Deep Learning for the High Dynamic Range Imaging Pipeline

Demetris Marnerides Warwick Centre of Predictive Modelling (WCPM) The University of Warwick

D.Marnerides@warwick.ac.uk

Project Supervisors: Dr Kurt Debattista (Primary – WMG), Dr Igor Khovanov (Secondary – WCPM)

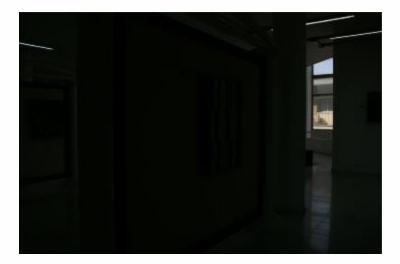
Contents

Introduction to HDR
Introduction to Deep Learning
Relevant Work
Motivation
ExpandNet
Results
Future Work

Introduction to HDR

Low/Standard Dynamic Range (LDR)

- Limited Luminance range
- Limited Colour gamut
- 8 bit quantization [0-255]
- High Dynamic Range (HDR)
 - Real-World Lighting
 - 32-bit floats



Introduction to HDR (2)

- Most content is LDR
- $\Box \text{ HDR} \rightarrow \text{LDR straightforward (Tone Mapping)}$

□ Inverse is hard (LDR \rightarrow HDR)

- Expert knowledge / heuristics
- Quantization, clipping

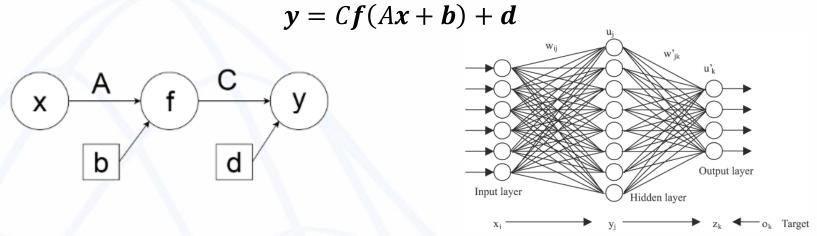
WCPM

- Non-linear local luminance shifts
- Proposed data-driven solution
 - Learn relevant information from data

Artificial Neural Networks

Single hidden layer

WCPM



Activations: Sigmoid, Tanh, Rectifiers (ReLU, PReLU, ELU, SELU) ...
 Find parameters that minimize some 'loss' between model and data

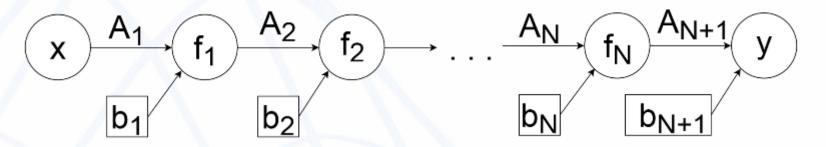
Euclidean distance (least squares regression)

