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Motivation for the Ariza-Oritz model

Simulation of large scale atomistic models is hard: Grains, plasticity,
cracks, temperature etc

Bottlenecks: Parametrisation and computation

The Ariza-Ortiz model has a natural representation of grains and
plastic slips and is computationally cheap.



The Ariza-Ortiz model

Reference configuration: Face-centered cubic lattice

L = {n1b1 + n2b2 + n3b3 : n ∈ Z3}

where b1 = 1√
2

01
1

 , b2 = 1√
2

10
1

 , b3 = 1√
2

11
0

 ,
Nearest neighbors: x ∼ y if x , y ∈ L and |x − y | = 1,

Displacement: u(x) ∈ R3, x ∈ L,

Slip: σ(x , y), x ∼ y ,

Energy:

HAO(u, σ) = 1
2
∑
x∼y

[(u(y)− u(x)− σ(x , y)) · (y − x)]2.



Cubic structure of fcc



Point particle configurations

C = {x + u(x) : x ∈ L}

Example: Dislocation dipole

Left: Unrelaxed dislocation dipole. Right: Relaxed dipole.
Warning: Picture misleading because bonds not determined by σ.



Continuum version

Hcont(u, σ) = 1
2

∫
Ω
C(∇u + σ) : (∇u + σ) dx

with C ∈ Rd×d
sym elastic tensor, u ∈ H1(Ω,Rd ), σ ∈ L2(Ω,Rd×d ).

Core radius approach: Cermelli-Leoni (2005), Garroni-Leoni-Ponsiglione
(2010), DeLuca-Garroni-Ponsiglione (2012), . . .

Continuum approach struggles with grains, grain boundary energy,
Read-Shockley formula



Symmetries

Translation
HAO(u + s, σ) = HAO(u, σ)

if s is constant.

Linearised rotation

HAO(u + s, σ) = HAO(u, σ)

if s(x) = S x for some skew-symmetric matrix S ∈ R3×3.

Gauge invariance

HAO(u + v , σ + dv) = HAO(u, σ)

for all v : L → L where dv(x , y) = v(x)− v(y).

Linearised rotations account for Euclidean invariance.



Low energy structures: Grains (Materials Sciences
perspective)

Grain boundaries can be seen as walls of edge dislocations with the same
Burgers vector.



Low energy structures: Grains (Ariza-Ortiz perspective)

Definition
(u, σ) supports a ‘perfect grain’ G ⊂ L with orientation S ∈ R3×3

skew

u(x)− u(y)− σ(x , y) =
{

S(x − y) if {x , y} ⊂ G,
0 if {x , y} ⊂ Gc ,

σ(x , y) = 0 if x ∼ y and {x , y} ⊂ Gc .

Energy cost of a grain is not automatically proportional to volume of grain
thanks to the invariance under linearized rotations.
Theorem (Upper bound)

min {H(u, σ) : (u, σ) support perfect grain G with orientation S} ≤ |∂G|.

The minimum energy is bounded by the size of the grain boundary.



Visualization

Left: Displacement u with S = 1
5

(
0
1
−1
0

)
.

Right: Relaxed displacement field uσ which minimizes HAO(·, σ) subject to
Neumann boundary conditions.

Colored triangles indicate the support of dσ.



Visualisation of unrelaxed grain with slips



Construction of upper bound

Particularly simple examples of lattice invariance are shear bands:

u(x) = f (x ·m) b

with
b ∈ L Burger’s vector
m ∈ R3 slip plane normal, satisfies b ·m = 0.

The pairs (b,m) are called slip systems. There are 12 slip systems and 4
slip planes in fcc:

m1 =

−11
1

 , m2 =

 1
−1
1

 , m3 =

 1
1
−1

 ,m4 =

11
1





Construct u and σ (I)

Decomposition of linearised rotation into shear bands.

S =

0 −1 −1
1 0 1
1 −1 0

 = b1 ⊗m2 − b2 ⊗m1 − b6 ⊗m4

with

b1 =

01
1

 , b2 =

10
1

 , b6 =

 1
−1
0

 .



Construct u and σ (II)

ϕ(x) = 1G(x) (bx ·m2cb1 − bx ·m1cb2 − bx ·m4cb6 − Sx)

Observe that ‖ϕ‖∞ < C independently of grain size.

σ(x , y) =
{
ϕ(x)− ϕ(y) if x , y ∈ G,
0 else.

,

u(x) = 1G(x) [S(x − xcenter) + ϕ(x)]



Energy density of dislocation configurations (2 dim)

Dislocation dipole

qn
dip = (1f0 − 1fn ) b1 (1)

with b1 = (1
0), b3 = −1

2( 1√
3) and fn = (0, b1,−b3) + nb1.

0 1 2 · · · n

1 2 · · · n

Shaded triangles, corresponding to faces f0 and fn, indicate the support of
qn

dip. In red: the support of a slip field σn
dip such that dσn

dip = qn
dip.

Exterior calculus notation:

du(x , y) = u(x)− u(y),
dσ(x , y , z) = σ(x , y) + σ(y , z) + σ(z , x).



Dislocation configurations cont’d

Dislocation wall

qM,n,m
grain (f ) =

M∑
j=1

qn
dip(f − jm(b2 − b3)).

Number of dislocation pairs: M
Distance between dislocation cores with same (different) signs: m (n).



Energy of dipoles and walls

Theorem

Edip(n) = min
{

HAO(u, σ) : dσ = qn
dip

}
= log n

2π
√
3

+ O(1), n� 1,

Egrain(n,m) = lim
M→∞

1√
3mM

min
{

HAO(u, σ) : dσ = qM,n,m
grain

}
= log m

6πm + O(1/m), m� 1.

