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n Introduction to RNA, its folding and its design. 

n Single-cell characterisation 

n Engineering RNA circuits



About RNA



A brief introduction of RNA

RNA is a single-stranded molecule that is transcribed from a double-
stranded DNA template. 

As RNA is single-stranded it can pair with another RNA molecule, or 
with itself to form complex structures. 

These structures can be used as the basis for producing RNA switches 
or RNA circuits.



Transcription
RNA is produced when an RNA polymerase moves along a dsDNA. 
The polymerase attaches to a region called the promoter and proceeds 
in the 5’ -> 3’ direction, this process is called transcription.

The RNA polymerase will continue to generate an RNA until it reaches a 
terminator. At this point the polymerase pauses, tracks in the reverse   
direction (3’ -> 5’), and after a short journey detaches from the dsDNA. 
The RNA molecule is now decoupled from the polymerase and dsDNA.



Translation

■ Proteins are composed of many amino acids joined together. 
Amino acids are encoded on the RNA as a triplet base (i.e. 3 
nucleotides next to each other), e.g. ACG GCU UCC GAA 
encodes Threonine-Alanine-Serine-Glutamine.

Translation is the process that 
generates proteins from an      
RNA template. The ribosome  
binds to a region of RNA near  
the 5’ end that is called the     
Ribosome Binding Site (RBS). 
The ribosome then moves in    
the direction of the 3’ end until 
it reaches a start codon (AUG). 

Nobelprize.org



■ Once the ribosome has attached to the start codon it proceeds 
along the RNA generating an amino acid chain until a stop 
codon is reached (UAA, UGA or UAG). When the stop codon 
is reached the extension of the amino acid chain stops and the 
peptide is released from the RNA.

Nobelprize.org

In bacteria translation occurs at  
the same time that the RNA is   
being produced in transcription 
– they are coupled. The force of 
the ribosome moving along the  
emerging RNA can be enough   
to force the polymerase to keep  
transcribing the RNA.
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RNA Secondary Structure

Definition (RNA secondary structure)

A secondary structure of an RNA sequence of length n is a set S of base
pairs i .j (1  i < j  n), where:

8i .j 2 S , j � i > 3.

8i1.j1, i2.j2 2 S , i1 = i2 , j1 = j2.



Folding

Query sequence 

Fold 1 

 

Fold 2 

 

Fold 3 

 

Fold N 



RNA inverse folding

Folding can be solved in O(n3) time complexity and O(n2) space complexity (Nussinov algorithm) 
Inverse folding is NP-hard

12/55
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RNA Secondary Structure: Related Problems

RNA Sequences RNA Structures

RNA Folding

RNA Inverse Folding



Conformational ensemble
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Sequence-structure space

       (Pande et al., 2000) 

Square heteropolymers as models of proteins gave a designability phase 
diagram. 

 



RNA-RNA interactions
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De novo design by evolutionary computation

n Generate sequence diversity, select with a fitness/objective 
function and iterate. 
n Start from a known/random sequence and suggest new sequences by 

single/multiple mutation/shuffling 

n Using a folding free energy as fitness: Inverse folding problem 

n Improvement of fitness function by adding bio-molecular 
function 
n Adding interactions with other molecules/systems
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De novo design by evolutionary computation

n Examples of computational de novo design  
n Proteins 

n (see Jaramillo et al. PNAS 2002) 
n Non-coding RNA and regulatory circuits. 

n Transcription factor circuits  
n (see Rodrigo et al. NAR 2011 & Rodrigo et al. ACS Synth Biol 

2012) 

n Genome design  
n (see our Carrera et al. PNAS 2012)



About single-cell characterisation of 
gene dynamics



Overall microfluidics-microscope setup

Adapted from Balagadde, 2007

n Constant controlled 
cellular growth and 
environment 

n Better control over the 
inducers’ levels 

n Fixed microscope focal 
plane



Riboregulator in vivo dynamics
Growing cells in single layers with microfluidics



Filling the biochip

We have a biochip comprising 12 lines of 24 traps each. The traps are 50x40 um.



Cell loading

Cell loading on the chip. Speed is approximately 10um/s in the beginning. 



