Atomic Scale Defects: Probing Structure and Function

Felix Hofmann

Department of Engineering Science, University of Oxford, UK.

Atomic Scale Crystal Defects

Hardie et al., JNM (2014)

Warwick Nov 2017

Measuring Defect Strain Fields

Edge dislocation in silicon, looking down [1-10] direction.

Hytch et al., Nature 423 (2003)

X-ray Imaging of Dislocations

Silicon single crystal. 1st X-ray images of dislocations. Newkirk, Phys. Rev. (1958)

- 3D imaging of dislocations in the bulk
- Dislocation positions
- Low dislocation densities

Ludwig et al. J. Appl. Crystallography (2001)

Probing Strains due to an Individual Dislocation

- GaAs-InGaAs multilayer. Misfit dislocations at GaAs-InGaAs interface.
- Easy to see dislocations in TEM.
- Can clearly identify both dislocations in TEM and Laue image

Hofmann et al. Nat. Commun. (2013)

Probing Strains due to an Individual Dislocation

Calculations

Measurements vs. Predictions

- Anisotropic elasticity modelling.
- "Virtual" diffraction experiment to predict strain and rotation profiles
- Good agreement between prediction and measurement

Hofmann et al. Nat. Commun. (2013)

Outline

Introduction

• Point Defects

Irradiation-Induced Defects, Lattice Swelling, Modulus Change, Thermal Transport, DFT, MD, Defect Evolution, Interaction with Dislocations

• Ion-Machining Damage

Coherent X-ray Diffraction Imaging, Nano-scale Lattice Strains and Crystal Defects

Conclusions

Tungsten for Plasma-Facing Fusion Armour

- High fusion neutron flux¹ (up to ~10¹⁵ n cm⁻² s⁻¹ per lethargy interval at 14.1 MeV)
 -> collision cascade damage and transmutation alloying
- High operating temperatures (up to ~1500K)
- Intense flux of helium and hydrogen ions and neutrals (up to ~15 MW m⁻¹)
 -> high heat loading and implantation-modified structure and properties
 -> Gas-Defect interaction

Warwick Nov 2017

The "Helium Effect" -> Nano-Indentation

- Ion-implantation of annealed UHP tungsten at 300°C:
 - 3000 appm Helium implantation, multiple energies max. 2 MeV
 - 2 MeV W⁺ at 300°C
 - sequential implantation
 W⁺ then He⁺
- Small change in hardness due to self ion damage
- Large apparent change in hardness due to helium implantation

Helium-Implanted Tungsten: TEM

Armstrong et al., APL 102 (2013)

- Pure W + 3000 appm He, 1μm under-focus
- No bubbles or other defects visible
- Storage in vacancies -> Positron annihilation can probe vacancies and vacancy complexes [Debelle JNM 362 (2007) 181-188; Lhuillier JNM 416 2011 13-17].

Quantifying defect numbers is challenging. Lack of spatial resolution.

Warwick Nov 2017

Samples and Ion-Implantation

Samples

- W and W + Re alloys, plasma arc melted from elemental powders or fully recrystallized rolled material
- No significant texture
- Large 100 to 1000 µm grainsize

Implantation @ NIBC, Surrey

- ~3110 appm He at 300°C
- Fluence 5.26x10¹⁶ ions/cm²
- Multiple energies 0.05-1.8 MeV
- 0.25 dpa displacement damage
- Recoils are predominantly low energy
 - Frenkel pair generation dominant damage mechanism

Warwick Nov 2017

Defect-Induced Lattice Swelling

- Differential Aperture X-ray Microscopy (DAXM) \rightarrow ~1 µm 3D strain resolution
- In-plane strains ($\varepsilon_{xx} \& \varepsilon_{yy}$) ~ 0 -> No bubbles upon implantation

ε_{zz} large in implanted layer -> Lattice swelling $\varepsilon_{v} = \frac{3(1-v)}{(1+v)} \varepsilon_{zz} = (2620 \pm 200) \times 10^{-6}$

How can this lattice swelling be related to internal defects?

