

Towards a multiscale framework for robust simulation of inelastic dynamic processes

Dr. Savvas Triantafyllou

Centre for Structural Engineering and Informatics Faculty of Engineering The University of Nottingham

Outline

2 Hysteretic Multiscale Finite Elements

- Hysteretic Modeling
- Hysteretic Multiscale FEM
- Applications

3 Future Directions

Ageing Structures in a changing environment

Engineering Resilience

A multi-disciplinary task

Nature is a multiscale process

Multiscale methods for a multiscale reality

- Heterogeneous material behaviour spans different and not necessary discrete scales
- Mechanical and physical processes span different temporal scales
- Standard modelling tools provide accurate yet not necessarily efficient solutions
- A variety of multiscale methods are currently available, e.g. ,
 - Asymptotic Homogenization
 - Computational Homogenization
 - FE^2 Methods
 - Multiscale Finite Element methods
 - and many more...

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Outline

2 Hysteretic Multiscale Finite Elements

- Hysteretic Modeling
- Hysteretic Multiscale FEM
- Applications

3 Future Directions

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Cyclic nonlinear response

- Hysteresis is a generic property of inelastic material behaviour under cyclic loading
- Hysteretic behaviour is observed both in the micro and the macro scale of structural response
- It sums up nearly every energy dissipating mechanism a material has
- The mathematical representation of hysteresis is a challenging task
- Mechanisms to consider
 - Plasticity
 - Damage (brittle or ductile)
 - Healing
 - Also large strains?

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Cyclic nonlinear response

Tizani, W., Wang, Z. Y., & Hajirasouliha, I. (2013). Engineering Structures, 46, 535-546.

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Nonlinear hysteretic behaviour

Chen S.J., Yang K.C., Lin K. M., Wang C. D. (2004). Earthquake Engineering and Structural Dynamics, 40, pp. 21-34.

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Nonlinear hysteretic behaviour

Chen S.J., Yang K.C., Lin K. M., Wang C. D. (2004). Earthquake Engineering and Structural Dynamics, 40, pp. 21-34.

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Nonlinear hysteretic behaviour

Chen S.J., Yang K.C., Lin K. M., Wang C. D. (2004). Earthquake Engineering and Structural Dynamics, 40, pp. 21-34.

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Classical Plasticity in brief

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Classical Plasticity

Yield Function

$$\Phi = \sigma - \sigma_y \le 0$$

Yield Function Rate

$$\dot{\Phi} = \dot{\sigma} - \dot{\sigma}_y$$

Plastic Multiplier

$$\dot{\lambda} = \left(\frac{\partial \Phi}{\partial \sigma} \left[E\right] \frac{\partial \Phi}{\partial \sigma}\right)^{-1} \left[D\right] \left\{\dot{\varepsilon}\right\}$$

But only as long as $\Phi = 0$

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Classical Plasticity

$$H_1 \approx \left| \frac{\tilde{\Phi}}{\tilde{\Phi}_0} \right|^N \quad \left(\text{e.g., } H_1 \approx \left| \frac{\sigma}{\sigma_y} \right|^N \right) \qquad \qquad H_2 \approx \beta + \gamma sgn\left(\dot{\Phi} \right)$$

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Smooth evolution equation of plastic strains

• Starting from the derivation of a generic-hysteretic model

A stress-strain relation in rate form $\{\dot{\sigma}\} = v_{\eta} \left[D\right] \left(\left[I\right] - v_{s} \left| \frac{\tilde{\Phi}}{\tilde{\Phi}_{0}} \right|^{N} \left(\beta + \gamma \operatorname{sgn}\left(\left(\frac{\partial \Phi}{\partial \{\sigma\}} \right)^{T} \{\sigma\} \right) \right) \left[R\right] \right) \{\dot{\varepsilon}\}$