$$\sum_{i} \|\overline{\mathbf{y}}_{i} - \mathbf{y}_{i}\|^{2}$$

Stochastic Gradient Descent with Backpropagation

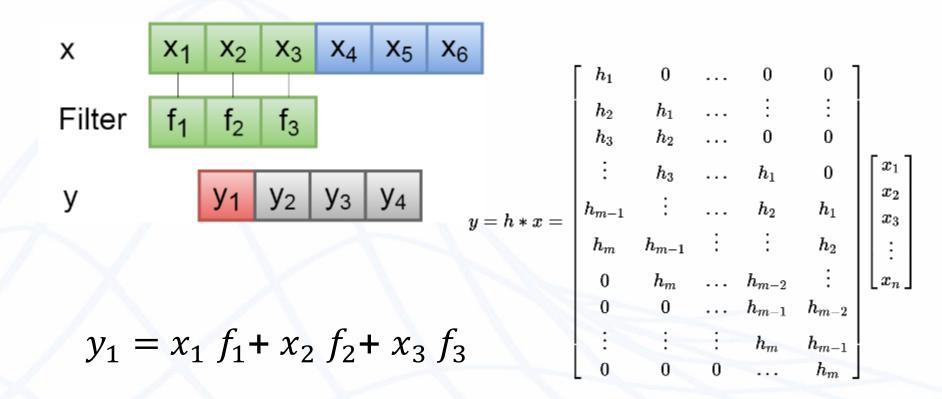
Going Deeper

 $y = A_{N+1}f_N(A_N \dots f_2(A_2f_1(A_1x + b_1) + b_2) \dots + b_N) + b_{N+1}$

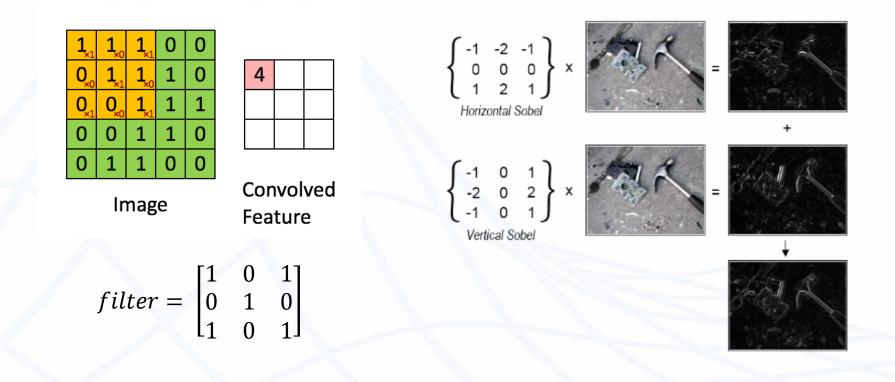


Depth

- Exponentially more expressive with less parameters
- Computationally more efficient
- Aids generalization over memorization

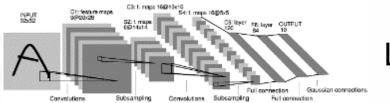


Likewise for 2D vectors (matrices, images)



Deep Convolutional Neural Networks

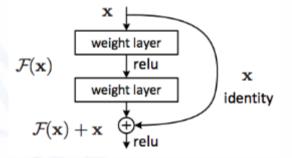
Classification

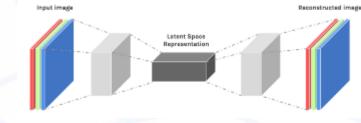


LeNet-5

Modular improvements:

e.g. residual connections





Auto-encoders

Inverse problems in Imaging

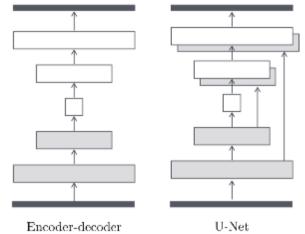
Globally and Locally Consistent Image Completion lizuka et al., 2017

Colorful Image Colorization Zhang et al., 2016

WCPM

Motivation for a new architecture

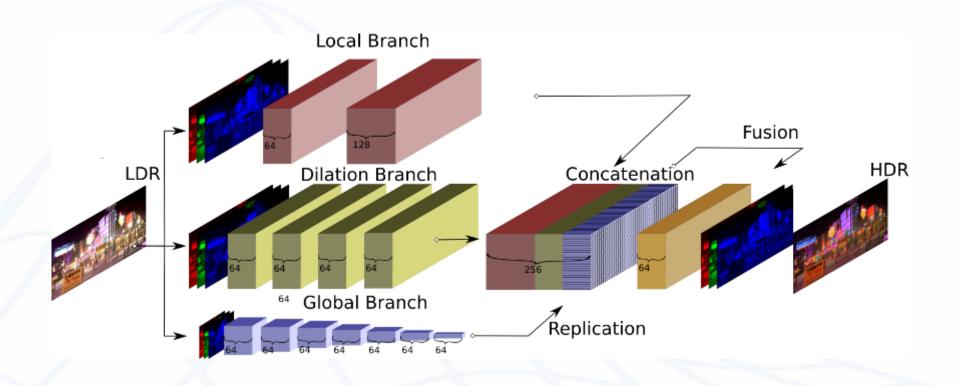
- UNet-like architectures:
 - Abstract representations
 - Multiscale context
 - However prone to artefacts
 - E.g. from the pix2pix
 Semantic Segmentation results
 Input