Hofmann et al. Acta Mater. 89 (2015)

Warwick Nov 2017

DFT Calculations of Relaxation Volume

- Lattice swelling due to implantation-induced defects: $\mathcal{E}_v = \sum n_A \Omega_r^{(A)}$
- Introduce defects within a 4 x 4 x 4 tungsten bcc supercell -> 128 atoms
 Vacancies (V_n), self interstitial atom (SIA), interstitial helium clusters (He_n), helium vacancy clusters (He_nV)
- Boundaries are free to expand -> calculate defect relaxation volumes:

 $\Omega_r(defect) = \Omega(defect) - \Omega(perfect)$

111 SIA

Hofmann et al. Acta Mater. 89 (2015)

Calculation details:

Perdew-Burke-Ernzerhof electron exchange-correlation functional within generalized gradient approximation. Projector augmented wave (PAW) pseudopotentials implemented in the Vienna Ab-initio Simulation Package (VASP). 400 eV plane wave cutoff energy and 4 x 4 x 4 k-point mesh with 0.15 Å⁻¹ spacing. Periodic boundary conditions with expansion in all directions allowed.

DFT Calculations of Relaxation Volume

Relaxation volumes	for vacancies and	self-interstitial
--------------------	-------------------	-------------------

V	V ₂ (1NN)	V ₂ (2NN)	$V_2(3NN)$	$V_3(1NN(2)+$	<111> SIA	Frenkel
				2NN)		
-0.37	-0.72	-0.79	-0.76	-1.08	1.68	1.31
-0.34 [1]	-0.65 [1]	-0.74 [1]	-0.69 [1]			
-0.38 [2]						

Relaxation volumes for interstitial helium clusters

He (tetra)	He (octa)	He ₂ (tetra)	He_3 (tetra)	He ₄ (tetra)	He₅ (tetra)
0.36	0.37	0.80	1.16	1.65	2.03

Relaxation volumes for helium - vacancy clusters

HeV (tetra)	HeV	He ₂ V	He₃V	He ₄ V	He₅V	He ₆ V
	(octa)	(tetra)	(tetra)	(tetra)	(tetra)	(tetra)
-0.24	-0.23	-0.06	0.14	0.38	0.71	1.09

[1] Kato D, Iwakiri H, Morishita K. Journal of Nuclear Materials 2011;417:1115.

[2] Heinola K, Ahlgren T, Nordlund K, Keinonen J. Physical Review B 2010;82:094102.

[3] Zhou HB, Jin S, Shu XL, Zhang Y, Lu GH, Liu F. EPL (Europhysics Letters) 2011;96:66001.

Vacancy relaxation volume: small and negative

SIA relaxation volume: large and positive

> Helium-filled vacancy relaxation volume: negative for small n, positive for large n

Swelling Analysis

- Energetically storage of helium in vacancy clusters is always favourable

 > assume all helium is stored in the form of He_nV complexes, preventing
 recombination of Frenkel pairs.
- Swelling modes:
 - Shottky -> accumulation of vacancies in bulk, migration of SIAs to the surface -> would cause some swelling, but little lattice strain
 - Frenkel -> accumulations of helium-filled Frenkel pairs in the bulk -> would cause much more lattice strain -> likely to be the active mechanism here.
- Consider He storage in 3110 appm HeV complexes with 3110 appm SIAs:
 - ϵ_{77} (HeV + SIA) = 2654 x 10⁻⁶
 - > Predict almost twice experimental ε_{zz} strain (1550 x 10⁻⁶)
- Consider clustering¹, i.e. 1555 appm He₂V complexes & 1555 appm SIAs: ϵ_{zz} (He₂V + SIA) = 1493 x 10⁻⁶

> Good agreement with experimental ε_{zz} strain!

Why are SIAs retained?

- SIAs delocalise to form <111> crowdions that are highly mobile (0.05 eV migration energy)¹
- He-filled vacancies may act as traps for SIAs as shown by recent MD calculations^{2, 3}

1000 K, atoms participating in vacancy (blue), SIA (yellow), surface adatoms (green)²

Helium in blue, W atoms coloured by energy. SIA marked by red circle, vacancy by red arrow³

¹ Nguyen-Manh et al., Phys. Rev. B 73 (2006) 020101.

- ² Sandoval et al., Phys. Rev. Lett. 114 (2015) 105502.
- ³ J. Boisse et al., J. Mater. Res. 29, 20 (2014).

