Uncertainty Quantification and Aircraft Engines

F Montomoli
UQLab, Dept of Aeronautics
People: 1 RAEng Fellow, 2+1 Post Docs (1 to be hired), 6+1 PhD students, 1 Academic

Prizes:

- **Audrey**: Amelia Earhart Fellowship, worldwide prize, one of the best 32 females worldwide in aviation

- **Marco**: STEM for Britain selected at UK Parliament as one of best UK researches, Take AIM second place

- **Richard**: Francis Prize as best PhD student of Imperial College EPSRC Fellowship Award best research, RAEng Fellowship
Facilities

One of Largest Wind Tunnels in EU

10x5 Wind Tunnel

Computing Facilities 😊
(below P Vincent, Aero)
Aircraft Engines
• Civil Aviation: 2% CO2 overall emissions (ACARE 2050)
• Civil Aviation EU emissions: +87% from 1990 to 2006
• How to improve the performance of the engines?
- in 50 Years reduction of 70% emissions per passenger
- In 50 years 70% quieter
Specific Fuel Consumption

Engine SFC

RB211-535E (1983)

T-XWB (2011)
Evolution

- to reduce losses, lower air velocity
- to have same thrust increase mass flow in the bypass
- higher bypass ratio (from 5 to 10)
- the core is becoming smaller

To increase efficiency, we increased the engine temperature.

- Nowadays gas temperature is ~ 2000°C
- As reference, melting temperature of steel is ~ 1500°C
- The Sun temperature is ~ 5000°C

Why the engine does not melt down? How does it work?
The components have thousands of holes

- The components are heavily cooled, like a shower head (the “cold” air is at 600°C)
The components are heavily cooled, like a shower head (the “cold” air is at 600°C ….)
High Stresses

- Equivalent to hanging 100 cars on each blade (~1000 blades)
• Temperatures: about 0.5T of the sun

• Forces: 100 cars on a single blade

• a small error becomes crucial
Aircraft Engine Errors

• **State of the art: Laser Percussion Drilling**

• **General Electric: hole accuracy 10% of diameter**

• **variation +20°C metal temperature about -33% component life**
 (Bunker R.: GT2008-50124)

manufacturing uncertainty
without in service variations
Sand Ingestion

Air contains and carries a large number of particles/contaminants

Sizes ranging from $0.1\mu m$ to $50\mu m$ or even larger

Volcanic hashes, sand etc
New Manufacturing Methods

Good control on Leading Edge even with composites

GE and RR are using titanium

The rest of the geometry is not perfect

Composites have less control than metal parts
The Importance of Rare Events/Black Swans

- Designed for 1:1,000,000 accidents
- Estimated 1:100,000
- 2:135 flights were accidents
 (1.481:100,000, 3 orders of magnitude higher than estimated…..)
Matrix of Knowledge

<table>
<thead>
<tr>
<th></th>
<th>Epistemic</th>
<th>Known</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aleatoric</td>
<td>Deterministic CFD</td>
<td>1<sup>st</sup></td>
<td>Uncertainty Quantification</td>
</tr>
<tr>
<td>Known</td>
<td>Turbulence Closures</td>
<td>2<sup>nd</sup></td>
<td>Black Swans</td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Why do we need UQ in Turbomachinery?

Geometrical Variations:
• Manufacturing Errors
• In service degradation
• Engine movements

Operational variations

Unknown data
Different Impact in Different Components

- sand ingestion: overall engine emission + [15-20]%
- LE
- tip

- Efficiency: $\eta \approx [4-7] \%$
- Stability: $\psi \approx 9 \%$
- Work: $\eta \approx [1-2] \%$
- Life: $\text{life} \approx 30 \%$

Legend:
- In service degradation
- Manufacturing errors
- Unknown Datum
Methods

Adjoint
Monte Carlo
Non-Intrusive Polynomial Chaos
Adjoints

- Calculate the sensitivities of objective functionals with respect to a high number of variations in geometric parameters.
- Valid mainly when the solution variation is (almost) linear.
- Valid for small variations of compressor geometry.

