TRIBOLOGY OF DIAMOND AND SILICON ATOMIC-SCALE INSIGHTS FROM COMPUTER SIMULATIONS

University of Warwick – WCPM Seminars – 19.02.2018

Gianpietro Moras

MIKROTRIBOLOGIE CENTRUM µTC

gianpietro.moras@iwm.fraunhofer.de

© Fraunhofer-Institut für Werkstoffmechanik IWM

The Fraunhofer-Gesellschaft at a glance

© Fraunhofer-Institut für Werkstoffmechanik IWM

Pooling expertise Fraunhofer Groups

Institutes working in related subject areas cooperate in Fraunhofer Groups and foster a joint presence on the R&D market. They help to define the Fraunhofer-Gesellschaft's business policy and act to implement the organizational and funding principles of the Fraunhofer model.

- ICT
- Life Sciences
- Light & Surfaces
- Microelectronics

- Production
- Materials and Components MATERIALS
- Defense and Security VVS

FRAUNHOFER INSTITUTE FOR MECHANICS OF MATERIALS IWM

MIKROTRIBOLOGIE CENTRUM μ TC

Fraunhofer Institute for Mechanics of Materials IWM

Directors

- Prof. Dr. Peter Gumbsch
- Dr. Rainer Kübler (Deputy director)
- Prof. Dr. Chris Eberl (Deputy director)
- 20,1 Mio.€ budget 290 employees 47% from industry (12.2017)

© Fraunhofer-Institut für Werkstoffmechanik IWM www.mikrotribologiecentrum.de

MIKROTRIBOLOGIE CENTRUM µTC

Mechanics of Materials

- How do materials behave in components?
- How do material properties evolve during the manufacturing process?
- How can material properties be accurately adjusted?

- Integrated examination of materials, manufacturing and components
- Identifying and adjusting critical parameters for material properties and component functions

Virtual and experimental assessment of materials and components under a wide range of manufacturing and service induced loads

© Fraunhofer-Institut für Werkstoffmechanik IWM

Multiscale approach – experimental and numerical

For the virtual development and assessment of materials and components, the institute works with advanced multiscale simulations on the nano, micro and macro levels and/or develops the appropriate models.

Tribology

<u>Tribology</u> is the science and engineering of interactive surfaces in relative motion. It includes the study and application of principles of <u>friction</u>, <u>lubrication</u> and <u>wear</u>. wikipedia.org

- Leonardo Da Vinci (1452-1519), Guillaume Amontons (1663-1705)
 - Independence of the area of contact. Friction is independent of the apparent area of contact.
 - Amontons' law. Friction is proportional to the applied load: $F = \mu N$ (μ is the friction coefficient and is larger for static than for kinetic friction).

- Bowden & Tabor (1950)
 - Surfaces are rough (fractal): contact between asperities.
 - The real contact area is a few order of magnitudes smaller than the apparent area
 - More generally $\tau = \tau_0 + \alpha P$

q

MIKROTRIBOLOGIE CENTRUM µTC

Tribology (Macroscopic) Friction

• Is $F = \tau A_{real}$?

- Problems:
 - What determines τ?
 - Why μ ~constant for given materials?
 - Macroscale: A_{real}/N is not a material property (~ 1/h'_{rms})
 - Nanoscale: A_{real} hard to define, τ often zero, depends on pressure, variables not controlled in experiment

Structure evolution in tribological systems

Scherge et al., Wear (2006)

© Fraunhofer-Institut für Werkstoffmechanik IWM

Structure evolution in tribological systems

Questions

Effects of the tribo-structure on friction, wear and lubrication?

© Fraunhofer-Institut für Werkstoffmechanik IWM www.mikrotribologiecentrum.de

Structure evolution in tribological systems

A multiscale problem

© Fraunhofer-Institut für Werkstoffmechanik IWM

www.mikrotribologiecentrum.de

Tribology of diamond and silicon Some examples

Wear of AFM tips

Jacobs et al., Nat. Nanotech. (2013)

Muhlstein et al., Acta Mat. (2002)

Williams et al., J. Phys. D: Appl. Phys. (2002)

© Fraunhofer-Institut für Werkstoffmechanik IWM www.mikrotribologiecentrum.de

Diamond and silicon

Analogies

Brittle materials

- Iow dislocation mobility
- (100) is not a stable cleavage plane

Perez et al., Phys. Rev. Lett. (2000)

