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Rare events matter

Rare events are important if they are extreme

Or separation of scales makes them common after all

underlying dynamics might be very complex, and analytical
solutions are not available in most cases: Turbulence, Climate,
chemical- or biological systems

Direct numerical simulations (sampling) is infeasible because
events are very rare

Rare events are often predictable: Requires computational
approaches based on LDT
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Large Deviation Theory

The way rare events occur is often
predictable — it is dominated by
the least unlikely scenario —
which is the essence of LDT
Calculation of the least unlikely
scenario (maximum likelihood
pathway, MLP) reduces to a
deterministic optimization
problem

Simple example: gradient systems (navigating a potential
landscape), transitions between local energy minima happen
through minimum energy paths (mountain pass transition)
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Large deviation theory for stochastic processes

A family of stochastic processes {Xε
t }t∈[0,T ] with smallness-parameter ε

(e.g. ε = 1/N , or ε = kBT , etc) fulfils large deviation principle:

The probability that {Xε(t)}t∈[0,T ] is close to a path {φ(t)}t∈[0,T ] is

Pε
{

sup
0≤t≤T

|Xε(t)− φ(t)| < δ

}
� exp

(
−ε−1IT (φ)

)
for ε→ 0

where IT (φ) is the rate function.

The probability of hitting set Az = {x|F (x) = z} is reduced to a
minimisation problem

Pε {Xε(T ) ∈ Az|Xε(0) = x} � exp

(
−ε−1 inf

φ:φ(0)=x,F (φ(T ))=z
IT (φ)

)
Here, � is log-asymptotic equivalence, i.e.

lim
ε→0

ε logPε = − inf
φ∈C

IT (φ) with e.g. C =
{
{x}t∈[0,T ]|x(0) = x, F (x(T )) = z

}

Tobias Grafke Predicting Rare Events via Large Deviations Theory



Large deviation theory for stochastic processes

A family of stochastic processes {Xε
t }t∈[0,T ] with smallness-parameter ε

(e.g. ε = 1/N , or ε = kBT , etc) fulfils large deviation principle:

The probability that {Xε(t)}t∈[0,T ] is close to a path {φ(t)}t∈[0,T ] is

Pε
{

sup
0≤t≤T

|Xε(t)− φ(t)| < δ

}
� exp

(
−ε−1IT (φ)

)
for ε→ 0

where IT (φ) is the rate function.

The probability of hitting set Az = {x|F (x) = z} is reduced to a
minimisation problem

Pε {Xε(T ) ∈ Az|Xε(0) = x} � exp

(
−ε−1 inf

φ:φ(0)=x,F (φ(T ))=z
IT (φ)

)

Here, � is log-asymptotic equivalence, i.e.

lim
ε→0

ε logPε = − inf
φ∈C

IT (φ) with e.g. C =
{
{x}t∈[0,T ]|x(0) = x, F (x(T )) = z

}

Tobias Grafke Predicting Rare Events via Large Deviations Theory



Large deviation theory for stochastic processes

A family of stochastic processes {Xε
t }t∈[0,T ] with smallness-parameter ε

(e.g. ε = 1/N , or ε = kBT , etc) fulfils large deviation principle:

The probability that {Xε(t)}t∈[0,T ] is close to a path {φ(t)}t∈[0,T ] is

Pε
{

sup
0≤t≤T

|Xε(t)− φ(t)| < δ

}
� exp

(
−ε−1IT (φ)

)
for ε→ 0

where IT (φ) is the rate function.