Energy of dipole grows logarithmically with distance. Energy of wall is
proportional to length of wall and independent of distance.

Read-Shockley law: γ(θ) = (c0 − c1 log θ)θ + o(θ), 0 < θ <� 1,
γs is the grain boundary energy density θ is the orientation difference.



Capacitor law
Compare with version of energy not invariant under linearized rotations.

E [q] = 1
2 min

(u,σ)

{
|du − σ|2 : dσ = q

}
= 1

2 min
v

{
|v |2 : dv = q

}
,

Theorem

E [qn
dip] =

√
3

2π log n + O(1), n� 1,

lim
M→∞

1
M E [qM,n,m

grain ] = n
2m + O(1), n� 1.

Recall from Physics: Energy of two capacitor plates is proportional to
the distance.
Invariance under linearized rotations affects scaling of energy minima
significantly.



Random dislocation configurations

Recall gauge invariance

HAO(u + v , σ + dv) = HAO(u, σ) for all v : L → L.

Slips σ and σ′ are gauge equivalent if σ − σ′ = dv for some v .
S are representatives of non-equivalent slip fields.
Boltzmann-Gibbs distribution

Pβ(u, σ) = 1
Z (β) exp(−β (HAO(u, σ) + w(dσ)))

Partition sum

Z (β) =
∑
σ∈S

exp(−β w(dσ))
∫

exp(−β HAO(u, σ)) du.

Exterior derivative

dσ(x , y , z) = σ(x , y) + σ(y , z) + σ(z , x).



Existence of order at low temperatures

Quantify long-range order by observable

cβ(v0; x , y) := Eβ(cos([u(y)− u(x)] · v0)).

Theorem
There are positive constants C , β0 such that

cβ(x , y ; v0) ≥ e−C/β
(
1 + O

( log |x−y |
|x−y |

))
, |x − y | � 1

if v0 ∈ L∗ and β > β0.

Weaker notion of order: Orientational order (relevant in 2 dimensions)

cβ(v0, h; x , y) := Eβ(cos([u(x + h)− u(x)− u(y + h) + u(y)] · v0)).



Previous work

Fröhlich and Spencer (CMP 1982) obtained similar results for the
rotator models in three dimensions.
In the two dimensional case (Fröhlich-Spencer 1981) only orientational
order is present. The proof is harder (renormalisation group).
Orientational order has been established in a mesoscopic version of the
Ariza-Ortiz model by Bauerschmidt, Conache, Heydenreich, Merkl and
Rolles (AHP 2019)

The key difference between earlier results by Fröhlich and Spencer and the
current results is the invariance with respect to linearized rotations.



Decompose energy into elastic and dislocation energy

Recall
HAO(u, σ) = 1

2〈du − σ,B(du − σ)〉.

Let q ∈ Ω∗2 be the Burgers field such that dq = 0 and

σq = argmin{H(0, σ) : dσ = q}, uq = argminuH(u, σq),

then
HAO(u, σ) = HAO(u − uq, 0) + HAO(0, σq).

Hence Pβ is a product distribution:

Pβ(u, σ) = exp(−β H(u − uq, 0))
Zel(β) × exp(−β (H(0, σq) + w(dσ)))

Zdisl(β) .



Elastic fluctuations (spin waves)

Recall
c = Eβ(exp(i〈u, g〉))

for some g ∈ Ω0.
Choose d∗h = g , then

Eβ(exp(i〈u, g〉)) = Eβ(exp(i〈u,d∗h〉)) = Eβ(exp(i〈du, h〉))
= Eβ(exp(i〈u − uq, g〉))× Eβ(exp(−i〈σq, h〉)

Fourier coefficient of a continuous and a discrete Gaussian measure.
Recall:∫

exp(−〈x ,Ax〉) cos(〈k, x〉) dx =
(
π

|A|

) 1
2

exp(−π2〈k,A−1k〉).

In our setting: A−1 is the Green’s function. In three dimensions
A−1(x , y) = O(|x − y |−1).



Dislocation fluctuations (vortex waves)

Cut a a long story short

The field σq satisfies

d∗Bσq = 0,
dσq = q

Continuum analogue:

∇ · (σ + σT ) = 0,
curl σ = q

Hodge decomposition: σ = du + d∗V , (σ = ∇u + curl V ).
V = d∆−1q
HAO(0, σq) = 1

2〈Gq,BGq〉 with G = (1− dA−1d∗B)d∗∆−1.

Need that
A−1d∗B2dA−1(x , x ′) = o(1), |x − x ′| � 1,

this holds if A−1 = O(|x |−1)



Cluster expansion

We are interested in Zβ(h)
Zβ(0) with

Zβ(h) =
∑

d2q=0
exp(i〈σq, h〉) exp(−β(w(q) + HAO(0, σq))) =

∑
d2q=0

K (q, h).

The dislocation configuration q can be decomposed into disjoint loops:

K (q, h) =
n∏

j=1
K (qj , h).

Thus
Zβ(h) = 1 +

∞∑
n=1

1
n!

∑
q1,...,qn

n∏
j=1

K (qj , h).

Now estimate the individual terms!



Conclusions and Outlook

First results on formation of crystals in three dimensions
First rigorous, quantitative result on equilibrium dislocation
configurations
Results due to a complete decoupling between dislocations and elastic
field

Outlook
Two dimensions (orientational order, hexatic phases)
Nonlinear versions, e.g. hard disks or hard balls at finite density.
Quantitative discrete dislocation dynamics


