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Defective Crystals

Ø Defects play a crucial role in influencing a variety of materials properties –
mechanical, electronic, optical, chemical

Ø
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Dislocations

TEM image of dislocation partial            
T.J. Balk, K.J. Hemker, Phil. Mag. A, 2001

Vacancies/Interstitials

Prismatic loops formed from vacancies, 
Giess et. al, Microsc Microanal, 2005

Interfaces/Surfaces

TEM image of Ni-Al interface,   
Mann et.al, J. Appl. Phys. 1997

Metal Plasticity –
Renders the strength of 
materials to 1/1000 its 

theoretical strength 

Creep, Spall, Ageing, 
hardening due to radiation 

Phase stability, Energetics, 
Diffusion mediation, defect 

sources and sinks 
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Defective crystals: The challenge

Ø The energetics of defects: (i) core-energy; (ii) elastic energy

Ø The core of a defect is governed by electronic structure – need electronic 
structure calculations!

Ø Defects result in a vast span of interacting length scales
v Electronic structure of the core (10-12 m)
v Complex rearrangements of atoms around the core (10-9 m)
v Long ranged elastic effects (10-6 m)

Realistic defect concentration in materials is parts per million!

Ø Challenge : Need electronic structure calculations at macroscopic scales!

v (i) Development of computational techniques for large-scale electronic 
structure calculation that can explicitly treat systems up to 10,000 atoms

v (ii) Development of seamless coarse-graining schemes using adaptive 
numerical schemes

But need single physics 
at all length scales! -

No patching, seamless 
description
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Ø Schrödinger equation   -

Ø Born-Oppenheimer approximation  - Classical treatment of atomic nuclei

Ø Computational complexity  -

Quantum Mechanics
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Density-functional theory – Kohn-Sham approach

Ø Ground-state energy is a function of electron-density !!  (Kohn & Sham, 
1964-65)

(Variational statement)

Exchange-correlation 
functional: Model using 
LDA, GGA

Kinetic energy of non-interacting electrons: 
Computed from wave-functions of the 
resulting E-L eqn.
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Kohn-Sham density-functional theory (KSDFT)

Ø The KSDFT energy functional is given by,

Local density approximation (LDA)

Classical electrostatic interaction energy :

Computed in Fourier-space (reciprocal-
space) in almost all DFT implementations

Non-local
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Ø Electrostatic interactions can be re-written locally as,

Ø Thus,

Non-local

KSDFT – Real-space formulation
(Suryanarayana & Gavini et al. JMPS 58, 256-280 (2010))

Green’s function for 
Laplace operator

(Regularized nuclear charges)
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KSDFT – Real-space formulation
(Suryanarayana & Gavini et al. JMPS 58, 256-280 (2010))

Ø The saddle-point problem is given by,

Ø Define,   

Ø Theorem :

Proof     :   Sobolev embeddings; Poincaré inequality    (Direct Method)



Ø

Ø Consider  the E-L equation corresponding to the variational problem:

Ø To avoid charge-sloshing:
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Kohn-Sham eigenvalue problem

Self consistent iteration
(Kohn-Sham map)



State of the art

Key Features (plane-waves)

• Very efficient for periodic calculations
• Restrictive to periodic domains
• Provide only uniform spatial resolution
• Suitable only when the solution fields are 
smooth.

Key Features (LCAO)

• Suitable for isolated systems
• Can handle both pseudopotential 
and all electron calculations
• Systematic convergence can not be 
ascertained
• Parallel scalability is a concern

Fourier Space
Formulations

Real Space 
Formulations (LCAO, FDM, FEM)

Solutions to Kohn-Sham Equations
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Ø Use finite-element basis for computing –
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Features of finite-element basis:
1. Unstructured coarse-graining

2. Complex geometries can be represented, and 
arbitrary boundary conditions can be imposed.

3. Systematic convergence

4. Ease of parallel implementation

KSDFT – FE discretization

r

u

i=1 i=2   …

1
N2(r) N3(r)N1(r)

i=1 i=2   … r

By changing the positioning of the 
nodes the spatial resolution of 
basis can be changed/adapted



KSDFT – FE discretization

Main Limitations:

Ø Previous attempts showed that the number of FE basis functions (linear) 
needed to obtain chemical accuracy is very large ~ 100,000-1,000,000 
basis functions per atom.

Ø The finite-element discretization leads to a generalized eigenvalue problem, 
which is more challenging to solve than a standard eigenvalue problem

Present Work:

Ø We demonstrate an efficient, scalable computational approach using 
adaptive higher-order finite-element discretization. 

Ø We propose a linear scaling algorithm (in number of electrons) which treats 
both insulating and metallic systems on an equal footing.
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Ø Discrete eigenvalue problem:

Ø Transformation to a standard eigenvalue problem:

Ø Remark:      denotes the projection of the Hamiltonian operator into a 
space spanned by Löwden orthonormalized finite-element basis
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KSDFT – FE discretization



Can higher-order finite-elements do any better? 