The probability of hitting set Az = {x|F (x) = z} is reduced to a
minimisation problem

Pε {Xε(T ) ∈ Az|Xε(0) = x} � exp

(
−ε−1 inf

φ:φ(0)=x,F (φ(T ))=z
IT (φ)

)
Here, � is log-asymptotic equivalence, i.e.

lim
ε→0

ε logPε = − inf
φ∈C

IT (φ) with e.g. C =
{
{x}t∈[0,T ]|x(0) = x, F (x(T )) = z

}
Tobias Grafke Predicting Rare Events via Large Deviations Theory



Freidlin-Wentzell theory

In particular consider SDE (diffusion) for Xε
t ∈ Rn,

dXε
t = b(Xε

t ) dt+
√
εσdWt ,

with “drift” b : Rn → Rn and “noise” with covariance χ = σσT , we have

IT (φ) =
1
2

∫ T

0

|φ̇− b(φ)|2χ dt =
∫ T

0

L(φ, φ̇) dt ,

for Lagrangian L(φ, φ̇) (follows by contraction from Schilder’s theorem).

We are interested in
φ∗ = argmin

φ∈C

∫ T

0

L(φ, φ̇) dt

which is the maximum likelyhood pathway (MLP).
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Physicists approach: Path integral formalism

Consider ẋ = b(x) + η

with white noise η with covariance

〈ηi(t)ηj(t′)〉 = εχijδ(t− t′)

then
P({η}) ∼

∫
D[η] e−

1
2ε

∫
ηχ−1η dt

but x = x[η], with η = ẋ− b(x), so that (ignoring Jacobian)

P({x}) ∼
∫
D[x] e−

1
2ε

∫
|ẋ−b(x)|2χ dt ∼

∫
D[x] e−

1
ε IT (x)

Approximate path integral for ε→ 0 via saddle point approximation,
δI

δφ∗
= 0, (Instanton, semi-classical trajectory)

Rate function↔ Action, MLP↔ Instanton, LDP↔ Hamiltonian principle
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Maximum likelyhood pathway and rare events

Main problem
Find the maximum likelyhood pathway (MLP) φ∗ realizing
an event, i.e. such that

IT (φ
∗) = inf

φ∈C
IT (φ)

where C is the set of trajectories that fulfil our constraints.

Knowledge of the optimal trajectory gives us

1. Probability of event, P ∼ exp
(
−ε−1IT (φ∗)

)
2. Most likely occurence, φ∗ itself (allows for prediction, exploring

causes, etc.)

3. Most effective way to force event (optimal control),
optimal fluctuation
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Example: Ornstein-Uhlenbeck

Ornstein-Uhlenbeck process

du = b(u) dt+dW , b(u) = −γu , γ > 0 .

Consider extreme events with
u(T ) = z (so F (u) = u(T )).

The instanton is

u∗(t) = zeγ(t−T )

(
1− e−2γt
1− e−2γT

)
,

obtained from constrained
optimization

inf
{ut}∈Uz

IT (z) = inf
{ut}∈Uz

1
2

∫ T

0

|u̇+γu|2 dt

over the set

Uz =
{
{ut}

∣∣∣ F (uT ) = z
}

−10 −8 −6 −4 −2 0

t

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

u
(t

)

zeγ(t−T )

−10 −8 −6 −4 −2 0

t

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

u
(t

)
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Reversible systems and gradient flows

Special case: Systems in detailed balance. For example,

dXε
t = −∇U(Xε

t ) dt+
√
2ε dWt

Then
IT (φ) =

1
4

∫ T

0

|φ̇+∇U |2 dt

is minimized either by φ̇ = −∇U (“sliding” down-hill) or

IT (φ) =
1
4

∫ T

0

|φ̇+∇U |2 dt = 1
4

∫ T

0

|φ̇−∇U |2 dt+
∫ T

0

∇U · φ̇ dt

= U(φend)− U(φstart) if we choose φ̇ = ∇U

which is the time-reversed down-hill path. Easy algorithms exist∗.

∗Weinan E, Weiqing Ren, and Eric Vanden-Eijnden. “String method for the study of rare events”. In: Physical Review B
66.5 (Aug. 2002), p. 052301. doi: 10.1103/PhysRevB.66.052301.
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Example: Pendulum

Consider dampled pendulum{
dx = v dt+ σ dWx,

dv = − sin(x) dt− γv dt+ σ dWv
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Hamiltonian formalism

Main problem
Find the maximum likelyhood pathway (MLP) φ∗ realizing
an event, i.e. such that

IT (φ
∗) = inf

φ∈C
IT (φ)

where C is the set of trajectories that fulfil our constraints.