Microchemostat
Exponential growth of E. coli cells in a single trap for about 6 hours



Single cell tracking and labelling

Conversion 
to binaryGradient maskMask dilation

Mask 
filling

Erosion Segmentation
Lineage 
colouring

Absolute single-cell 
fluorescence
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Image treatment

Fluorescence dynamics at single-cell level



Image treatment

49

!
!

Contours of cells superimposed over the initial image. More than 80% of the cells are correctly 
indentified in spite of the inhomogeneity of the illumination and irregularities. A magnified image is 
shown on the right.



Image treatment

49

!
!

Segmented image with the centroid of each cell marked and numbered; the whole chamber on the left 
and a detail on the right.



Automated segmentation and tracking of cells



Image treatment

!

Fluorescence data from a single cell versus time (arbitrary units). The images were acquired 
every three minutes, and the cell was successfully tracked for more than 7 hours.

!

Cell-doubling events identified by the software. In spite of one false identification the 
software correctly tracks the division. 



Coupling non-linear oscillators inside E. coli
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Engineering RNA circuits



OutlineSynthetic RNA circuits

We need novel RNA functions: 

Sensing, non-linearity, cascades and regulation.

Supplementary Figure 20
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We need novel RNA functions: 

Sensing, non-linearity, cascades and regulation.

OutlineSynthetic RNA circuits

We need novel RNA functions: 
 
Sensing, non-linearity, cascades and feedback. 

Supplementary Figure 20

RAJ11 

RAJ12 

RR12 

1 

0 

0.5 

RAJ11 RAJ12 RR12 

sRNA

 

5’
 U

TR
 

0 

2.5 

5.0 

7.5 

10.0 

12.5 

15.0 x103 

0 

2.5 

5.0 

7.5 

10.0 

12.5 

15.0 

0 

2.5 

5.0 

7.5 

10.0 

12.5 

15.0 

0 

2.5 

5.0 

7.5 

10.0 

12.5 

15.0 

0 

2.5 

5.0 

7.5 

10.0 

12.5 

15.0 

0 

5.0 

10.0 

15.0 

20.0 

25.0 

30.0 

x103 x103 

x103 x103 x103 

theoHHAzRAJ12 theoHHAzRAJ11 theoHAzRR12 

RAJ12 

RR12 

G
FP

 e
xp

re
ss

io
n 

G
FP

 e
xp

re
ss

io
n 

G
FP

 e
xp

re
ss

io
n 

G
FP

 e
xp

re
ss

io
n 

G
FP

 e
xp

re
ss

io
n 

G
FP

 e
xp

re
ss

io
n 

5’
 U

TR
 

Regazyme
Control
Theo (4mM)

environment 

sensor 
layer 

transmission layer 
actuation 

layer 

a

b

c



De novo design by evolutionary computation

n Generate sequence diversity, select with a fitness/objective 
function and iterate. 

n Improvement of fitness function by adding interactions with 
other molecules/systems

A:B

AB‡

Efolded (A+B)

Eunf (A)+Eunf (B)

∆Gfold

∆Gbind

What’s this?



In vivo RNA-RNA interactions

■ The active conformation for RNA-RNA interaction is assumed to 
require a kissing loop

Minimisation of 

=

AB‡

B



In vivo RNA-RNA interactions

We will in/activate an RNA module by de/stabilising conformations 

Minimisation of 

We assume that activity occurs in a precise conformation



We need novel RNA functions: 

Sensing, non-linearity, cascades and regulation.

OutlineSynthetic RNA circuits

We need novel RNA functions: 
 
Sensing, non-linearity, cascades and regulation. 

Supplementary Figure 20
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System of 2 RNAs: riboregulation of translation



Engineering an sRNA heterodimer

We use the number of inter-strand paired nucleotides as reaction coordinate 

Ribosome



Engineering allostery with computational design

Fully automated design of nucleotide sequences 
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Scoring
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discarding higher-order combinations. Thus, the homodimers (a) and (b) must be OFF and the 

interaction (c) ON. In other words, in our riboregulator example, we will optimize the formation of the 

heterodimer while restraining the homodimer. The algorithm can be used for the design of circuits 

involving more than two RNA species. In the case of considering three species (Fig. S21), we account 

for dimers and trimers, while discarding higher-order combinations.  

