldsymbol{r}) \delta n\left(\boldsymbol{r}^{\prime}\right)
$$

- Density fluctuation = sum of atomic contributions

$$
\begin{aligned}
& \delta n(\boldsymbol{r})=\sum_{A} \delta n_{A}(\boldsymbol{r}) \\
& E_{2}=\frac{1}{2} \sum_{A} \sum_{B} \iint f^{\mathrm{hxc}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \delta n_{A}(\boldsymbol{r}) \delta n_{B}\left(\boldsymbol{r}^{\prime}\right)
\end{aligned}
$$

- Atomic charge fluctuation should be a charge monopole

$$
\delta n_{A}(\boldsymbol{r})=\Delta q_{A} f(r) \longrightarrow E_{2}=\frac{1}{2} \sum_{A} \sum_{B} \gamma_{A B} \Delta q_{A} \Delta q_{B}
$$

Describing charge transfer (SCC-DFTB)

- Monopole charges calculated in Mulliken-approximation

$$
q_{A}=\frac{1}{2} \sum_{\mu \in A} \sum_{v}\left(P_{\mu \nu} S_{v \mu}+S_{\mu \nu} P_{v \mu}\right) \quad P_{\mu \nu} \sum_{i} f_{i} c_{i \mu} c_{i v}^{*}
$$

- Hamiltonian depends on the solution (wave function coefficients)

$$
H_{\mu_{A} v_{B}}=\frac{1}{2} S_{\mu_{A} v_{B}} \sum_{c}\left|\gamma_{A C}+\gamma_{B C}\right| \Delta q_{C}
$$

- Charges iterated until self consistency has been reached

$$
q_{A}^{(0)} \rightarrow \underset{\Delta}{H_{\mu \nu}^{(0)}} \rightarrow c_{i \mu}^{(1)} \rightarrow q_{A}^{(1)} \rightarrow H_{\mu \nu}^{(1)} \rightarrow c_{i \mu}^{(1)} \rightarrow \ldots \rightarrow
$$

SCC iteration

Problem: Some (e.g. X—H interactions) overestimated

Describing spin polarization

- Fluctuation in the magnetization in monopole approximation

$$
\begin{array}{ll}
E_{\delta m}=\frac{1}{2} \sum_{A} \sum_{l \in A} \sum_{l^{\prime} \in A} p_{A l} p_{A l} W_{A l \prime} & p_{A l}=q_{A l}^{\mathrm{up}}-q_{A l}^{\mathrm{down}} \\
H_{\mu_{A A} v_{B k}}^{\sigma}=\frac{1}{2}\left(\sum_{m \in A} W_{A l m} p_{A m}+\sum_{m \in B} W_{B k m} p_{B m}\right) &
\end{array}
$$

- Spin coupling constants couple magnetizations on the same atom only
- Spin coupling constants from ab initio atom calculations (no adjustable parameters)

$$
W_{A l m}=\frac{1}{2}\left(\frac{\partial \varepsilon_{l}^{\mathrm{up}}}{\partial f_{m}^{\mathrm{up}}}-\frac{\partial \varepsilon_{l}^{\mathrm{up}}}{\partial f_{m}^{\mathrm{down}}}\right)
$$

- Have been also extended to non-colinear spin

$3^{\text {rd }}$ order expansion in density (DFTB3)

- Third order expansion in the density

$$
E_{3}\left[n_{0,} \delta n\right]=\left.\frac{1}{6} \int^{\prime \prime} \iint \frac{\delta^{3} E_{x c}[n]}{\delta n \delta n^{\prime} \delta n^{\prime \prime}}\right|_{n_{0}, n_{0}, n_{0}^{\prime}} \delta n \delta n^{\prime} \delta n^{\prime \prime}
$$

$$
E_{3} \approx \frac{1}{2} \sum_{A} \sum_{B} \Delta q_{A}^{2} \Delta q_{b} \Gamma_{A B} \quad \Gamma_{A B}=\left.\frac{\partial \gamma_{A B}}{\partial q_{A}}\right|_{q_{A}^{0}}
$$

- Damping of the electrostatic interaction for hydrogen

$$
\begin{gathered}
\gamma_{A B}=\frac{1}{R_{A B}}-F\left(R_{A B}, U_{A}, U_{B}\right) h\left(R_{A B}, U_{A}, U_{B}\right) \\
h_{A B}=\exp \left[-\left(\frac{U_{A}+U_{B}}{2}\right)^{\xi} R_{A B}^{2}\right]
\end{gathered}
$$