Monte Carlo Methods

Sample from probability distributions

- Slow convergence: $O\left(\frac{1}{\sqrt{M}}\right)$
- Monte Carlo needs too many CFD runs
1. Find a series of basis functions \(\psi(\xi) \) for the input random variable \(\xi \)

1. Make the assumption that the solution \(y(\xi) \) can be approximated through a linear combination of these basis functions

2. Determine the coefficients \(\alpha \) of the basis function expansion with fewer model runs than by random sampling

\[
Y(x, \xi) = \sum_{i=0}^{N} a_i(\xi) Y_i(x)
\]
Non-Intrusive Polynomial Chaos

CFD simulations are used as a black box (no need to modify codes)

\[Y(x, \cdots) = \sum_{i=0}^{N} a_i(x) y_i(x) \]

Polynomial coefficients are calculated based on the response evaluations
Advantage of Polynomial Chaos for CFD

2 PC runs

4 PC runs

100 000 MC runs

Assume that the solution Y can be decomposed into separable deterministic and stochastic components:

$$Y(x, \xi) = \sum_{i=0}^{N} \alpha_i \psi_i(x)$$

where α are deterministic coefficients and $\psi(\xi)$ are random basis functions (optimal orthogonal polynomials) chosen in accordance with the probability distribution w.

For example, for $N = 2$ the expansion becomes:

$$Y(x, \xi) = \alpha_0 \psi_0(x) + \alpha_1 \psi_1(x) + \alpha_2 \psi_2(x)$$
Optimal Orthogonal Polynomials as Basis Functions

\[\int_{\mathbb{R}} k(x) \, l(x) \, w(x) \, dx = k_l \quad k, l = 0, N \]

The Probabilistic Hermite Polynomials (Gaussian distribution)

\[\begin{align*}
0(x) &= 1 \\
1(x) &= x \\
2(x) &= 2x - 1 \\
3(x) &= 3x^2 - 3x \\
4(x) &= 4x^3 - 6x^2 + 3
\end{align*} \]

Wavelets are also possible, but less well researched.
Generalised Polynomial Chaos and the Askey Scheme

Certain orthogonal polynomials are optimal with respect to the inner product weight function and corresponding support range of a specific random variable.

Askey Scheme table for most common PDFs:

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Density Function</th>
<th>Polynomial Basis</th>
<th>Orthogonality Weight</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>$\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$</td>
<td>Hermite $He_n(x)$</td>
<td>$e^{-\frac{x^2}{2}}$</td>
<td>$[-\infty, \infty]$</td>
</tr>
<tr>
<td>Uniform</td>
<td>$\frac{1}{2}$</td>
<td>Legendre $P_n(x)$</td>
<td>1</td>
<td>$[-1, 1]$</td>
</tr>
<tr>
<td>Beta</td>
<td>$\frac{(1-x)^\alpha(1+x)^\beta}{2^{\alpha+\beta+1}B(\alpha+1,\beta+1)}$</td>
<td>Jacobi $P_n^{(\alpha,\beta)}(x)$</td>
<td>$(1-x)^\alpha(1+x)^\beta$</td>
<td>$[-1, 1]$</td>
</tr>
<tr>
<td>Exponential</td>
<td>e^{-x}</td>
<td>Laguerre $L_n(x)$</td>
<td>e^{-x}</td>
<td>$[0, \infty]$</td>
</tr>
<tr>
<td>Gamma</td>
<td>$\frac{x^\alpha e^{-x}}{\Gamma(\alpha+1)}$</td>
<td>Gen. Laguerre $L_n^{(\alpha)}(x)$</td>
<td>$x^\alpha e^{-x}$</td>
<td>$[0, \infty]$</td>
</tr>
</tbody>
</table>
Practical Problem: Curse of Dimensionality

1 CFD Simulation to determine each polynomial coefficient in 1D

For multiple input random variables, the tensor product of the individual evaluations has to be formed

This leads to a rapidly increasing number of evaluations, called the curse of dimensionality

<table>
<thead>
<tr>
<th>Number of Random Variables</th>
<th>Needed CFD Runs 4(^{th}) Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>10</td>
<td>1 Million</td>
</tr>
</tbody>
</table>
Curse of Dimensionality (Computational Cost)

- Sparse Methods
- Active Subspaces
- Multifidelity Models
Sparse Grid Methods

The number of function evaluations can be reduced by focusing on low order connections between random variables.

Tensor: 81 nodes

Sparse Grid: 29 nodes
Lower Computational Effort of Sparse Grids

The most commonly used sparse grid rule is Smolyak.

