

UNCERTAINTY QUANTIFICATION WITH SURROGATE MODELS IN ALLOY MODELING

<u>Jesper Kristensen</u>, (joint work with <u>Prof. N. Zabaras</u>*)

<u>Applied and Engineering Physics &</u> <u>Materials Process Design & Control Laboratory</u>

Cornell University

271 Clark Hall, Ithaca, NY 14853-3501

and

*<u>Warwick Centre for Predictive Modelling</u> <u>University of Warwick</u>, Coventry, CV4 7AL, UK

Warwick Centre for Predictive Modelling Seminar Series, University of Warwick, Coventry, UK, January 8, 2015

FINDING THE BEST MATERIALS

Search for target material/property

 Single candidate property (one column to the left)
 Hours

- ☐ Million+ candidates
 - Infeasible!

Unmodified image in: G. Ceder and K. Persson. Scientific American (2013)

FINDING THE BEST MATERIALS

Search for target material/property

 Single candidate property (one column to the left)
 Hours

Million+ candidates
 Infeasible!

- Need for surrogate models
 - Rapid configuration space exploration
 - Allows design of materials

Unmodified image in: G. Ceder and K. Persson. Scientific American (2013)

USING SURROGATES IN ALLOY MODELING

THE CLUSTER EXPANSION

Alloy surrogate model
 The cluster expansion

Cluster with *n* points: *n*-pt cluster

 Expansion coefficients J_k: ECI
 Effective cluster interactions

Clusters similar under space group symmetries

- Same ECI
- "High symmetry: few unknowns"

Cluster Expansions: J. Sanchez, F. Ducastelle, and D. Gratias, Physica A (1984)

CAN INFORMATION THEORY IMPROVE THERMODYNAMIC ALLOY MODELING WITH SURROGATES?

J. Kristensen, I. Bilionis, and N. Zabaras. Physical Review B 87.17 (2013)

COMMON METHODOLOGY

$$\mathcal{D} = \{\boldsymbol{\sigma}^{(i)}, E^{(i)}\}_{i=1}^{N}$$

□ Expensive data set

 Much-used approach: Least squares

Can we do better if the objective is to obtain the ground states?

FITTING THE BOLTZMANN DISTRIBUTION

We aim to match distributions rather than energies!

QUANTIFY INFORMATION LOSS

REL ENT VS. LEAST SQUARES

$$\begin{array}{ll} \text{Gaussian approximation of} \quad S[\boldsymbol{\gamma}] = \int_{\mathcal{M}} p(\boldsymbol{\sigma}) \ln \left(\frac{p(\boldsymbol{\sigma})}{p(\boldsymbol{\sigma}|\boldsymbol{\gamma})} \right) \mathrm{d}\boldsymbol{\sigma} \\ \end{array}$$

$$\begin{array}{ll} \text{We ideally minimize} \quad S[\boldsymbol{\gamma}] \approx \frac{\beta^2}{2} \operatorname{Var}[E(\boldsymbol{\sigma}) - E(\boldsymbol{\sigma};\boldsymbol{\gamma})] \\ \text{Least squares ideally} \quad \mathcal{L}[\boldsymbol{\gamma}] = \sum_{\boldsymbol{\sigma}} (E(\boldsymbol{\sigma}) - E(\boldsymbol{\sigma};\boldsymbol{\gamma}))^2 \end{array}$$

Matching distributions becomes a weighted least squares problem (from minimizing S above) with weights

$$(\mathbf{I}_N - \mathbf{p}_N \mathbf{1}_N) \operatorname{diag}(\mathbf{p}_N) (\mathbf{I}_N - \mathbf{p}_N \mathbf{1}_N)^t$$
 (t = transpose)
$$\mathbf{p}_N \coloneqq \left(\frac{\exp(-\beta E(\boldsymbol{\sigma}^{(1)}))}{\mathbf{Z}_N}, \cdots, \frac{\exp(-\beta E(\boldsymbol{\sigma}^{(N)}))}{\mathbf{Z}_N} \right)$$
 10