Ø Here, we investigate the viability and computational efficiency afforded by 
higher-order finite-element discretization in electronic structure calculations 
using density functional theory to answer the following questions:

v What is the numerical convergence rate for various orders of finite-element 
approximations in electronic structure calculations using DFT?

v What is the computational advantage derived by using higher-order finite 
element discretization in terms of the CPU time?

Ø First studies which demonstrate the computational efficiency afforded by higher-
order elements for Kohn-Sham DFT calculations.
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Rate of convergence of the finite element approximation

Ø The study has been carried out by a suite of higher order elements:
ØTET 10 (TETRAHEDRAL QUADRATIC ELEMENT)
Ø HEX 27 (TRI QUADRATIC HEXAHEDRAL ELEMENT)
Ø HEX 64 (TRI CUBIC HEXAHEDRAL ELEMENT)
Ø HEX 125 (TRI QUARTIC HEXAHEDRAL ELEMENT)
Ø HEX 64 SPECTRAL, HEX 125 SPECTRAL … upto 10th order
(Lagrange Polynomials are constructed on Gauss-Lobatto Legendre Points for spectral 
elements)

Ø Elements have been tested against three types of problems: (a) CH4 (b) Barium Cluster 
(35 atoms)

(a) CH4 : An all electron calculation
(b) Barium Cluster: Pseudopotential calculation
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Convergence rates
(Motamarri et al. J. Comp. Phys. 253, 308-343 (2013))

Barium Cluster Methane Molecule

Optimal rate of convergence!



Computational efficiency of higher-order FE discretization 

Two Key questions:

Ø How do higher-order FE discretizations compare to lower order elements in 
computational efficiency?

Ø How do higher-order FE discretizations compare against plane-wave basis 
and Gaussian basis?

Key ideas in improving computational efficiency:

Ø Developed a priori mesh adaption techniques 

Ø Use of Gauss-Legendre-Lobatto quadrature rules for the overlap matrix in 
conjunction with Spectral FE discretization

Ø Developed a Chebyschev acceleration technique to directly compute the 
eigenspace
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A priori mesh adaption
(Motamarri et al. J. Comp. Phys. 253, 308-343 (2013))

Error Estimate:

Optimal mesh distribution:
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Spectral FE and Gauss-Lobatto-Legendre quadrature 

Ø Spectral-element basis functions:

v Constructed from Lagrange polynomials interpolated through nodes corresponding 
to the roots of the derivatives of the Legendre polynomials and boundary nodes (GLL 
points)

v Upon using a Gauss-Lobatto-Legendre quadrature rule, the quadrature points 
coincide with the FE nodes

Ø Remarks:
v Transformation to standard eigenvalue problem is trivial

v The reduced order quadrature rule is only employed for the computation of the 
overlap matrix, and the full Gauss quadrature is employed to compute the 
Hamiltonian matrix.   
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Eigen-space computation: Chebyschev acceleration
(Motamarri et al. J. Comp. Phys. 253, 308-343 (2013)) 

E

Occupied eigen-space Unwanted eigen-space

-1 1
Occupied eigen-space

Ø
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Eigen-space computation: Chebyschev acceleration



Numerical algorithm

1. Start with initial guess for electron density and the initial 
wavefunctions

2. Compute the discrete Hamiltonian       using the input electron density
3. Compute the Chebyshev filtered basis :
4. Orthonormalize the basis     and compute , the projected 

Hamiltonian into the subspace spanned by     
5. Compute the Fermi-energy and the output electron density by 

diagonalizing projected Hamiltonian and using the following equation

6. If  , EXIT; else, compute new using a mixing 
scheme and go to (2).
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Computational efficiency
(Motamarri et al. J. Comp. Phys. 253, 308-343 (2013))

Barium Cluster Methane Molecule
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Aluminum clusters
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Scalability
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All-electron calculations

100 atom Graphene sheet



Ø Additional functions appended to the ‘Classical’ FE basis

Ø Enriched functions: Radial part computed using 1D radial Kohn-Sham 
solve, and multiplied by spherical harmonics

Ø Compact support for the enriched functions is obtained by multiplying with 
a mollifier

Ø Integrals computed using an adaptive quadrature (Mousavi et al. (2012))

Ø Key advantages of enrichment:
v Reduced degrees of freedom
v Reduced spectral width of the discrete Hamiltonian

Enriched FE basis
(Kanungo & Gavini Phys. Rev. B 95, 035112 (2017))
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Ø M11 is diagonal when spectral FE are used along with Guass-Lobatto 
quadrature

Ø S is a small matrix of size Nel x Nel and can be easily inverted using direct 
solvers  

Enriched FE basis
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Enriched FE basis v/s Classical FE basis
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Enriched FE basis v/s pc basis (NWChem)
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Enriched FE basis v/s pc basis (NWChem)
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Computational complexity

Complexity in each SCF iteration: 
M: Number of degrees of freedom
N: Number of electrons (Mµ N)

Ø Chebyshev filtering procedure : O(MN)

Ø Orthonormalization of Chebyschev filtered vectors : O(MN2)