Plastic strains

$$\left\{\dot{\varepsilon}^{pl}\right\} = v_s \left|\frac{\tilde{\Phi}}{\tilde{\Phi}_0}\right|^N \left(\beta + \gamma \operatorname{sgn}\left(\left\{\varepsilon\right\}^T \left\{\sigma\right\}\right)\right) [R]\left\{\dot{\varepsilon}\right\}$$

- Isotropic hardening is also accounted for by properly modifying the yield function Φ = Φ(σ, κ, η)
- Damage is introduced through the evolution of v_{η} and v_s $v_{\eta} = 1.0 + c_{\eta}Eh$ $v_s = 1.0 + c_sEh$

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Hysteretic Material Behaviour

As a Moment-Curvature re-

lation for CFT columns

18 / 58

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Visco-elastic plastic cyclic behaviour

The formulation can be further extended to consider visco-elastic response; e.g. the 1D case results in

A stress-strain relation in rate form

$$\dot{\sigma} = E_1 \left(1 - H_1 H_2 \frac{\partial \Phi}{\partial \sigma} [R] \right) (\dot{\varepsilon} - \dot{\alpha}_1)$$

Visco-elastic component (Rate Dependent)

$$\dot{\alpha}_1 = \frac{E_1}{C_1} \left(\varepsilon - \varepsilon_p - \alpha_1 \right)$$

Plastic Rate

$$\dot{\varepsilon}_{p} = \frac{\partial \Phi}{\partial \sigma} H_{1} H_{2} \left[R \right] \left(\dot{\varepsilon} - \dot{\alpha}_{1} \right)$$

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Damage Evolution

- Stiffness Degradation
- $$\begin{split} \dot{\sigma} &= \frac{1}{\mathbf{v}_{\eta}} E_1 \left(1 \mu H_1 H_2 \frac{\partial \Phi}{\partial \sigma} \right) (\dot{\varepsilon} \dot{\alpha}_1) \\ v_\eta &= (1 + c_\eta E_h) \\ \dot{E}_h &= \sigma \dot{\varepsilon}_p \end{split}$$
- Strength Deterioration
- $$\begin{split} \dot{\sigma} &= E_1 \left(1 \mathbf{v_s} \mu H_1 H_2 \frac{\partial \Phi}{\partial \sigma} \right) (\dot{\varepsilon} \dot{\alpha}_1) \\ v_s &= (1 + c_s E_h) \\ \dot{E}_h &= \sigma \dot{\varepsilon}_p \end{split}$$

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Healing Operators

• Stiffness Retrieval

$$\dot{\sigma} = \frac{\mathbf{h}_{\eta}}{v_{\eta}} E_1 \left(1 - \mu H_1 H_2 \frac{\partial \Phi}{\partial \sigma} \right) \left(\dot{\varepsilon} - \dot{\alpha}_1 \right)$$

$$h_{\eta} = 1 + \omega_h \left(v_h - 1 \right) \frac{1 + sign\left(\dot{\sigma} \frac{\partial \Phi}{\partial \sigma} \right)}{2}$$

• Strength Retrieval

$$\dot{\sigma} = E_1 \left(1 - \frac{v_s}{\mathbf{h}_s} \mu H_1 H_2 \frac{\partial \Phi}{\partial \sigma} \right) (\dot{\varepsilon} - \dot{\alpha}_1)$$

$$h_s = 1 + \omega_s \left(v_s^{\text{max}} - 1 \right)$$

Hysteretic Modeling Hysteretic Multiscale FEM Applications

The hysteretic formulation of finite elements

Starting from the Principle of Virtual Work

$$\int_{V_e} \left\{ \varepsilon \right\}^T \left\{ \sigma \right\} dV_e = \left\{ d \right\}^T \left\{ f \right\}$$

and considering the additive decomposition $\{\sigma\} = [D](\{\varepsilon\} - \{\varepsilon^p\})$

$$\int_{V_e} \left\{ \varepsilon \right\}^T \left[D \right] \left\{ \varepsilon \right\} dV_e - \int_{V_e} \left\{ \varepsilon \right\}^T \left[D \right] \left\{ \varepsilon^{pl} \right\} dV_e = \left\{ d \right\}^T \left\{ f \right\}$$