It works well for moderately high number of inputs (less than 20).

More than 100 variables is still not feasible with PC.
Checking Convergence

Figure 6. The histogram of $f(x_1, x_2)$ obtained with the Point-Collocation (PCol) NIPC (HS and $n_p = 2$) for various polynomial degrees. Monte Carlo histogram is included for comparison.

Reduction of Dimensionality (Active Subspace, Constantine)

- \(f(x) = \sin(0.9x_1 + 0.2x_2) \)
- \(f \) varies only along direction
 \[
 w_1 = \left(\frac{0.9}{\sqrt{0.9^2 + 0.2^2}}, \frac{0.2}{\sqrt{0.9^2 + 0.2^2}} \right)
 \]
 while it’s constant along
 \[
 w_2 = \left(\frac{-0.2}{\sqrt{0.9^2 + 0.2^2}}, \frac{0.9}{\sqrt{0.9^2 + 0.2^2}} \right)
 \]
- \(f(x) = \sin(cw_1 \cdot x) = g(y) \)

By looking for appropriate rotations of the input space, along directions which maximize the variation of the output, we may manage to reduce the dimensionality of the problem.
Mutifidelity Co-kriging, example

- Extension of Kriging
- Uses multiple data sets of varying fidelity (low fidelity and high fidelity CFD simulations)
- Cheaper data used to fill the “gaps” between expensive data points

Forrester et al 2007, it is a test function

“Unknown performance”
Let’s say I can run 4 expensive CFD simulations. What kind of information do I have?
Metamodel prediction

- A meta-model based on 4 simulations
- It does not capture the "trend"

Forrester et al 2007, it is a test function
Possible to use cheap simulations

- Cheap, fast CFD simulations
- To improve the “trend”

Forrester et al 2007, it is a test function
Possible to use cheap simulations

- New metamodel combination of high and low fidelity CFD

Forrester et al 2007, it is a test function
Examples
CFD-Structural simulation

- Real Geometry
- Transient CFD simulation, Hydra
- Thermo-mechanical analysis SCO3
- Components displacement prediction
- Robust mesh reconstruction

Example 1: Results for Temperature Gradients

FEM

Gaussian PC:

Fat-Tailed PC:

PC:
- \(\mu \pm \sigma \)
- \(\mu \pm 2\sigma \)

MCM:
- \(\mu + 2\sigma \)
- \(\mu + \sigma \)
- \(\mu \)
- \(\mu - \sigma \)
- \(\mu - 2\sigma \)

5 CFD runs
Example 2: Hot Gas Ingestion

Ingestion of hot gas into inter-wheel region between rotors and spacers can reduce component life
(*Gap diameter size is essential*)
Example 2: Results for Hot Gas Ingestion

The input optimal collocation points indicate the relevant domain in the output.

The output PDF was obtained by sampling the PCE with 1 billion samples.
Example 3: Manufacturing Uncertainty

Profile pressure losses are effected by local manufacturing uncertainty.
Example 3: Results for Manufacturing Uncertainty

Only 17 model runs were needed for PDF and sensitivity evaluation.

Pressure Loss PDF

Sensitivity Analysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Sobol index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0205</td>
</tr>
<tr>
<td>2</td>
<td>0.0204</td>
</tr>
<tr>
<td>3</td>
<td>0.8587</td>
</tr>
<tr>
<td>4</td>
<td>0.0365</td>
</tr>
<tr>
<td>5</td>
<td>0.0020</td>
</tr>
<tr>
<td>6</td>
<td>0.0615</td>
</tr>
<tr>
<td>UTE</td>
<td>0.0003</td>
</tr>
<tr>
<td>LTE</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Highly efficient way to perform sensitivity analysis for random inputs.
Example 4: Discontinuities

3D film-cooling
and shock interaction

\[f(x_1, x_2) = \tanh(10x_1) + 0.2\sin(10x_1) + 0.3x_2 + 0.1\sin(5x_2) \]
Example 4: Active Methods

\[f(x_1, x_2) = \tanh(10x_1) + 0.2\sin(10x_1) + 0.3x_2 + 0.1\sin(5x_2) \]
Conclusions

UQ is important in Aviation, this is why we are working on this.

There are several models that can be developed, not all of them are applicable.

We are moving towards numerical certification of Aircraft Engines performance and these variations need to be included.

More than happy to collaborate.