Obtained through direct numerical minimisation,

or through Hamiltionan

H(x, p) = sup
y

{
yp− L(x, y)

} FW
= b(x)p+ 1

2pχp

so that (φ∗, θ∗) fulfil equations of motionφ̇ = ∇θH(φ, θ)
FW
=⇒ φ̇ = b(φ) + χθ

θ̇ = −∇φH(φ, θ)
FW
=⇒ θ̇ = −∇b(φ)T θ
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Finding the minimizer
Algorithm† ,‡:

φ̇ = b(φ) + χθ

θ̇ = −∇b(φ)T θ

φ

θ

t = 0 t = T

Advantages:
Fits with the boundary conditions
Simple time-integration scheme applicable (Runge-Kutta)
No higher derivatives of H(φ, θ)

This is essentially computing the gradient via the adjoint formalism
†A. I. Chernykh and M. G. Stepanov. “Large negative velocity gradients in Burgers turbulence”. In: Physical Review E

64.2 (July 2001), p. 026306. doi: 10.1103/PhysRevE.64.026306.
‡T. Grafke, R. Grauer, T. Schäfer, and E. Vanden-Eijnden. “Arclength Parametrized Hamilton’s Equations for the

Calculation of Instantons”. In: Multiscale Modeling & Simulation 12.2 (Jan. 2014), pp. 566–580. issn: 1540-3459. doi:
10.1137/130939158.
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Finding the minimizer
Algorithm§ ,¶:

φ

θ

t = 0 t = T

Problem for PDEs: Memory, e.g. 2D

2︸︷︷︸
(φ,θ)

× 1024× 1024︸ ︷︷ ︸
space

× 104︸︷︷︸
time

≈ 1010

For θ: Store only χθ instead of θ, 10242 → 642

For φ: Recursive solution in φ, O(Nt)→ O(logNt)
This is known as “checkpointing” in PDE optimization
Additionally, bi-orthogonal wavelets to store fields

§Antonio Celani, Massimo Cencini, and Alain Noullez. “Going forth and back in time: a fast and parsimonious
algorithm for mixed initial/final-value problems”. In: Physica D: Nonlinear Phenomena 195.3 (2004), pp. 283–291.
¶Tobias Grafke, Rainer Grauer, and Stephan Schindel. “Efficient Computation of Instantons for Multi-Dimensional

Turbulent Flows with Large Scale Forcing”. In: Communications in Computational Physics 18.03 (Sept. 2015),
pp. 577–592. issn: 1991-7120. doi: 10.4208/cicp.031214.200415a.
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Application: Extreme gradients in Burgers equation
Evolution of Burgers shocks:

ut + uux − νuxx = η

with

〈ηη′〉 = δ(t− t′)χ(x− x′)
Compute

P {ux(0, 0) > z|u(x,−T ) = 0}

Question: What is the most likely
evolution from u(x)=0 at t=−∞,
such that at the end (i.e. t = 0) we
have a high gradient in the origin
ux(x=0, t=0)=z (shock)?

Grafke, Grauer, Schäfer, and Vanden-Eijnden 2015
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Application: Extreme gradients in Burgers turbulence

¶Grafke, Grauer, and Schäfer 2013
Tobias Grafke Predicting Rare Events via Large Deviations Theory



Application: Extreme gradients in Burgers turbulence

H(u, θ) =

∫ (
θ · (u · ∇u− ν∇2u) + 1

2θχ ? θ
)
dx
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¶Grafke, Grauer, and Schäfer 2013 Tobias Grafke Predicting Rare Events via Large Deviations Theory



Application: Active matter phase separation

Bacteria show complex collective
behavior

have active propulsion, i.e. a
free-swimming (planktonic) stage
are able to sense their environment
through quorum sensing
stick to surfaces in biofilms