Rel Ent Behavior

HOW TO COMPUTE PHASE TRANSITIONS

THERMODYNAMICS USING MCMC

ASMC ALGORITHM: IMPLEMENTATION

1. Set s = 0 and $\gamma_s = 0$. Sample a particle approximation from $p_{\gamma_0}(\sigma)$, $\left\{w_{0}^{(i)},\sigma_{0}^{(i)}\right\}_{i=1}^{N}$. Adaptive step size according to how much distribution changes 2. Determine $\gamma_{s+1} \in [\gamma_s, 1]$ s.t: $ESS(\gamma_{s+1}) = \frac{1}{\sum_{i=1}^{N} (w_{s+1}^{(i)})^2} = \zeta ESS(\gamma_s),$ where $w_{s+1}^{(i)}$ is the **normalized** version of $W_{s+1}^{(i)} = w_s^{(i)} \,\widehat{w}_{s+1}^{(i)}$ with: $\widehat{w}_{s+1}^{(i)} = \frac{p_{\gamma_{s+1}}\left(\sigma_{s}^{(i)}\right)}{p_{\gamma_{s}}\left(\sigma_{s}^{(i)}\right)} = e^{-(\beta_{\gamma_{s+1}} - \beta_{\gamma_{s}})E_{s}^{(i)} + (\beta_{\gamma_{s+1}}\mu_{\gamma_{s+1}} - \beta_{\gamma_{s}}\mu_{\gamma_{s}})\sum_{j}\sigma_{s,j}^{(i)}}.$ 3. If $ESS(\gamma_{s+1}) < ESS_m$, then resample. Threshold: Re-locate particles 4. Draw samples $\{\sigma_{s+1}^i\}_{i=1}^N$ from $p_{\gamma_{s+1}}(\sigma)$. 5. If $\gamma_s = 1$, STOP. Otherwise, set $s \leftarrow s + 1$ and go to 2.

CASE STUDY: SILICON GERMANIUM

Predict two-phase coexistence to disorder phase transition at 50 % composition

50 % SI-GE: FIT TO ENERGIES

□ Use ASMC to obtain phase transitions

□ Why the similarity?

Note: This is not probabilistic, but gives an idea of the behavior versus temperature 17

CASE STUDY: MAGNESIUM LITHIUM

Predict order/disorder phase transitions at 33 %, 50 %, and 66 % Mg

MAGNESIUM LITHIUM

R. Taylor, S. Curtarolo, and G. Hart, Phys. Rev. B (2010)

33 % Mg composition: ~190 K 50 % Mg composition: ~300-450 K 66 % Mg composition: ~210 K

Fitting observed energies (cluster expansion)

C. Barrett and O. Trautz. Trans. Am. Inst. 175 (1948)

All compositions: ~140-200 K

Experimental (non-conclusive)

□ Why the difference?

21

RELATIVE ENTROPY CONCLUSIONS

Summary table

Alloy	X	Fit energies (our work)	Fit energies (literature)	Relative Entropy	Experiment
Si _x Ge _{1-x}	50 %	~339 K	~325 K	~339 K	N/A
Mg _x Li _{1-x}	33 %	~226 K	~190 K	~170 K	~140-200 K
	50 %	~304 K	~300-450 K	~214 K	~140-200 K
	66 %	~207 K	~210 K	~240 K	~140-200 K (<i>largest error</i>)

BAYESIAN APPROACH TO PREDICTING MATERIALS PROPERTIES

PROPAGATING UNCERTAINTY FROM A SURROGATE TO, E.G., A PHASE TRANSITION

Fully Bayesian Approach

- □ The former part of this presentation does not *per se* offer ways of answering central questions such as:
 - What is the uncertainty in a quantity of interest (e.g., a phase transition) given that we do not know the best cluster expansion and that we have limited data?
- When computing a phase transition we want to know how uncertain we are about its value
 - Unknown whether what we predict is OK
- □ The Bayesian approach can provide answers to such questions
- □ We show how **surrogate models** can be used to accomplish this

Fully Bayesian Approach

- Probability means a reasonable degree of belief*
- Prior belief on clusters + ECI
- Likelihood function
 - Given a model (i.e., set of clusters + ECI) how likely is D

<u>Note:</u> *D* is limited, we can only see so many observations

- Posterior belief on clusters + ECI
- □ Use Bayes theorem^{**} to update degree of belief upon receiving new evidence *D* (what *D* is depends on the application)

$$p(\gamma|D) = \frac{p(D|\gamma)p(\gamma)}{p(D)}$$

<u>*Laplace, Analytical Theory of Probability (1812)</u> **Bayes, Thomas. Philosophical Transactions (1763)