 We have also introduced a new term to the objective function to allow relaxation of the 

specifications and constraints. Such term allows improving the convergence and it should end up 

being zero once all the constraints are obeyed. For this, we use a Hamming distance (d) between the 

current and target structures of the RNA species and of the RNA complex. For the latter, we specify 

the target structure by allowing any complex structure provided the RBS sequence nucleotides are 

unpaired. To maximize the translation rate, we also enforce that the four nucleotides upstream the 

RBS and all downstream nucleotides be unpaired in the final hybridized structure. 

   

!Gconstraints = dtarget, complexGp .  (Eq. S2) 

 

Thus, by selecting the λ factor between 0 and 1 (we usually select λ=0.5), we can scalarize the 

problem resulting in 

 

! 

"Gscore = # "Ginteraction ij

i, j

$ + (1% #)"Gconstraints .  (Eq. S3) 

 

The algorithm converges rapidly (ΔGscore  0) following an exponential scale (Fig. S5) and it can be 

launched in personal computers. It can be also launched in parallel in supercomputers to obtain 

multiple designs. 

 

Thermodynamic ensemble and energy gap 

 

RNA molecules can fold into an ensemble of alternative structures. The free energy of each 

conformation (assuming 0 for the unfolded state) determines its probability of occurrence within the 

constant temperature statistical ensemble. Our algorithm, instead of accounting for the whole 

ensemble, only considers the contribution from the minimum energy conformation (MEC). This 

approximation is necessary to make feasible the optimization problem and it could be justified in those 

cases where it exists an energy gap between the MEC and any suboptimal structure. We expect that 

the optimization itself would already provide such a gap because the score used in the optimization is 

proportional to the MEC energy. This implies that we are finding sequences with decreased MEC 

energy while the suboptimal states. This is of special interest for the formation of the complex. We 

have observed that reactions with moderated values of ΔG (about -5 Kcal/mol) do not ensure the 

major formation of the complex at the equilibrium. For that, lower values of ΔG are required (about -

15 Kcal/mol). 

Once the complex is formed, we have to calculate the release of the RBS. In our algorithm we 

just do so for the complex with minimum free energy. However, as we know, there is an ensemble of 

structures for the complex. The sequences of the solutions were further analyzed with the software 

package NUPACK to check their statistical ensemble (21), which we modified to calculate the 

probability of finding the RBS unpaired throughout the conformations of the thermodynamic 

ensemble (Prbs). This probability accounts for the total number of structures that effectively released 

all nucleotides of the RBS sequence. More intuitively, we could already use the pair probability maps 

(24) to estimate such probability. In fact, we could do this by picking the nucleotide i for which the 

probability that a given nucleotide i of the RBS is unpaired (Prbs_i). Fig. S10 shows a correlation of 

such quantity with Prbs. 

In addition, a mutational analysis showed that most of the nucleotides of the species sequences 

have a moderated impact on the device performance, whereas there are key nucleotides whose 

mutations provoke the total malfunction of the device (Fig. S8). We also showed that the toehold 

sequence is a critical region for the performance of the device. Mutations in it reduce significantly the 
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time scale is of microseconds whereas hybridization takes seconds or even minutes (14). Hence, we 

assumed that prior to the hybridization RNA molecules fold into their structures. 

 In our computational approach, the structures of all single species are imposed as design 

specifications. To address the computational design, we have to find the sequences folding into the 

predefined structures that would interact specifically among them to form predefined complexes 

displaying a targeted behavior. The structural constraints are exploited to considerably reduce the 

combinatorial space and accelerate the design of nucleic acid sequences. Our computational procedure 

optimizes at the same time all RNA sequences of the circuit. During the optimization we do not need 

to impose constraints derived from natural sequences, such as stems with high GC-content or loops 

with YUNR motifs (consensus UUGG), which have been found in natural systems (15,16). On the 

other hand, we could add specific RNA motifs for specific RNA-protein interactions with RNA 

chaperones (like Hfq) or RNAses (like RNase III). Importantly, our designs are just based on low-

level physicochemical principles and not on additional fitting, thus allowing their reliable 

implementation in a given cellular chassis. 