Introduce a mixed interpolation scheme where displacements and plastic strains are interpolated

$$\{\varepsilon\} = [B] \{u\} \quad \left\{\varepsilon^{pl}\right\} = [N]_e \left\{\varepsilon^{pl}_{cq}\right\}$$

Hysteretic Modeling Hysteretic Multiscale FEM Applications

The hysteretic formulation of finite elements

Then, the following equilibrium equation is derived

$$\left[k^{el}\right]\left\{d\right\} - \left[k^{h}\right]\left\{\varepsilon^{pl}_{cq}\right\} = \left\{P\right\}$$

Constant State Matrices

$$\begin{bmatrix} k^{el} \end{bmatrix} = \int_{V_e} \begin{bmatrix} B \end{bmatrix}^T \begin{bmatrix} D \end{bmatrix} \begin{bmatrix} B \end{bmatrix} dV_e \quad \begin{bmatrix} k^h \end{bmatrix} = \int_{V_e} \begin{bmatrix} B \end{bmatrix}^T \begin{bmatrix} D \end{bmatrix} \begin{bmatrix} N \end{bmatrix}_e dV_e$$

Additional Hysteretic degrees of freedom

$$\left\{ \dot{\varepsilon}_{cq}^{pl} \right\} = \left| \frac{\tilde{\Phi}}{\tilde{\Phi_0}} \right|^N \left(\beta + \gamma \text{sgn}\left(\left\{ \dot{\varepsilon} \right\}^T \left\{ \sigma \right\} \right) \right) [R] \left\{ \dot{\varepsilon} \right\}$$

Hysteretic Modeling Hysteretic Multiscale FEM Applications

The hysteretic formulation of finite elements

• Considering the additive decomposition of the strain vector

$$\{\varepsilon\} = \{\varepsilon^e\} + \{\varepsilon^{pl}\}$$

• An evolution equation for the plastic part of total strain is derived

$$\left\{\dot{\varepsilon}^{pl}\right\} = \left|\frac{\tilde{\Phi}}{\tilde{\Phi_0}}\right|^N \left(\beta + \gamma \operatorname{sgn}\left(\left\{\varepsilon\right\}^T \left\{\sigma\right\}\right)\right) [R] \left\{\varepsilon\right\}$$

Element-wise

$$\{F\} = \begin{bmatrix} k_e \end{bmatrix} \{d\} - \begin{bmatrix} k_h \end{bmatrix} \{\varepsilon_{cq}^{pl}\}$$
• Structural assembly
$$\{P\}_S = \begin{bmatrix} K_{el} \end{bmatrix}_S \{d\} - \begin{bmatrix} K_H \end{bmatrix}_S \{\varepsilon_{cq}^{pl}\}_S$$

Hysteretic Modeling Hysteretic Multiscale FEM Applications

The Multiscale Finite Element scheme

Considering a heterogeneous medium

Hysteretic Modeling Hysteretic Multiscale FEM Applications

The Multiscale Finite Element scheme

Instead of using this discrete model

Hysteretic Modeling Hysteretic Multiscale FEM Applications

The Multiscale Finite Element scheme

Solve this!

Hysteretic Modeling Hysteretic Multiscale FEM Applications

The Multiscale Finite Element scheme

But also establish a relation between the micro and macro displacements at the coarse element level

$$u_{m}(x_{j}, y_{j}) = \sum_{\substack{i=1\\n_{Macro}}}^{n_{Macro}} N_{ijxx} u_{M_{i}} + \sum_{\substack{i=1\\n_{Macro}}}^{n_{Macro}} N_{ijxy} v_{M_{i}}$$
$$v_{m}(x_{j}, y_{j}) = \sum_{i=1}^{n_{Macro}} N_{ijxy} u_{M_{i}} + \sum_{i=1}^{n_{Macro}} N_{ijyy} v_{M_{i}}$$
$$j = 1...n_{micro}$$