Propagating Uncertainty

Prior on property (quantity of interest) "/"

ſ

Prior on cluster and ECI " θ "

$$p(I) = \int d\theta \delta(I[f(\cdot;\theta)] - I)p(\theta)$$

Notice how we <u>integrate out</u> the clusters and the ECI! (In principle) all cluster and ECI choices (models) consistent with *D* are considered

Then we observe an expensive data set D which helps us to learn more about the clusters and the ECI

> In this work the data set was expensive energy computations

$$\mathcal{D} = \{x_i, f(x_i)\}$$
$$\mathcal{L}(\mathcal{D}|\theta, \cdot)$$

Likelihood: What information the data contains about the clusters and ECI

The Quantity of Interest

Different quantities of interest *I* can require different data sets *D* This framework allows for very general quantities of interest *I*

□ Some examples:

- I = phase transition
 - The phase transition is found from the internal energy
 - The data set *D* consists of high-accuracy (expensive) energies
- I = ground state line
 - The ground state line is found from the internal energy as well
 - The data set *D* consists of expensive energies
- I = maximum band gap structure
 - The maximum band gap structure is found, e.g., from knowing the band gap of each structure or the entire band diagram
 - The data set *D* consists of expensive band gaps

Propagating Uncertainty In Surrogate

Posterior on truncation and ECI

$$p(\theta|\mathcal{D}) \propto \mathcal{L}(\mathcal{D}|\theta, \cdot)p(\theta)$$

How likely is the cluster expansion upon seeing *D* including what we knew before? (Bayes theorem!)

Posterior on property

$$p(I|\mathcal{D}) = \int d\theta \delta(I[f(\cdot;\theta)] - I[p(\theta|\mathcal{D})]$$

We stress here that we now have a probability distribution on the property—not a single estimate

From this, the uncertainty estimate follows

- We now have a way to propagate uncertainty from the cluster expansion to the quantity of interest
- Next, we select a Bayesian posterior

Bayesian Posterior using a Surrogate

□ Based on LASSO-inspired priors

Models describing physics are typically sparse**

Expectation values with this posterior not in closed form!

Resolution: MCMC Sampling

*<u>C. Xiaohui, J. Wang, and M. McKeown (2011)</u> **L. Nelson et al. Physical Review B 87.3 (2013)

Motivating Model Selection

$$p(I|\mathcal{D}) = \int d\theta \delta(I[f(\cdot;\theta)] - I)p(\theta|\mathcal{D})$$

□ There is an infinite number of cluster expansions (each symbolized by its own θ in the integral above)

> Which ones are *most relevant* to determining the value of the integral?

□ We now explore model selection as an option

CAN MODEL SELECTION BE USED TO QUANTIFY EPISTEMIC UNCERTAINTIES WITH LIMITED DATA?

J. Kristensen and N. Zabaras. Computer Physics Communications 185.11 (2014)

MODEL SELECTION SELECTION OF BOTH BASIS FUNCTIONS AND EXPANSION COEFFICIENTS

Reversible Jump Markov Chain Monte Carlo

We used reversible jump Markov chain Monte Carlo (RJMCMC)* to perform the model selection

- Practically speaking it behaves like a standard MCMC chain
 - Use 50 % burn-in
 - Use thinning if you want to (for memory reasons, e.g.)

(Birth step)

RJMCMC CHAIN: ALGORITHM

*N. Metropolis, et al. The journal of chemical physics 21.6 (1953)

RESULTS ON REAL ALLOYS

MODEL SELECTION RESULTS

$p(\theta|D) \propto \Gamma(k)B(k, p-k+1)||J||_1^{-k}||y-XJ||_2^{-n} + RJMCMC$

Any particular blue point in upper plot represents a cluster expansion truncation:
1) *y*-axis measures number of included clusters (but not which).
2) Actual values of ECI not shown

GROUND STATE LINE UNCERTAINTY

□ Bayesian uncertainty in ground state line with limited data $p(I|D, \cdot) = \int d\theta \delta(I[f(\cdot; \theta)] - I)p(\theta|D, \cdot)$ I = ground state line

This is the uncertainty induced in the quantity of interest from the uncertainty in the surrogate model

If error bars too large: you need to increase/change your data set!