 The optimization algorithm we have developed consists in a Monte Carlo Simulated 

Annealing (17); see scheme in Fig. S3. Our approach consists in optimizing an objective function 

accounting for the stability of the RNAs and the kinetics of the reactions that lead to the target 

behavior. To compute the energy and folding (we assume that the secondary structure would be 

sufficient) of all species and complexes of a system, we have used the ViennaRNA (18,19) and 

MultiRNAFold (20) packages. We used ViennaRNA to compute the energies and structures of the 

single species, whereas MultiRNAFold the energies and structures of the complexes. In this work, we 

always have considered T=37 ºC (kT=0.61 Kcal/mol). 

 The design specifications comprise the secondary structures of all single RNAs, any 

nucleotide subsequence that is held fixed (e.g., RBS), the reaction kinetics, and the structure of the 

output complex. The algorithm starts from random sequences satisfying the structural and 

subsequence constraints. If the subsequence constraints do not allow satisfying the structures, the 

algorithm stops. The algorithm allows relaxing the constraints, for instance by imposing a tolerance 

allowing species to adopt similar structures than their initial specifications. Afterwards, an iterative 

process of mutation and selection is implemented. The mutation moves involve randomly replacing 

one or two nucleotides if the position corresponds to an unpaired or paired conformation respectively. 

If a nucleotide that has to be mutated belongs to a stem, it is also mutated its pair in the stem with the 

corresponding nucleotide with the aim of preventing the disruption of the secondary structure and 

improving the convergence. We avoid sequences having consecutive repeats of four or more identical 

nucleotides (13). To speed up the sequence search we have introduced a mutation move involving a 

complementary word exchange between two interacting strains. For this we take a set of consecutive 

nucleotides (which we call word) from one sequence, making its reverse complement, and randomly 

inserting it into another sequence. This process intends to accelerate the creation of interacting species 

by enhancing the complementarities between strands. Initially, the length of this word is three, and it is 

reduced to one (i.e., single point mutation) during the optimization process. We do not consider 

additions or deletions.  

 Our optimization corresponds to a minimization problem with an objective function defined as 

the sum of the free energy of complex formation and the energy for the activation barrier. For that, we 

compute the free energy of complex formation (ΔGij) and the length of the toehold (α) of all targeted 

pairwise interactions ij (21-23), having 

 

! 

"Ginteraction ij
=

"Gij +# ijGp ,  if no interaction is targeted (OFF)

min(0, "Gsat $"Gij ) +Gp max(0,# sat $# ij ),  if interaction is targeted (ON)

% 
& 
' 

           

          (Eq. S1) 

 

where ΔGsat=-15 Kcal/mol and αsat=6 (saturation levels). Gp=-1.28 Kcal/mol is the average 

contribution of a nucleotide in the toehold to the free energy of the initiation process (22). The 

specification of the possible interactions among strands serves to define the behavior of the system. In 

case of the design of riboregulators (Fig. S4), involving two RNA species (RNA1 and RNA2), three 

possible interactions can occur: (a) RNA1+RNA1, (b) RNA2+RNA2, and (c) RNA1+RNA2, 

where ΔGsat=-15 Kcal/mol and αsat=6 (saturation levels). Gp=-1.28 Kcal/mol



System of 2 RNAs: riboregulation of translation

sRNA T.terminator

Sequence space search for a riboregulator:

Fixed sequences: RBS, transcription terminator

Variable sequences:       Nucleotide changes preserving secondary 
structure

5‘UTR RBS spacer ATG

RNA1

RNA2

Ribosome

+ =



Synthetic activator riboregulators in E. coli

RAJ12

RAJ11

RAJ21

RAJ23

RAJ22

RAJ31

Rodrigo et al. PNAS 2012

+ =



Single-cell characterization of riboregulators

RBS

GFP

GFP

GFP

GFP



Riboregulator in vivo dynamics
Growing cells in single layers with microfluidics



Model riboregulator kinetics
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specificity of the RNAs (Fig. S9). This fact may be exploited to apply manual design techniques to 

obtain a library of new systems. 