- Improved geometries and binding properties for biological molecules M. Gauss et al, J. Chem. Theory Comput. 7, 931 (2011)

Going beyond monopole approximation

- Traditional SCC model

$$
E_{2}=\frac{1}{2} \sum_{A} \sum_{B \neq A} \gamma_{A B} \delta q_{A} \delta q_{B}
$$

- Expansion up to higher moments

$$
\begin{aligned}
E_{\text {multi }}= & \frac{1}{2} \sum_{A, B}\left[\gamma_{A B}^{(00)} \Delta q_{A} \Delta q_{B}+\gamma_{A B}^{(10)} \Delta \boldsymbol{d}_{A} \Delta q_{B}+\gamma_{A B}^{(01)} \Delta q_{A} \Delta \boldsymbol{d}_{B}\right. \\
& \left.+\gamma_{A B}^{(11)} \Delta \boldsymbol{d}_{A} \circ \Delta \boldsymbol{d}_{B}+\gamma_{A B}^{(20)} \Delta Q_{A} \Delta q_{B}+\gamma_{A B}^{(02)} \Delta q_{A} \Delta Q_{B}+\ldots\right]
\end{aligned}
$$

- First and second order contains:
- Monopole-dipole interaction
- Dipole-dipole and monopole-quadrupole interaction
- Improves electrostatic interaction between atoms

Multipoles - first benchmarks

- Water dimer angle scan, varying intermolelucar angle without molecule distortion (no repulsive contribution)

Extending DFTB

- DFTB = Approximated DFT
- Extensions of DFT can be usually carried over to DFTB
- Several extensions already available (e.g. in DFTB+)
- Linear response TD-DFT (Casida-formulation)
- Electron transport via Greens function formalism
- Range separated xc-functionals
- (GW)
- :

When porting a DFT-feature to DFTB

- Is accuracy of DFTB enough
- Is the computational effort justifiable (e.g. can integral evaluation at run-time avoided)

Performance of DFTB+ (dense diag.)

One total energy calculation (11 SCC) + force

Dy
www.dftbplus.org

libDFTB+

- Separate core DFTB-functionality into a standalone library
- Two level API
- Full (black box) DFTB-calculator (QM/MM codes)

Currently being integrated into CHARMM, Gromacs, Amber

- Low-leve API, e.g. Hamiltonian element generator (for QM codes)
- Permissive L-GPL license (non-commercial/commercial usage possible)

www.dftbplus.org github.com/dftbplus

Bottlenecks in DFTB

Creating parameters

- Number of repulsives goes with $N_{\text {TYPE }}{ }^{2}$
- Various "automatic" fitting techniques
- Creating repulsive from atomic parameters

Electrostatics

- Currently conventional Ewald-summation: O($\left.N^{2}\right)$
- Could be replace with particle mesh Ewald or fast multipole: $N \log (N)$

Solving the generalised eigenvalue problem

- Currently via LAPACK / ScaLAPACK: O($\left.N^{3}\right)$
- Various approximative techniques as in DFT can reach $O(N)$

Self-consistency iterations

- Constant prefactor of about 10 during MD simulation
- Extended Born-Oppenheimer Lagrangian can make it superfluous

Parameterization

- Electronic parameters
- Repulsive term

Electronic parameters

- To be calculated

$$
H_{\mu_{A} v_{B}}^{0}=\left\langle\phi_{\mu_{A}}\right|-\frac{1}{2} \Delta+V_{\text {eff }}\left[n_{0}^{A}+n_{0}^{B}\right]\left|\phi_{v_{B}}\right\rangle
$$

compressed wave functions
compressed densities

- Free isolated atom with compression potential

$$
\left[-\frac{1}{2} \Delta+V_{\mathrm{A}}+\left(\frac{r}{r_{A}}\right)^{n}\right] \psi_{i}^{A}(\boldsymbol{r})=E_{i}^{A} \psi_{i}^{A}(\boldsymbol{r})
$$

- Two types of compression radii for every species
- Density compression

$$
r_{A}^{\mathrm{d}}, r_{B}^{\mathrm{d}}, \ldots
$$

- Wave function compression

$$
r_{A, I}^{\mathrm{w}}, r_{A, I^{\prime}}^{\mathrm{w}}, \ldots, r_{B, I}^{\mathrm{w}}, r_{B, I^{\prime}}^{\mathrm{w}}, \ldots
$$