Warwick, November 10, 2015

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Boundary Conditions

Three main variants

- Linear Boundary Conditions
 - Linear variation of displacements along the boundary
 - Applies in every case, however..
 - May lead to overestimated coarse element stiffness
- Oscillatory Boundary Conditions
 - "Periodic" boundaries bare oscillating displacements
 - Difficult to implement in non periodically meshed boundaries
- Linear and Oscillatory Boundary Conditions with Oversampling
 - Consider also the stiffness of the surrounding medium
 - At the cost of increasing the *offline* computational requirements of the method
- Efendiev, Y., and Hou, T. Y. (2009). Multiscale Finite Element Methods, Springer.

2 Zhang, H. W., Wu, J. K., and Lv, J. (2012). "A new multiscale computational method for elasto-plastic analysis of heterogeneous materials." *Computational Mechanics*, 49(2), 149-169.

Warwick, November 10, 2015

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Linear Boundary Conditions

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Oscillatory Boundary Conditions

Hysteretic Modeling Hysteretic Multiscale FEM Applications

MultiScale FEM

- Re-evaluation of the mapping is required in a nonlinear analysis
- Use the Hysteretic FE in the micro-scale

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Micro and Macro Energy potential

Hysteretic Modeling Hysteretic Multiscale FEM Applications

MultiScale FEM

The sum of the micro-energy potentials (Hysteretic FEM approach)

$$\mathcal{I}_{m} = \sum_{i=1}^{m_{el}} \left(\{d\}_{mi}^{T} \left[k^{el} \right]_{m(i)} \{d\}_{m(i)} - \{d\}_{mi}^{T} \left[k^{h} \right]_{m(i)} \{\varepsilon_{cq}^{pl}\}_{m(i)} \right)$$

and considering the micro to Macro mapping $\{d\}_m = [N]_{Mi} \{d\}_M$

$$\mathcal{I}_{m} = \{d\}_{M}^{T} \sum_{i=1}^{m_{el}} \left([N]_{Mi}^{T} \left[k^{el} \right]_{m(i)} [N]_{Mi} \{d\}_{M} - [N]_{Mi}^{T} \left[k^{h} \right]_{m(i)} \left\{ \varepsilon_{cq}^{pl} \right\}_{m(i)} \right)$$

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Hysteretic MultiScale Formulation

A macro elastic stiffness carrying the micro-elastic information

$$[K]_{CR(j)}^{M} = \sum_{i=1}^{m_{el}} [N]_{m(i)}^{T} \left[k^{el} \right]_{m(i)} [N]_{m(i)}$$

The micro inelastic corrections to the external applied load

$$\left[K^{h}\right]_{CR(j)}^{M}\left\{\varepsilon_{cq}^{pl}\right\} = \sum_{i=1}^{m_{el}} \left[k^{h}\right]_{m(i)}^{M}\left\{\varepsilon_{cq}^{pl}\right\}_{m(i)}$$

The evolution equations of the micro-strain components

$$\left\{\dot{\varepsilon}_{cq}^{pl}\right\}_{m} = H_{1}H_{2}\left[R\right]\left\{\dot{\varepsilon}_{cq}\right\}_{m}$$

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Hysteretic MultiScale Formulation

• micro Level (through the hysteretic FE formulation)

$$\{f\}_{m(i)} = \begin{bmatrix} k^{el} \end{bmatrix}_{m(i)} \{d\}_{m(i)} - \begin{bmatrix} k^{h} \end{bmatrix}_{m(i)} \{\varepsilon^{pl}\}$$
• Macro Level (through the EMsFE mapping)

$$\{f\}_{m(i)}^{M} = \begin{bmatrix} K \end{bmatrix}_{CR(j)}^{M} \{d\}_{M} - \sum_{i=1}^{m_{el}} \begin{bmatrix} k^{h} \end{bmatrix}_{m(i)}^{M} \{\varepsilon_{cq}^{pl}\}_{m(i)}$$
• Structural Level (through compatibility and equilibrium)

$$\{P\}_{S} = \begin{bmatrix} K_{el} \end{bmatrix}_{S} \{d\}_{M} - \{P_{h}\}_{S}$$