Diamond and silicon Differences: phase diagrams and oxides

- Diamond is metastable at low P
- Si-I is stable at low P
 - Many high-pressure phases: Si-II, bct-5
 - Si-II (β-tin Si) is metallic
- Clausius-Clapeyron $\frac{dT_m}{dP} = T_m \frac{\Delta V}{\Delta H}$
 - C: $dT_m/dP > 0 \rightarrow \rho(liquid) < \rho(crystal)$
 - Si: $dT_m/dP < 0 \rightarrow \rho(liquid) > \rho(crystal)$
- Polyamorphysm in Si (LDA and HDA Si)
- Oxides:
 - CO, CO₂: gas
 - SiO₂: solid, prone to SCC in water

16

Diamond and silicon

Differences: π-bonding and aromaticity

- Equilibrium inter-nuclear separation: $R_{C2} < R_{\chi} < R_{Si2}$
- This is due to the anomalously small core size of the C atom (\rightarrow short bonds)
- C: π_u^4 more stable than $\pi_u^2 \sigma_g^2 \rightarrow$ favours π -bonded configurations
- Si: π_u^4 1.5 eV less stable than $\pi_u^2 \sigma_g^2 \rightarrow$ prefers σ -bonded configurations

Tribology of diamond and silicon Case studies

© Fraunhofer-Institut für Werkstoffmechanik IWM www.mikrotribologiecentrum.de

L. Pastewka, S. Moser, P. Gumbsch, M. Moseler, Nat. Mater. 10, 34 (2011)

19

Mechanical polishing of diamond

Anisotropic mechanical amorphization

- Mechanical process
 - Amorphization rate depends on local shear rate

$$\bullet \quad h(t) = A + \sqrt{2\lambda v t}$$

- h depends on the sliding distance *x=vt*
- h does not depend on temperature (if T < ~T_m/2)

BOP of the Tersoff-Brenner type + modified cutoff scheme: REBO2/Tersoff (C), Kumagai et al. (Si)

L. Pastewka, S. Moser, P. Gumbsch, M. Moseler, Nat. Mater. 10, 34 (2011)

Pastewka et al. Phys. Rev. B 87, 205410 (2013)

TRIBOCHEMISTRY AND FRICTION REGIMES IN WATER-LUBRICATED DIAMOND

Kuwahara, Moras, Moseler, Phys. Rev. Lett. 119, 096101 (2017)

Takuya Kuwahara

Michael Moseler

Fraunhofer IWM, Freiburg

Very low friction coefficients with low RH

H.Ronkainen, K.Holmberg, in "Tribology of Diamond-Like Carbon Films" (Springer, 2008)

M.-I. De Barros Bouchet et al., J. Phys. Chem. C 116, 6966 (2012)

Contact conditions	μ_{ss}	No. of run-in cycles
1.0 N load 1.0% RH	0.015 ± 0.002	2000
0.1 N load 1.0% RH	0.028 ± 0.001	<500
1.0 N load 50% RH	0.0212 ± 0.0008	<250
0.1 N load 50% RH	0.029 ± 0.002	<250

A. R. Konicek et al., Phys. Rev. Lett. 100, 235502 (2008)

HUMID

G. Zilibotti et al., Phys. Rev. Lett. 111, 146101 (2013)

Water-lubricated C(111)

Tight-Binding MD simulations

 $n_{\rm H_{2O}} = 1$ $n_{\rm H_{2O}} = 3$ $n_{\rm H_{2O}} = 3$ $n_{\rm H_{2O}} = 10$ $n_{\rm H_{2O}} = 25$

23

Water-lubricated C(111)

Friction regimes

Grotthus mechanism

Tribo-induced Pandey reconstruction

© Fraunhofer-Institut für Werkstoffmechanik IWM

Stability of Pandey reconstruction and other aromatic terminations

FLUORINE-TERMINATED DIAMOND SURFACES POLAR HYDROPHONICITY & FRICTION

Mayrhofer et al., JACS 138, 4018 (2016)

Leonhard Mayrhofer Narasimham Mulakaluri Michael Moseler Fraunhofer IWM, Freiburg

Srinivasan Rajagopalan

Paul Stevens

ExxonMobil Research and Engineering Company, Annandale, NJ, USA

Motivation

CF compounds

The C–F bond Polar hydrophobicity

O'Hagan, Chem. Soc. Rev. (2007)