- Sanity check: Band structure

Repulsive term

- To be calculated

$$
E_{\mathrm{rep}}=\frac{1}{2} \sum_{A} \sum_{B \neq A} E_{\mathrm{rep}}^{A B}\left(\left|\boldsymbol{R}_{A}-\boldsymbol{R}_{B}\right|\right)
$$

$$
\begin{aligned}
E_{\text {rep }}= & E_{\text {rep }}^{\text {CC }}\left(\left|\boldsymbol{R}_{1}-\boldsymbol{R}_{2}\right|\right)+\ldots \\
& E_{\text {rep }}^{C H}\left(\left|\boldsymbol{R}_{1}-\boldsymbol{R}_{3}\right|\right)+\ldots \\
& E_{\text {rep }}^{\text {rH }}\left(\left|\boldsymbol{R}_{3}-\boldsymbol{R}_{4}\right|\right)+\ldots
\end{aligned}
$$

- Individual repulsive interaction for each dimer interaction

$$
E_{\text {rep }}^{A B}\left(R_{A B}\right)=E_{\text {abinitio }}\left(R_{A B}\right)-\left[E_{b s}+E_{2}+E_{\delta m}+\ldots\right]\left(R_{A B}\right)
$$

Repulsive term

Fitting difficulties

- Choosing right fit system(s)
- Choosing right test systems, evaluting quality of parametrization
- Nr. of interactions to fit increases quadratically with number of elements

Automated fitting frameworks available

- ADPT: Chien-Pin Chou, Henryk Witek and colaborators https://bitbucket.org/solccp/adpt_core
- SKOPT: Stanislav Markov in colaboration with BCCMS https://bitbucket.org/stanmarkov/skopt

Alternative approach: Pairwise repulsive from (fitted) atomic parameters

- Theoretically, entire periodic table can be "easily" covered
- Quality usually lower than specially tuned sets

Parameters for Au-thiolates compounds

Au-Au bulk phases

Phase PWs-DFT DFTB

PWs-DFT	DFTB
2.936	2.887
2.854	2.819
$2.645-3.240$	$2.618-3.207$
2.740	2.695
2.663	2.627

Fihey et al, J. Comp. Chem, 362075 (2015)

Parameters for Au-thiolates compounds

Au clusters

	Au_{2}	$\mathrm{Au}_{4 a}$	$\mathrm{Au}_{4 b}$	Au_{8}	Au_{20}
$\mathrm{Au}-\mathrm{Au}(\mathrm{A})$, DFT	2.54	a: 2.55	a: 2.71	a: 2.65	a: 2.73
		b: 2.71	b: 2.65	b: 2.78	b: 2.69
		c: 2.61			c: 2.96
					d: 2.83
Au-Au (A), DFTB	2.53	a: 2.54	a: 2.59	a: 2.58	a: 2.60
		b: 2.59	b: 2.59	b: 2.66	b: 2.65
		c: 2.57			c: 2.73
					d: 2.69
HLG (eV), DFT	2.01	0.95	0.99	1.46	1.76
HLG (eV), DFTB	2.05	1.08	0.82	1.20	1.96
$E_{\text {formation }}(\mathrm{eV})$, DFT	-1.11	-1.45	-1.47	-1.91	-2.25
$E_{\text {formation }}(\mathrm{eV})$, DFTB		-1.94	-2.00	-2.49	-2.97
$E_{\text {formation }}(\mathrm{eV}), \exp$	$\begin{aligned} & -1.10^{[67]} \\ & -1.15^{[68]} \end{aligned}$				

Parameters for Au-thiolates compounds

PDOS

Parameters for Au-thiolates compounds

Frontier orbitals

Fihey et al, J. Comp. Chem, 362075 (2015)

Parameters for Au-thiolates compounds

Fihey et al, J. Comp. Chem, 362075 (2015)

Parameters for Au-thiolates compounds

Fihey et al, J. Comp. Chem, 362075 (2015)