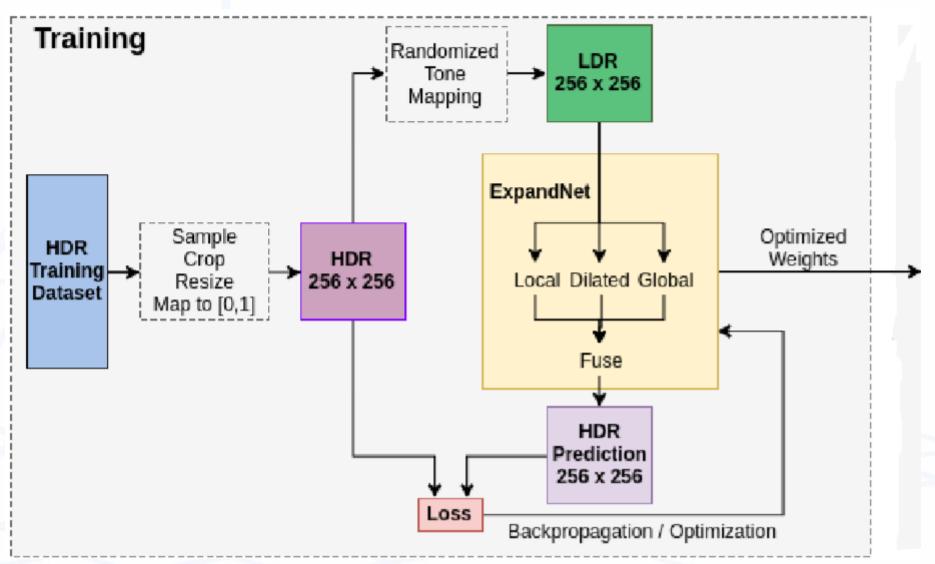
Output

https://phillipi.github.io/pix2pix/images/cityscapes_cGAN_AtoB/latest_net_G_val/index.html

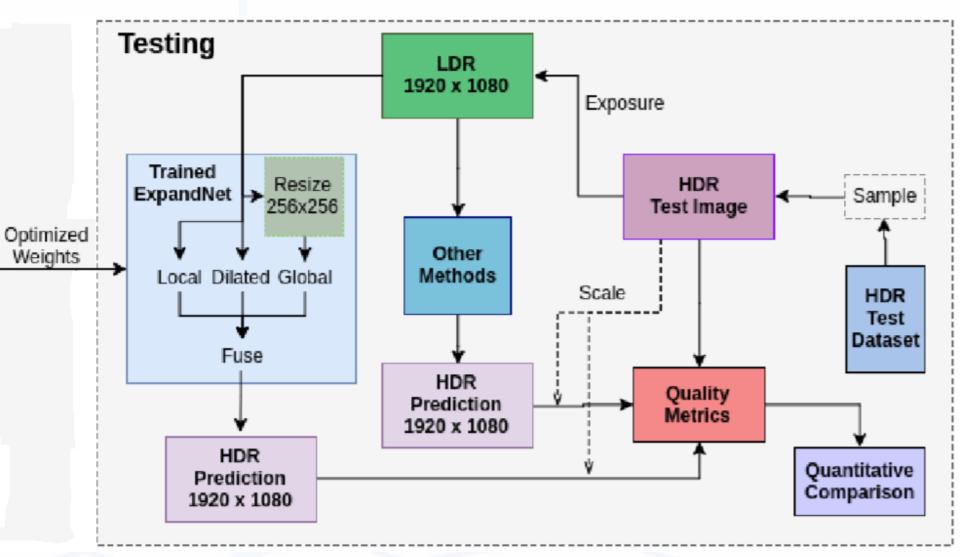
ExpandNet



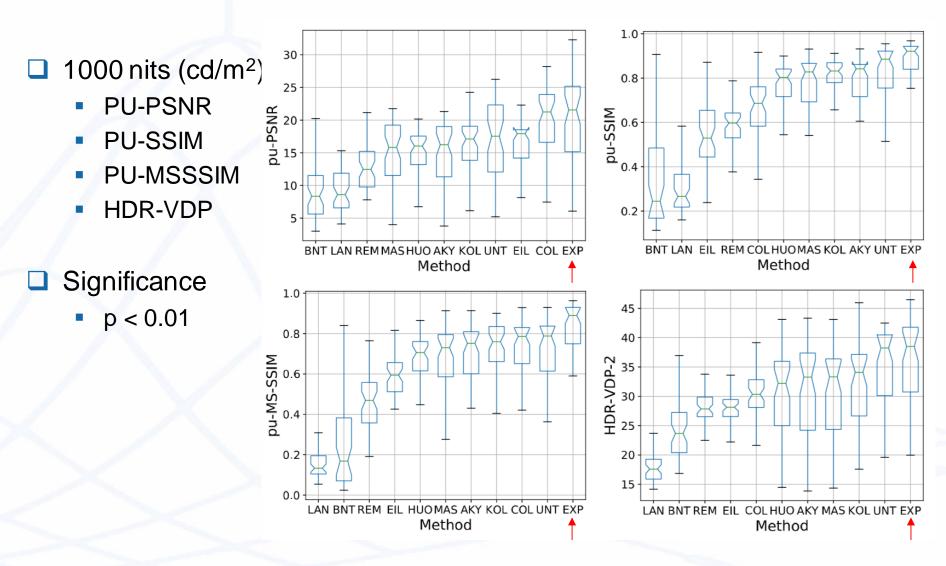
Workflow (training)