Ø Diagonalization of the projected Hamiltonian: O(N3)

Cubic Scaling in N!
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Subspace projection technique
(Motamarri & Gavini, Phys. Rev. B 90 115127 (2014))

Key features of the proposed method:

Ø Chebyshev filtering to generate the approximate occupied subspace

Ø Construct non-orthogonal localized basis functions that span the same 
space & truncate these localized functions beyond a prescribed tolerance
v Subsequently localized basis functions have a compact support
v Use an adaptive tolerance for the truncation: truncation tolerance tied to 

the error in the SCF iteration; ensures strict control on accuracy

Ø Project Hamiltonian into the occupied subspace expressed in the non-
orthogonal basis 

Ø Fermi-operator expansion of the projected Hamiltonian to estimate Fermi-
energy and compute the electron density
v Avoids diagonalization of the Hamiltonian to compute orbital occupancies
v Applicable for both metallic and insulating systems
v Applicable for both pseudopotenial and all-electron calculations



Ø Project  Hamiltonian in the localized basis:

Ø Remarks: 
v Locality of is sparse and can be computed in O(N) complexity
v can be computed using Newton-Schultz algorithm which has O(N) 

complexity
v Finally, can be computed in O(N), if        is sparse.
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Subspace projection approach: Key ideas

Eigen-space from Chebyschev filtering

Localized basis spanning eigen-space
(Garcia-Cervera et al.)



Ø Computation of electron density

Recall: 

No diagonalization No knowledge of eigenvalues and eigenvectors

Ø Compute density matrix instead:

v The electron density is the diagonal of the density matrix

Ø Fermi-operator expansion techniques can be employed to compute the 
density matrix:

Ø Challenge: ; spectral width of the discrete Hamiltonian 

is about 103 – 106 !
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Subspace projection approach: Key ideas



Fermi-operator expansion of the projected Hamiltonian:

Ø Compute the density matrix using the projected Hamiltonian in the non-
orthogonal localized basis

Ø The spectral width of the projected Hamiltonian is ~ O(10) and thus can 
efficiently employ the Fermi-operator expansion

v This approach treats both insulating and metallic systems on equal footing
v This approach is applicable for both pseudopotential calculations and all-

electron calculations
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Subspace projection approach: Key ideas
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Case study: Al nano-clusters (3x3x3 – 9x9x9)
Pseudopotential calculations

Total computational time

Subspace projection scaling: O(N1.46) 

Electron density contours on the mid-
plane of the 9x9x9 nano-cluster

Accuracy of subspace projection method commensurate with chemical accuracy
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Case study: Alkane chains (C33H68– C2350H4702)
Pseudopotential calculations

Total computational time

Subspace projection scaling: O(N1.18) 

Numerical accuracy

Isocontours of alkane chain C900H1802
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Case study: Si nano-clusters (1x1x1 – 3x3x3)
All-electron calculations

Total computational time

Subspace projection scaling: O(N1.85) 

Electron density contours on the mid-
plane of the 3x3x3 Si nano-cluster

Accuracy of subspace projection method commensurate with chemical accuracy



Ø The spectral width of subspace projected Hamiltonian grows as O(Z2) 

Ø Split the eigenspectrum of       into core and valence parts 
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Spectrum Splitting: Key ideas
(Motamarri & Gavini et al. Phys. Rev. B 95 035111 (2017))
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Spectrum Splitting
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Spectrum Splitting
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Spectrum Splitting
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Ongoing/future work

Real-space DFT-FE:

Ø Incorporate more advanced exchange-correlation functionals (beyond LDA, 
GGA)

Ø Exploring tensor structured techniques and low rank approximations in 
conjunction with real-space formulation
(Motamarri, P., Blesgen, T., Gavini, V., Tucker-tensor algorithm for large-scale Kohn-Sham density  
functional theory calculations, Phys. Rev. B, 93 125104 (2016))

Ø Extend algorithms to time dependent DFT

Coarse-graining KSDFT: 

Localization of the wavefunctions is key for extending the coarse-graining ideas

Ø O(N) formulations: Non-orthogonal localized orbitals 

Ø QC-KSDFT: localization -> predictor-corrector approach -> QC

Ø Electronic structure calculations at macroscopic scales with Kohn-Sham 
DFT will enable a quantum-mechanically accurate study of defects in 
materials  
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Concluding remarks

Ø Developed real-space formulation for Kohn-Sham DFT
v Reformulation of electrostatics as a local variational problem
v Mathematical analysis

Ø Finite-element discretization of Kohn-Sham DFT & Numerical algorithms
v Optimal rates of convergence
v Spectral elements in conjunction with GLL quadratures (for overlap matrix)
v Chebyshev filtering to directly compute the eigenspace
v Large-scale calculations possible 
v Algorithms exhibit good scalability

Ø Development of a linear-scaling algorithm
v Localized basis spanning the Chebyshev filtered subspace
v Project of Hamiltonian into subspace
v Use Fermi-operator expansion on the projected Hamiltonian



THANK YOU!
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