Parameters for Au-thiolates compounds

	Top	
	DFT	DFTB
$\mathrm{Au}-\mathrm{Au}(\mathrm{A})$	Au1-Au2: 2.64	Au1-Au2: 2.57
	Au1-Au3: 2.69	Au1-Au3: 2.59
	Au2-Au3: 2.69	Au2-Au3: 2.59
$\mathrm{Au}-\mathrm{S}(\mathrm{A})$	Au3-S: 2.26	Au3-S: 2.28
S-C (Å)	1.84	1.83
$\mathrm{Au}-\mathrm{S}-\mathrm{C}\left({ }^{\circ}\right)$	Au3-S-C: 105.3	Au3-S-C: 111.2
	Bridge	
	DFT	DFTB
$\mathrm{Au}-\mathrm{Au}(\mathrm{A})$	Au1-Au2: 2.72	Au1-Au2: 2.61
	Au1-Au3: 2.72	Au1-Au3: 2.58
	Au2-Au3: 2.72	Au2-Au3: 2.58
$\mathrm{Au}-\mathrm{S}(\mathrm{A})$	Au1-S: 2.47	Au2-S: 2.45
	Au1-S: 2.47	Au2-S: 2.45
S-C (Å)	1.84	1.83
$\mathrm{Au}-\mathrm{S}-\mathrm{C}\left({ }^{\circ}\right.$)	Au1-S-C: 105.0	Au1-S-C: 111.4
	Au2-S-C: 105.8	Au2-S-C: 110.9

Parameters for Au-thiolates compounds

PDOS

Relative stability (kcal/mol)	Tilt angle: 53.9°		Tilt angle: $-53.9{ }^{\circ}$	
	DFT	DFTB	DFT	DFTB
Bridge	0	0	0	0
Hollow HCP	4.85	3.43	8.32	9.68
Hollow FCC	16.2	11.3	5.55	3.23
Top	42.9	44.2	43.0	46.1

Parameters for Au-thiolates compounds

Fihey et al, J. Comp. Chem, 362075 (2015)

Parameters for Au-thiolates compounds

DFT

DFTB

Unphysical high energy region

Limits of DFTB

Can you trust DFTB?

- No!
- Unless it has been validated (method + parameterization) for your problem

Problematic cases

- Situations, which are problematic for DFT
(although sometimes DFTB is better due to error compensation, c.f. band gap of semiconductors)
- Configurations which are very different from those used to obtain the parameters (e.g. bulk vs. surface vs. molecule)

How to apply DFTB for your problems

- Check on small system sizes agains ab initio (or experiment)
- Scale up to large system sizes or long time scales

Born-Oppenheimer MD

MD on the Born-Oppenheimer surface

- Geometry at t_{0}
- SCF (SCC) to get electronic ground state (energy, forces)
- Integration of equations of motion
- New geometry at $t_{0}+\delta t$

Problem

Good accuracy requires many ($\sim 10-20$) SCC iterations

Task

Given the last k geometries and converged densities/charges:

$$
\boldsymbol{R}(t-\delta t), \ldots, \boldsymbol{R}(t-k \delta t) \quad \text { and } \quad n(t-\delta t), \ldots, n(t-k \delta t)
$$

predict a good charge guess for current geometry $\boldsymbol{R}(t)$

Lagrangian of the Born-Oppenheimer-MD

- Usual BO-Lagrangian

$$
L^{\mathrm{BO}}(\boldsymbol{R}, \dot{\boldsymbol{R}})=\frac{1}{2} \sum_{\mathrm{A}} M_{\mathrm{A}} \dot{\boldsymbol{R}}_{A}^{2}-U_{\mathrm{SCF}}[\boldsymbol{R} ; n]
$$

$U_{\text {scF }} \quad$ converged energy of electronic system
$n \quad$ converged charges for given geometry (not a dynamic variable)

- Equation of motion

$$
M_{A} \ddot{\boldsymbol{R}}=\frac{-\partial U_{\mathrm{SC}}[\boldsymbol{R} ; n]}{\partial \boldsymbol{R}_{\mathrm{A}}}
$$

Note:

- SCC convergence only reached up to a certain limit
- $U_{\text {SCF }}[R ; n]$ (and consequently forces) never exact

Extended Lagrangian BO-MD

Goal: Propagating el. Degrees of freedom in time while staying on the Born-Oppenheimer-surface