The Effect of Defect Clustering

Large scale atomistic calculations of SIA clusters

- 32 x 32 x 32 atom simulation cell
- Marinica potential for tungsten¹
- Randomly insert SIAs then relax
- Lateral expansion is constrained

Vacancies

 Immobile at 300°C implantation temperature²

<u>SIAs</u>

- <111> crowdions highly mobile at RT³
- TEM: clusters < ~60 SIAs
- Relaxation volume scales linearly with number of SIAs in cluster

Clustering not expected to affect our analysis

¹Marinica et al., J. Phys. Cond. Matter 25 (2013) ² Rasch et al. Philos. Mag. A 41 (1980) ³ Nguyen-Manh et al., Phys. Rev. B 73 (2006)

Warwick Nov 2017

Elastic Property Changes

- Rayleigh wave velocities:
 - Unimplanted: 2680 ± 2 ms⁻¹
 - He-implanted: $2621 \pm 7 \text{ ms}^{-1}$
 - \blacktriangleright Decrease of c_r by 2.2 %

 $\approx c$ $c^* = (0.874 + 0.196v - 0.043v^2 - 0.055v^3)$

Hofmann et al. Acta Mater. 89 (2015)

Elastic Property Changes

• Implanted material elastic constants (using Voigt approach)

$C_{ij}^{iinplanted} = (1 - 128(n_{SIA} + n_{He_2V}))C_{ij}^{W} + 128n_{SIA}C_{ij}^{SIA} + 128n_{He_2V}C_{ij}^{He_2V}$											
		C ₁₁ (G	Pa) C_{12} (GPa)	C ₄₄ (G	Pa)	А	K (GPa)	G (GPa)	E (GPa)	nu
Pure W		522.8	203.5	5	160.7		1.01	309.9	160.3	410.1	0.279
W + 1555 1555 app	appm He ₂ V + m SIAs	514.4	208.7	7	155.5		1.02	310.6	154.5	397.5	0.287
• Close to isotropic Modulus Poisson ratio • Calculate Rayleigh wave velocity from elastic constants $c_r \approx (0.874 + 0.196v - 0.043v^2 - 0.055v^3) \sqrt{\frac{E}{2(1+v)\rho}}$											
in m/s			calc	calculated		exp	eriments				
			Voigt	Re	euss						
	Perfect V	N	2667	26	567		2679				
	$W + He_2V +$	SIAs	2622	26	518		2621				
	Change		-1.7%	-1	.9%		-2.2%		_		
								Hofma	nn et al. Acta	a Mater. 89 (2015)

Elastic Property Changes

- <110> W single crystal, implanted with ~3000 appm He at 296 K
- SAW velocity measured as function of angle from <110> direction
- Fit experimental data with calculated SAW velocity for elastically anisotropic material¹

Measured increase in elastic anisotropy in very good agreement with prediction

Duncan et al. Applied Physics Letters 109 (15), 151906

¹Every et al., Ultrasonics (2016)

Warwick Nov 2017

Hofmann et al. Scientific Reports 16042 (2015)

- Transient grating background signal related to decay of thermal grating
- Can fit this to extract thermal diffusivity of ion-implanted layer:

$$I = A \operatorname{erfc}(q \sqrt{\alpha t}) \qquad \operatorname{grating decay} \\ + C \sin(2\pi f t + E) \exp\left(-\frac{t}{F}\right) \\ + G.$$

• Probed depth ~ λ/π

Can measure the thermal diffusivity of ion-implanted layer! (without modifying sample surface)

Thermal Transport Changes -> Re Effect

Hofmann et al. Scientific Reports 16042 (2015)

- Good agreement of pure W with literature data
- Reliable extraction of thermal transport parameters by TG
- Clearly see a saturation effect with increasing Re content

Degradation of thermal transport due to transmutation alloying will be important (in DEMO armour 3% of Re will appear within 5 years)²

> ¹Fujitsuka, M., Journal of Nuclear Materials 283–287 (2000) ²Gilbert et al., Nucl. Fusion 52 (2012)

- W + 0.03 at.% helium and W + 0.3 at% helium.
- 0.3 at.% helium reduces RT thermal diffusivity by 50%.

Helium implantation defects have a dramatic effect on thermal diffusivity

How can we predict these changes?

Hofmann et al. Scientific Reports 16042 (2015)

Atomic sites coloured by scattering rate

 Use Ackland-Thetford EAM potential for tungsten¹, generate defect structure, relax

- Correlate atomic energy in excess of thermal average with scattering rate²
 - Calibrated based on vacancy and selfinterstitial electrical resistivity
- Vacancies now appear as "cages" of 8 scattering atoms
- Self interstitials appear as a "string" of atoms with different scattering strength
- Compute electronic scattering rate by summing over all atomic sites

In principle conductivity for any kind of damage structure could be calculated...

¹Ackland, Thetford, Philos. Mag. A 56 (1987). ²Mason, D. R. Journal of Physics: Condensed Matter 27, (2015).