Hysteretic Modeling Hysteretic Multiscale FEM Applications

3D Formulation

(a) Composite Structure

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Composite Cantilever

Warwick, November 10, 2015

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Composite Cantilever

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Composite Cantilever

- Practically identical load paths and stress distributions - 65% reduction on computational time for the same

Warwick, November 10, 2015

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Textile Reinforced Masonry Wall

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Textile Reinforced Masonry Wall

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Constituent hysteretic behaviour

Hysteretic law calibrated to coupon tests

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Constituent hysteretic behaviour

Fibers at -60°/60°

Fibers at 0°/90°

Resin

Composite System

Young's modulus [MPa]							
E_{11}	E_{22}	E_{22}	E_{12}	E_{23}	E_{13}		
40000	32000	32000	4500	4500	4500		
Poisson's ratio							
ν ₁₂		ν_{23}		ν ₁₃			
0.14		0.2		0.2			

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Textile Reinforced Masonry Wall

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Textile Reinforced Masonry Wall

47 / 58

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Textile Reinforced Masonry Wall

• Results derived from the HMsFEM formulation are compared to classical FEM

70% Reduction in Computational Time

Warwick, November 10, 2015

Engineering Structural Efficiency 48 / 58

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Textile Reinforced Masonry Wall

• The plastic strain components are readily derived as part of the solution

70% Reduction in Computational Time

Hysteretic Modeling Hysteretic Multiscale FEM Applications

 Background
 Hysteretic Modeling

 Hysteretic Multiscale Finite Elements
 Hysteretic Multiscale FEM

 Future Directions
 Applications

Propagation of Uncertainty through different scales

Strip reinforced aluminum panel

• Structural model

• Material Properties

	Dist.	Aluminum	Steel
Young's modulus [MPa]	LogNormal	70000	200000
Poisson's ratio	-	0.33	0.3
Plasticity	-	von-Mises	von-Mises
Yield Stress [MPa]	LogNormal	214	235

- Latin Hypercube Sampling
- 5000 Monte Carlo iterations

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Propagation of Uncertainty through different scales

16 Quadrilateral Coarse Elements (Q4)

54 Macro Degrees of Freedom

Multiscale Finite Element Model

Finite Element Model

1600 Quadrilateral Plane Stress Elements

3358 Degrees of Freedom

Background Hysteret Hysteretic Multiscale Finite Elements Future Directions Applicat

Hysteretic Modeling Hysteretic Multiscale FEM Applications

Propagation of Uncertainty through different scales

Strip reinforced aluminum panel

No Damage effects

 $p(t) = 250000 \sin(\pi t) kPa$

Stiffness Degradation and

Strength Deterioration

87.5% Reduction in Computational Time for a single simulation

Hysteretic Multiscale Finite Elements

Applications

Propagation of Uncertainty through different scales

Strip reinforced aluminum panel

54 / 58

Warwick, November 10, 2015

Hysteretic Modeling Hysteretic Multiscale FEM Applications

UKF Parameter Identification

55 / 58

Outline

D Background

2 Hysteretic Multiscale Finite Elements

- Hysteretic Modeling
- Hysteretic Multiscale FEM
- Applications

3 Future Directions

An open field for research

The Team

Putting the pieces together

Mr. Emanouil Kakouris

Multiscale Methods for brittle damage

Dr. Andreas Kampitsis

Multiscale Poro-Mechanics

Mr. Richard Evans

Damage Modelling for layered Composites

Mr. Adrian Egger

Multiscale Scaled Boundary FEM on a joint project with Prof. E. N. Chatzi, ETHZ

Visit us at: http://www.nottingham.ac.uk/~ezzst1/