Model bacteria as N agents with
active Brownian motion, i.e. velocity
vector diffuses on a sphere,
density dependend diffusion
constant,
and birth/death

Then take LDT for N →∞

E. Coli: active propulsion & biofilms

H(ρ, θ) =

∫ (
θ∂x(De(ρ)∂xρ− ρD(ρ)∂x(δ

2∂2
xρ+ θ)) + αρ(eθ − 1) + αρ2/ρ0(e

−θ − 1)
)
dx
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Application: Active matter phase separation

Complex collective behaviour for
simple active agents:

Propulsion and Reproduction

When ρ0 < ρS , planktonic phase
is robust.

When ρS < ρ0 < ρc, particles
oscillate between biofilm and
planktonic phase

When ρc < ρ0, biofilms are
metastable. They rarely disperse
and reform by dying out

Full phase diagram depends on
carrying capacity ρ0 and
domain size δ−1. 0 2 4 6 8 10
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¶Tobias Grafke, Michael E. Cates, and Eric Vanden-Eijnden. “Spatiotemporal Self-Organization of Fluctuating Bacterial
Colonies”. In: Physical Review Letters 119.18 (Nov. 2017), p. 188003. doi: 10.1103/PhysRevLett.119.188003
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Application: Extreme ocean surface waves

Problem of Rogue waves:
Creation mechanism not
understood
Probability unknown
(but > Gaussian)
Measurements difficult
(you might not be able to tell the tale)

Strategy:
Random data from observation as
input
Accurate dynamical system to
extrapolate output (MNLS)
Use LDT to obtain tails of height
distribution
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Application: Extreme ocean surface waves

rough sea (Hs = 3.3m, BFI = 0.34) high sea (Hs = 8.2m, BFI = 0.85)
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Application: Extreme ocean surface waves
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¶Giovanni Dematteis, Tobias Grafke, and Eric Vanden-Eijnden. “Rogue waves and large deviations in deep sea”. In:
Proceedings of the National Academy of Sciences 115.5 (Jan. 2018), pp. 855–860. issn: 0027-8424, 1091-6490. doi:
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LDT as WKB approximation
Consider Markov jump process with generator L, s.t.

∂tf = L†f (forward Kolmogorov, Fokker-Planck, Master eqn)
∂tf = Lf (backward Kolmogorov)

e.g. for diffusion above, L = b · ∇+ 1
2ε∇∇

For WKB approximation, f ∼ exp
(
ε−1S

)
, BKE becomes to leading order

∂tf = b · ∇S + 1
2 (∇S)2

which is a Hamilton-Jacobi equation,

∂tf = H(x,∇S), H(x, p) = b · p+ 1
2p

2

This is the LDT Hamiltonian from before(!), but works for all MJP

for additive Gaussian SDE
for Lévy processes
other cases, i.e. stochastic
averaging

for multiplicative Gaussian SDE
for jump process
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Challenges: Infinite transition time and geometric rate function

We actually want the most probable event regardless of duration.

Drop the restriction of a pre-defined transition time T :

I(φ̃) = inf
T∈(0,∞)

inf
φ
IT (φ)

Possibly attains minimum at T →∞.

Since H(φ, θ) = h = cst, we have∫
L(φ, φ̇) dt =

∫
sup
θ

(
〈φ̇, θ〉 −H(φ, θ)

)
dt = sup

θ:H(φ,θ)=h

∫
〈φ̇, θ〉 dt+ hT

Effectively:
Reduce minimisation over all paths to finding geodesic of the
associated (almost Finsler) metric.

¶Heymann, Vanden-Eijnden (2008), Grafke, Schäfer, Vanden-Eijnden (2017)
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Summary

Main theme
Obtain statistics of and structures for rare events
by numerically computing large deviation
minimisers for spatially extended systems

Challenges:

Analytic solutions not available

Needs PDE constrained
optimisation (on GPUs)

Simplification necessary through
nature of problem

Applications:

Fluid dynamic

Non-equilibrium stat. mech.

Rogue waves
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