Hofmann et al. Scientific Reports 16042 (2015)

felix.hofmann@eng.ox.ac.uk

Warwick Nov 2017

- Predict lower thermal diffusivities for He-implanted samples:
 - 300 appm He -> 900 appm Frenkel defects
 - 3000 appm He -> 3000 appm Frenkel defects
- Decrease of Frenkel:He ratio with increasing dose consistent with OKMC calculations¹
- At low doses impurities dominate Frenkel defect retention
- At high doses helium dominates Frenkel defect retention

Hofmann et al. Scientific Reports 16042 (2015) ¹ Becquart, C. S. & Domain, C. Journal of Nuclear Materials 385, (2009).

Defect Migration at Higher Temperatures

- High purity W, 1673 K anneal, 3000 appm He @ 298K
- Heat treatments:
 - ➤ as implanted
 - 1273 K for 12 h
 - ➤ 1473 K for 12 h
- Measure deviatoric strain maps in vicinity of grain boundaries

de Broglie et al. Scripta Mater. 107 (2015)

Defect Migration at Higher Temperatures

Post-implantation heat treated, 1273 K for 12 hrs, e^{*}₇₇ strain:

de Broglie et al. Scripta Mater. 107 (2015)

• As-implanted

- High strain in implanted layer
- Uniform strain distribution perpendicular to boundary
- After heat treatment:
 - Reduction in out-of plane strain.
 - Inhomogeneous strains appear at grain boundaries

How can these strains be interpreted in terms of lattice swelling? -> Eigenstrain modelling

Defect Migration at Higher Temperatures

de Broglie et al. Scripta Mater. 107 (2015)

- Swelling confined to implanted layer in as-implanted samples
- Increased heterogeneity after heat treatment
- Reduction in swelling appears grain-orientation dependent
- Some grain boundaries show increased lattice swelling
- Some implantation-induced defects migrate beyond implanted layer!

Warwick Nov 2017

Helium-Damage Effect on Deformation

Outline

- Introduction
- Point Defects

Irradiation-Induced Defects, Lattice Swelling, Modulus Change, Thermal Transport, DFT, MD, Defect Evolution, Interaction with Dislocations

- Ion-Machining Damage Coherent X-ray Diffraction Imaging, Nano-scale Lattice Strains and Crystal Defects
- Conclusions

FIB: A Transformational Tool for Nano-Science

M.J. Lopez-Martinez and E.M. Campo in Biomedical Gallium Engineering - From Theory to Applications (2011) the subs

Gallium ion implanted in the substrate

Oregon State University, EM facilities (2011) Warwick Nov 2017

Gibson, DPhil thesis, Oxford (2015)

felix.hofmann@eng.ox.ac.uk

Ocola et al. J. Vac. Sci. Technol. B 31 (2013)

20 nm Au & 2 nm Ti thermally evaporated onto Si substrate Anneal 10 h at 1273 K in air

SEM Mag = 94.95 K X 1 µm Auriga-39-24

Scan Rot = Off WD = 5.1 mm

EHT = 20.00 kV Signal A = SE2 FIB Mode = Imaging Noise Reduction = Pixel Avg.

Width = 8.558 µm FIB Lock Mags = Yes FIB Probe = 30KV:50pA Tilt Corrn. = Off 54.0 ° Stage at T = 54.0 ° 19 Jun 2015 17:45:01 System Vacuum = 1.21e-006 mbar

Using FIB clear a 40 μ m diameter area around crystal. Then expose crystals to different FIB milling conditions

SEM Mag = 14.02 K X 2 µm Auriga-39-24 ⊣→

Scan Rot = OffEHT = 20.00 kVWD = 5.1 mmSignal A = SE2FIB Mode = ImagingNoise Reduction = Pixel Avg.

Width = 58.00 µm FIB Lock Mags = No FIB Probe = 30KV:1nA Tilt Corrn. = Off 54.0 * Stage at T = 54.0 * 19 Jun 2015 18:17:16 System Vacuum = 9.85e-007 mbar

Bragg Coherent Diffraction Imaging

Frauenhofer far field diffraction approximation

BCDI Imaging of Crystal Shape and Strain

Each reflection provides crystal morphology and a projection of the lattice displacement vector along the q vector of that reflection.

Warwick Nov 2017

Many Reflections from the Same Crystal...

Can reconstruct the full, 3D-resolved lattice strain tensor!