 

Limitations of the approach 

 

One limitation of our approach is the use of the secondary structure to model the RNA molecule. 

Three-dimensional models could better capture the interaction features of molecules (25-27). Our 

methodology could be coupled with a 3D prediction procedure once the optimization process using 

secondary structures had yielded a sufficiently good set of solutions according to the specifications. 

Another limitation relates to the uncertainty coming from premature/inefficient transcription 

termination in our RNA sequences. Either the sRNA already encodes a transcription terminator, or we 

place it manually. In fact, each hairpin may already induce some termination. The process of 

transcription termination produces a population of sRNAs with different lengths, either due to a 

premature or inefficient (the last hairpin may not terminate always) termination, which may influence 

the folding of the global structure and its ability to interact properly. Consequently, we could include 

into the objective function predictors of transcription termination (28) to better target a more 

homogeneous population. A limitation in using our generic objective function to design translational 

activators is that is that our objective function is not a direct measure of activation fold. Another 

limitation of the current method is the enforcement of a given structure for all single species in the 

circuit. Although these structures serve to gain stability, this constrains the sequence space of possible 

solutions (29). We have to note here that we do not impose a particular structure for the complex 

species; we just introduce into the objective function a term to account for an appropriate 

conformational change (e.g., RBS free in the complex species). The enforcement of structures has not 

been a problem for the computational design of YES (Fig. S7) and even AND gates (Fig. S21), but it 

could be an obstacle to find the sequences implementing more complex behaviors. It could be possible 

to leave unconstrained the secondary structure of each single species and include into the structural 

term (ΔGconstraints) the intended molecular function (e.g., cis-repression in case of 5’-UTR) and the 

stability (through a folding free energy term). In such a way, we could also perform additions and/or 

deletions (not only replacements) of nucleotides during the optimization. Moreover, as the complexity 

of the function in the RNA circuit increases (e.g., from YES to higher order logic gates), we require 

the use of more sophisticated search algorithms to improve the convergence. It could be possible to 

reuse functional RNAs (or at least use them as starting points for our in silico evolution) to design 

higher order logic circuits and then reduce the sequence space. Despite of this, a further limitation of 

the current method is that it only allows designing static systems (i.e., in steady state) and it does not 

allow designing, for example, an RNA-based oscillator. To this end, we would need to account for kon, 

koff and kcat for all reactions to construct a model based on differential equations (23,30). Finally, our 

procedure could be extended to provide a combinatorial library of sequences to be used for screening 

or directed evolution. We plan to address these issues in our future work.  

 

Mathematical model of the AND circuit 

 

The two promoters of the system (PLlacO-1 and PLtetO-1) can be modeled by using Hill-type 

equations (31,32), relating the expression of the two repressors (LacI and TetR) and their 

corresponding inhibitors (IPTG and aTc). Thus, the transcription rates read 

 

! 

Pm (LacI,IPTG) = Pm
0

1+1/ f lac
LacI

Klac 1+ IPTG /KIPTG( )

" 

# 
$ 

% 

& 
' 

nlac

1+
LacI

Klac 1+ IPTG /KIPTG( )

" 

# 
$ 

% 

& 
' 

nlac
  (Eq. S4) 
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where P
0

m and P
0

s are the maximal transcription rates, flac and ftet the repression folds, Klac, Ktet, KIPTG, 

KaTc the effective binding coefficients, and finally nlac and ntet the Hill coefficients. Therefore, we can 

construct a system of ordinary differential equations (12,33) given by 
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where C represents the plasmid copy number, µ the cell growth rate, δm and δs the RNA degradation 

coeffcients, δm the fluorescent protein degradation coefficient, and m its maturation rate. As above, r0 

is the mRNA translation rate (basal) and r1 the sRNA::mRNA translation rate. By noting that the 

composition of two Hill functions also results in a Hill function, we can simplify the model to derive 

the GFP expression in steady state. According to our experimental results (Figs. S13 and S15), in 

absence of both inducers the system expresses a very low amount of protein (low leakage).  