Workflow (testing)

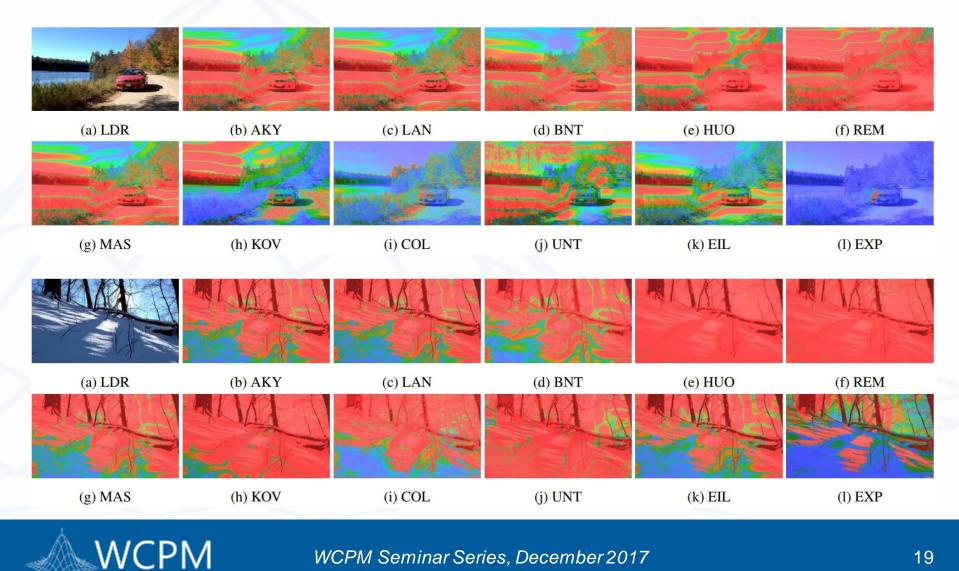


Results



Results (2)

HDR-VDP-2 – Detection Probability Maps



Results (3)

Image comparisons with other CNNs

(a) Input LDR (culling)

(b) UNT

(d) Exposure of original HDR

(e) EIL

(f) EXP

Branches

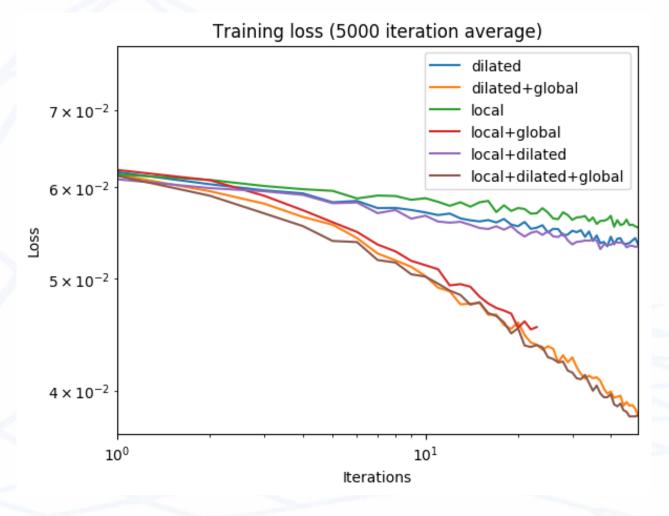
All branches

Local (masked D + G)

Dilated (masked L + G)

Branches (2)

Training combinations of branches



Future Work

Reducing compression artefacts

□ Hallucinate under/over exposed regions

Generative Adversarial Networks (GANs)

□ HDR Super-resolution

□ LDR to HDR Video

Recurrent Neural Networks

Thank you!

PhD is funded by the EPSRC