Warwick Nov 2017

Low Dose FIB Imaging

BCDI reconstructed morphology

Scanning electron micrograph

Typical low dose FIB image of gold crystals vs SEM

FIB imaging conditions:

- 30 keV Ga⁺
- 50 pA
- 4.2 x 10⁴ ions/ μm² (scan speed 1)

This causes (SRIM calculation):

- ~20 nm thick damaged layer
- max. ~0.025 dpa
- max. ~45 appm Ga
- Negligible Au removal by sputtering

Warwick Nov 2017

Low Dose FIB Imaging -> Experimental Strains

- Large negative strain near implanted surface -> Lattice contraction?
- How can this be modelled?

Low Dose FIB Imaging -> Modelling

Apply a volumetric Eigenstrain to the top, implanted layer.

Solve for strains inside the crystal using anisotropic elasticity.

Warwick Nov 2017

Low Dose FIB Imaging

Warwick Nov 2017

- Excellent agreement of FE model and experiment
- Spurious experimental strains on lower crystal surface
- FIB imaging causes volumetric lattice strain $\varepsilon_v = -3.15 \times 10^{-3}$ -> Lattice contraction

How can this be explained?

Crystal A: Lattice Contraction Analysis

• Lattice swelling:
$$\mathcal{E}_v = \sum_A n_A \Omega_r^{(A)}$$

- Relaxation volumes for Vacancies and SIAs in gold: Literature: $\Omega_r(V) = -0.27 \ \Omega_0^{-1}; \ \Omega_r(SIA) = 1.5 \ \Omega_0^{-2};$ Our DFT: $\Omega_r(V) = -0.38 \ \Omega_0; \ \Omega_r(SIA) = 2.0 \ \Omega_0;$
- Lattice contraction -> Vacancy dominated -> SIAs escape to surface and form adatoms
 Free surface plays central role in determining damage retained
- Lower bound vacancy concentration estimate:
 -> 7.5 x 10-3 at. fraction, i.e. ~200 V per Ga ion are retained
- SRIM upper bound estimate: ~400 Frenkel defects per Ga ion are generated (excluding replacement collision)

Even a single FIB image causes large lattice strains. Our new method allows quantitative analysis of these strains.

¹ Korzhavyi et al. PRB 59 (1999) ² Daw et al. Mater. Sci. Rep. 9 (1993)

Higher Fluence FIB Milling

BCDI reconstructed morphology

Scanning electron micrograph

SRIM-predicted damage and Ga concentration

FIB milling conditions:

- 30 keV Ga⁺
- 50 pA
- 1.5 x 10⁸ ions/ μm²

This causes (SRIM calculation):

- ~20 nm thick damaged layer
- max. ~24 dpa
- max. ~0.054 at. fr. Ga
- ~40 nm Au removed by sputtering

Higher Fluence FIB Milling

- Non-uniform ε_{yy} strain in implanted layer.
- Large positive and negative strains also in <u>all</u> other strain components.

Very different from crystal A

Higher Fluence FIB Milling -> Larger Defects

- Phase jump in Burgers circuit: $\Delta \psi_{hkl} = b.q_{hkl}$
- Defects are stair-rod dislocations with b = a/3<110>
 - -> Formed by interaction of 2 Shockley partials e.g. a/6[21-1]+a/6[-21-1] -> a/3[01-1]
 - -> Sessile hence retained?

Warwick Nov 2017

Higher Fluence FIB Milling -> Dislocation Structure

Crystal D: Lattice Strains

Conclusions

- Combining multi-technique characterisation can shed light on the complex changes in mechanical and physical material properties crystal lattice defects cause.
- Using multi-scale calculations we can start to form a joined up understanding of these changes.
- Using Coherent X-ray diffraction allows non-destructive 3D nanoscale probing of lattice strains & defects in complex objects.
- FIB-milling provides a fantastic tool for nano-scale machining, but every use introduces damage that must be accounted for.

Converging time and length-scales accessible to experiments and modelling make for a very exciting future!

Acknowledgements

My Group

S. Das I. deBroglie H. Yu M.A. Reza

Micro-mechanics

D.E.J. Armstrong Y Zayachuk, C.E. Beck

Modelling

E. Tarleton P.-W. Ma D. Nguyen Manh S.L. Dudarev D. Mason M. Gilbert X-ray experiments R.J. Harder W. Liu R. Xu N. W. Phillips B. Abbey J. N. Clark L. K. Robinson

Microscopy

Y. Liu

Laser measurements

K.A. Nelson A. Maznev R.A. Duncan J.K. Eliason

Oxford – CCFE – Argonne NL – Brookhaven – MIT – LaTrobe

Invisible – RPG-2016-190

European Research Council Established by the European Commission

AtoFun – StG 714697

MFFP – EP/H018921/1