Friction on F-graphene

Friction and energy corrugation

Wang et al., Surf. Sci. (2013)

Model system H/F-terminated C(111)

Mayrhofer et al. JACS 138, 4018 (2016)

© Fraunhofer-Institut für Werkstoffmechanik IWM

www.mikrotribologiecentrum.de

Water adsorption

Single H₂O on F/H-terminated C(111): DFT + vdW

Water adsorption

Single H₂O on F/H-terminated C(111): DFT + vdW

Fraunhofer

DFT

© Fraunhofer-Institut für Werkstoffmechanik IWM

Water adsorption Near-surface electric field

© Fraunhofer-Institut für Werkstoffmechanik IWM

www.mikrotribologiecentrum.de

Polar hydrophobicity A dipole lattice model for the electric field

$$\begin{array}{ccc} \mathbf{F}^{-0.2} & \mathbf{H}^{+0.09} \\ | & | \\ \mathbf{C}^{+0.2} & \mathbf{C}^{-0.09} \end{array} & \mathbf{E} = \frac{\sigma}{2\varepsilon_0} \sum_{l,m\neq 0} \frac{e^{-|\mathbf{G}_{l,m}||z-z_{up}|} - e^{-|\mathbf{G}_{l,m}||z-z_{low}|}}{\mathbf{G}_{l,m}} \times \begin{pmatrix} -\sin(\mathbf{G}_{l,m}\mathbf{r})G_{l,mx} \\ -\sin(\mathbf{G}_{l,m}\mathbf{r})G_{l,my} \\ +\cos(\mathbf{G}_{l,m}\mathbf{r})|\mathbf{G}_{l,m}| \end{pmatrix}$$

Lennard-Jones & Dent, Trans. Faraday. Soc. 24, 92 (1928)

- E decay length along z: λ_{max}=1/|G_{min}|
- If decay is shorter than core-core repulsion: no electrostatic interaction

Polar hydrophobicity

A point-charge model

- Charges that best fit the electrostatic field
- $q_{C(x)} = -q_x (x = H, F)$
- Only $q_H q_F$ matters: we choose $q_F = -0.2$ e (as in many force fields) $\rightarrow q_H = 0.09$ e

MD simulations **Classical force field**

Jorgensen et al. JACS (1996)

Form of the Force Field

Bond stretching:

Angle bending:

Bond stretching:
Angle bending:

$$E_{bond} = \sum_{bonds} K_r (r - r_{eq})^2$$

$$E_{lastic constants}$$

$$E_{angle} = \sum_{angles} K_{\theta} (\theta - \theta_{eq})^2$$

$$C-H \text{ and } C-F \text{ bonds}$$
Torsion:

$$E(\phi) = \frac{V_1}{2} [1 + \cos(\phi + f1)] + \frac{V_2}{2} [1 - \cos(2\phi + f2)] + \frac{V_3}{2} [1 + \cos(3\phi + f3)]$$

Non-bonded:

36

m-bonded:

$$E_{ab} = \sum_{i}^{ona} \left[\sum_{j}^{onb} [q_{i}q_{j}e^{2}/r_{ij}] + 4\varepsilon_{ij}(\sigma_{ij}^{12}/r_{ij}^{12} - \sigma_{ij}^{6}/r_{ij}^{6})]f_{ij} \right] \rightarrow H_{2}O \text{ adsorption energy (50H/50F)}$$

$$f_{ij} = 0.5 \text{ if } i, j \text{ are } 1, 4; \text{ otherwise, } f_{ij} = 1.0$$

$$Electrostatic field$$

$$\frac{\text{termination}}{(100H/0F)} = 0.09 = 0.08 = 0.01$$

$$(100H/0F) = 0.23 = 0.24 = 0.21$$

$$(50H/50F) = 0.23 = 0.23 = 0.24$$

$$(25H/75F) = 0.23 = 0.23 = 0.23$$

$$(25H/75F) = 0.23 = 0.23 = 0.24$$

$$(25H/75F) = 0.23 = 0.23 = 0.24$$

$$(0H/100F) = 0.07 = 0.06 = 0.00$$

Diamond structure

Elastic constants

© Fraunhofer-Institut für Werkstoffmechanik IWM

www.mikrotribologiecentrum.de

© Fraunhofer-Institut für Werkstoffmechanik IWM

THANK YOU FOR YOUR ATTENTION!