Applying renormalization of parameters, we propose a model for the regulatory system, which 

can be used to predict the corresponding response surface. This model only accounts for the 

concentrations of IPTG and aTc, given that LacI and TetR are constitutively expressed by the cell. In 

addition, the regulation by sRNA is enclosed within the parameters for aTc. This model reads 
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where F0 is the normalization parameter. In this model, IPTG and aTc act independently each other. 

From Lutz and Bujard work (1), we obtained 

! 

K
1
" 35  µM, and 

! 

K
2
" 5  ng/mL. From our own data 

(Fig. 5C), we estimate 

! 

K
1
"15 µM, 

! 

K
2
" 3 ng/mL, 

! 

n
1
" 2, 

! 

n
2
"1.5 , 

€ 

f
1
≈1.2 , 

€ 

f
2
≈1.5  and

! 

fsRNA " 8.3 (for system RAJ11, taking F0=1). These values should be nevertheless taken with caution 

because there were fitted against estimators of activation fold. The absolute activation fold of system 

RAJ11 is 

! 

fsRNA "11.2  according to Fig. 2. This discrepancy in activation fold, although not 

significant, can be rationalized. While in strain JS006 (a derivate of MG1655) we take the intracellular 

steady state of the system, in strain MG1655-Z1 we deal with dynamical effects because IPTG and 

aTc inhibit with time the activity of the highly expressed repressors. This forces to use different 

methods to obtain the value of activation fold. With JS006, we obtain a better characterization of the 

performance of the system by applying regression over multiple states, which allows averaging noise 

in gene expression. With MG1655-Z1, we need to avoid the transient dynamics and take the steady 

state value after several hours. There, the population may enter into stationary phase before our system 

reaches its steady state, hence we expect to under-estimate the normalized fluorescence. Thus, to 

construct the prediction shown in Fig. S20 we replace 8.3 by 11.2 in 

! 

fsRNA , while keeping the other 

parameter values. 
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We need novel RNA functions: 

Sensing, non-linearity, cascades and regulation.

OutlineSynthetic RNA circuits

We need novel RNA functions: 
 
Sensing, non-linearity, cascades and regulation. 



Aim

■ To de novo engineer circuits with synergistic 
interactions

Coll. Dr. Rodrigo and Dr. Daros (IBMCP, Valencia)
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OutlineSynthetic RNA circuits

We need novel RNA functions: 
 
Sensing, non-linearity, cascades and regulation. 
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Single-cell analysis the novel RNA sensing Regazyme
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Discussion

55

Can	
  we	
  engineer	
  gene/RNA	
  networks	
  with	
  
decreased	
  uncertainty	
  in	
  the	
  gene	
  response	
  
under	
  variable	
  environments?

Microfluidics-­‐enabled	
  data-­‐
rich	
  measurements



Discussion

Stochastic Multiscale Models: A Graph 
Theoretic Approach 

45 

� Pose multiscale SPDEs in graphs 
� Factorize conditional PDF of responses  
 given the stochastic input on a graph 
 using `clique’ potentials.  
� Introduce hidden variables to account for 

coarse graining in constitutive models.  
� Non parametric approach 
� All parameters are learned with local 

inference (EM, SMC, Variational,..) 
� Conditional and marginal PDFs are computed 

with belief propagation – potentially linear 
scaling!  

� The probabilistic graphical model can be used 
as a surrogate model (provides response for 
any realization of the input) 

� Data and models become one and the same!  
 

� J. Wan and N. Zabaras, JCP, 2013   
� P. Chen and N. Zabaras, JCP, 2013  
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Discussion
Re-­‐engineer	
  existing	
  molecular	
  biological	
  systems	
  to	
  avoid	
  molecular	
  
interactions	
  producing	
  unpredictable	
  responses	
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45 
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coarse graining in constitutive models.  
� Non parametric approach 
� All parameters are learned with local 

inference (EM, SMC, Variational,..) 
� Conditional and marginal PDFs are computed 

with belief propagation – potentially linear 
scaling!  

� The probabilistic graphical model can be used 
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Conclusions
■ Working with folded RNA provides many possibilities to 

engineer circuits in cells by utilising regulation by 
allostery.  
■ activation/inactivation of RNA modules 

■ We had to rely on computational design to obtain 
sequences but we need a more predictable model 
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