- Auxiliary dynamical variable (approx. density): D
$\rightarrow D$ should evolve in quadratic potential around true density n

$$
L^{\mathrm{XBO}}(\boldsymbol{R}, \dot{\boldsymbol{R}}, D, \dot{\boldsymbol{D}})=L^{\mathrm{BO}}+\frac{\mu}{2} \operatorname{Tr}\left[\dot{D}^{2}\right]-\frac{\mu \omega^{2}}{2} \operatorname{Tr}\left[(n-D)^{2}\right]
$$

$\mu \quad$ Fictitious mass for electronic degrees
ω Steepness of potential

- Equations of motion

$$
\begin{aligned}
M_{A} \ddot{\boldsymbol{R}} & =-\frac{\partial U_{\mathrm{SCF}}}{\partial \boldsymbol{R}_{\mathrm{A}}}-\mu \omega^{2} \operatorname{Tr}\left[(n-D) \frac{\partial n}{\partial \boldsymbol{R}_{\mathrm{A}}}\right] \\
\mu \ddot{D} & =\mu \omega^{2}(n-D)
\end{aligned}
$$

Extended Lagrangian BO-MD

- Setting fictitious mass to zero:

$$
\begin{aligned}
L^{\mathrm{XBO}} \rightarrow L^{\mathrm{BO}} \quad M_{\mathrm{A}} \ddot{\boldsymbol{R}} & =-\frac{\partial U_{\mathrm{SCF}}[\boldsymbol{R} ; n]}{\partial \boldsymbol{R}_{\mathrm{A}}} \\
\ddot{D} & =\omega^{2}(n-D)
\end{aligned}
$$

- D does not change the nuclear motion (auxiliary)
- Dynamics of D independent from fictitious mass
- If $D(t)$ and $n(t)$ close: $D(t)$ good initial guess for SCC procedure

Stability

- Optimal (highest) $\kappa=\delta t^{2} \omega^{2}=\kappa_{0}$ can be calculated for which procedure is still stable
- $k>K_{0}$: Method can become unstable (D diverging from n)
- $K \ll \kappa_{0}$: Average distance between D and n big (leaving BO-surface)

Fast (SCC-free) XLBOMD

- Integration of equation of motion (Verlet algorithm):

$$
D_{n+1}=2 D_{n}-D_{n-1}+\kappa\left(n_{n}-D_{n}\right)
$$

- If energy functional convex in the vicinity of n :

$$
n \rightarrow(1-c) D+c \Sigma
$$

$$
D_{n+1}=2 D_{n}-D_{n-1}+C \kappa\left(\Sigma_{n}-D_{n}\right)
$$

- Integration scheme stable, as long as charges after first diagonalisation yield lower energies as before
- Only one diagonalisation per time step necessary

Note: Not supposed to work for systems with SCC-instabilities

Fast XLBOMD at work: Liquid imidazol

- 16 imidazol molecules
- Periodic boundary conditions
- Γ-point sampling
- Timestep: 0.5 fs
- c: 0.5
- Thermalization at 400 K with Nosé-Hoover chain

- NVE dynamics with SCC-free XLBOMD (one diagonalisation per time step) for 50 ps

Fast XLBOMD at work: Liquid imidazol

Total energy fluctuation ($T_{\mathrm{e}}=300 \mathrm{~K}$)

Fast XLBOMD at work: Liquid imidazol

Total energy fluctuation ($T_{\mathrm{e}}=300 \mathrm{~K}$)

Fast XLBOMD at work: Liquid imidazol

Total energy fluctuation ($T_{\mathrm{e}}=300 \mathrm{~K}$)

Fast XLBOMD at work: Liquid imidazol

Vibrational DOS from velocity autocorrelation ($T_{\mathrm{e}}=300 \mathrm{~K}$)

Fast XLBOMD at work: 3C-SiC bulk

- 128 atom supercell
- Periodic boundary conditions
- $2 \times 2 \times 2$ Monkhorst-Pack sampling
- Timestep: 1.0 fs
- c: 0.25

- Thermalization at 2000 K with Nosé-Hoover chain
- NVE dynamics with SCC-free XLBOMD (one diagonalisation per time step) for 50 ps

Fast XLBOMD at work: 3C-SiC bulk

Total energy fluctuation:

Fast XLBOMD at work: 3C-SiC bulk

Total energy fluctuation:

Fast XLBOMD at work: 3C-SiC bulk

Total energy fluctuation:

Fast XLBOMD at work: 3C-SiC bulk

Vibrational DOS from velocity autocorrelation

Getting density without diagonalisation

SP2-algorithm

- Recursive expansion of the Fermi-operator

$$
\begin{aligned}
& \boldsymbol{P}=\theta[\mu \boldsymbol{I}-\boldsymbol{H}] \\
& \theta[\mu \boldsymbol{I}-\boldsymbol{H}]=\lim _{i \rightarrow \infty} f_{i}\left(f_{i-1}\left(\ldots f_{0}\left(\boldsymbol{X}_{0}\right)\right)\right) \\
& f_{i}\left(\boldsymbol{X}_{i}\right)=\left\{\begin{array}{cc}
\boldsymbol{X}_{i}^{2} & \text { if } \operatorname{Tr}(\boldsymbol{X}) \leqslant N_{\text {occ }} \\
2 \boldsymbol{X}_{i}-\boldsymbol{X}_{i}^{2} & \text { if } \operatorname{Tr}(\boldsymbol{X})>N_{\text {occ }}
\end{array}\right.
\end{aligned}
$$

$$
X_{0}=\frac{\epsilon_{\max } I-\boldsymbol{H}}{\epsilon_{\max }-\epsilon_{\min }}
$$

- Recursively applied until $\operatorname{Tr}(\boldsymbol{X}) \simeq N_{\text {occ }}$

Gershgorin circle theorem

$$
P \simeq X
$$

Getting density without diagonalisation

```
Algorithm 1 Pseudocode for the SP2 algorithm.
    procedure SP2(tol, H, P, \(N_{\text {occ }}\) )
    Estimate \(\epsilon_{\min }\) and \(\epsilon_{\max }\) from \(\mathbf{H}\)
    \(\mathbf{X}=\left(\epsilon_{\max } \mathbf{I}-\mathbf{H}\right) /\left(\epsilon_{\max }-\epsilon_{\min }\right)\)
    TraceX \(=\operatorname{Tr}[\mathbf{X}]\)
    for \(i=1: i_{\max }\) do
            TraceXold \(=\) TraceX
            \(\mathbf{X}_{\mathrm{tmp}}=\mathbf{X}^{2}\)
            if \(\left(\right.\) TraceX \(\left.-N_{\text {occ }}\right) \leqq 0\) then
                \(\mathbf{X}=2 \mathbf{X}-\mathbf{X}_{\mathrm{tmp}}\)
            else
                \(\mathbf{X}=\mathbf{X}_{\mathrm{tmp}}\)
            end if
            if \(\mid\) TraceX \(-N_{\text {occ }} \mid \leqq\) tol then
                break
            end if
        end for
        \(\mathbf{P}=\mathbf{X}\)
    end procedure
```


BML matrix library

type(bml_matrix) :: a
call bml_zero_matrix(bml_matrix_dense, bml_precision_double,\&
\& 100, a)

BML matrix library

ELLPACK-R format

Sparse Matrix

Columns

1			
2	4	6	
3			
2	4	5	
4	5		
2	6		

\# Non-zeroes

1
3
1
3
2
2

- Less compact than other sparse formats (e.g. compressed sparse format)
- Simple strided access for each row
- Simplified parallelism
- No insertion costs

BML matrix library

Gustavson algorithm for matrix-matrix multiplication

- Optimal for multi-core architectures
- Parallelises well over rows on shared memory architectures
- Requires large row buffers (may not fit into the cache)
- Matrix elements may become unordered

BML matrix library

Merged based matrix-matrix multiplication

- Requires only $\mathrm{O}\left(m^{2}\right)$ storage
- Completes in $\log (m)$ steps
- Memory access regular, requires only contiguous blocks of size m
- Good when cache sizes are rather small

BML matrix library

Low-storage merge based matrix-matrix multiply

- Requires only $\mathrm{O}(m)$ storage
- Completes in m-1 steps
- Memory access regular, requires only contiguous blocks of size m
- Good when cache sizes are extremely small

BML matrix library

Sparse versus dense scaling

GPU performance

Summary

- Density Functional Tight Binding is an efficient and versatile QM simulation framework
- DFTB offers DFT-like calculations at much lower costs
- Due to approximations and fitted parameters less transferable than DFT
- Extended Lagrangian Born-Oppenheimer MD can be used to speed up molecular dynamics simulations by sparing self-consistency cycles
- SP2-algorithm based on the BML-library enables $O(N)$-scaling with system size.