PHASE TRANSITION UNCERTAINTY

Bayesian uncertainty in phase transition from two-phase coexistence to disorder with limited data

$$p(I|D, \cdot) = \int d\theta \delta(I[f(\cdot; \theta)] - I) p(\theta|D, \cdot)$$

I = two-phase coexistence to disorder phase transition

Predictive variance of phase transition is around 6 %

- This is the uncertainty induced in the quantity of interest from the uncertainty in the surrogate model
 - If error bars too large: you need to increase/change your data set!

USING SURROGATES FOR DESIGNING MATERIALS

J. Kristensen and N. Zabaras. In review (2014)

MATERIALS BY DESIGN

- We are now confident about the predictive capabilities of surrogate models
- Can we also use surrogates for designing new structures with specified properties?

Materials by design

□ <u>Application:</u>

- Optimize thermal conductivity in nanowires*
 - Heat dissipation in nanochips
 - Thermoelectric materials
 - Solar cells
 - Refrigeration
- But: Nanowires require a different way of using the cluster expansion
 - by "the cluster expansion" we mean the standard bulk expansion implemented in, e.g., ATAT**
 - · We show shortly how we addressed this issue

<u>*N. Mingo et al. Nano Letters 3.12 (2003)</u> **A. Walle, M. Asta, and G. Ceder. Calphad 26.4 (2002) WHICH SI-GE NANOWIRE CONFIGURATION MINIMIZES THE THERMAL CONDUCTIVITY?

□ Find the configuration with **lowest thermal conductivity**

Green-Kubo method:*

$$\kappa = rac{1}{V k_{
m B} T^2} \lim_{ au_m o \infty} \int_0^{ au_m} \langle J_x(au) J_x(0)
angle {
m d} au$$

using microscopic heat current:

$$\mathbf{J} = \sum_{i=1}^N e_i oldsymbol{v}_i - rac{1}{2} \sum_{i=1}^N \sum_{\substack{j=1 \ j
eq i}}^N \left(rac{\partial V_{ij}}{\partial oldsymbol{r}_j} \cdot oldsymbol{v}_j
ight) oldsymbol{r}_{ij},$$

and a Tersoff** potential energy b/w bonds:

$$V_{ij} = f_C(oldsymbol{r}_{ij}) \left[a_{ij} f_R(oldsymbol{r}_{ij}) + b_{ij} f_A(oldsymbol{r}_{ij})
ight]$$

<u>*R. Kubo Journal of the Physical Society of Japan 12.6 (1957)</u> <u>*M. Green The Journal of Chemical Physics 20.8 (1952)</u> <u>*J. Tersoff Physical Review B 39.8 (1989)</u>

NANOWIRE CHALLENGE: LOW SYMMETRY

<u>*D. Lerch et al. Modelling and Simulation in Materials Science and Engineering 17.5 (2009)</u> 43

NEW CLUSTER EXPANSION APPROACH

Ghost lattice method (GLM)

GLM ON NANOWIRE PROJECT

□ Nanowire implementation with the GLM

Two different representations of the same wire (OVITO* used for visualization)

<u>*A. Stukowski. Modelling and Simulation in Materials Science and Engineering 18.1 (2010)</u> 45

VERIFY GENERAL LAMMPS IMPLEMENTATION

□ Bulk Si and Ge (easy case): Use method in Ref. [*] in LAMMPS**

We predict 170 W/m.K for Silicon. Experimental value = 150 W/m.K.

We predict 90 W/m.K for Germanium. Experimental value is 60 W/m.K.

Tersoff is known to overshoot. **We obtain great agreement!**

<u>*J. Chen, G. Zhang, and B. Li. Physics Letters A 374.23 (2010)</u> <u>**S. Plimpton. Journal of computational physics 117.1 (1995)</u>

VERIFY NANOWIRE IMPLEMENTATION

□ Compare data with Ceder's group at MIT*

<u>*M. Chan et al. Physical Review B 81.17 (2010)</u>

Nanowire Data set

- 140 wires each with random Si/Ge configuration
 - This is the random nanowire dataset (RW)
- Split RW into train and test sets
 - Train CE with GLM on train

Additional data sets:

- Planes of pure Ge (PPG)
- Similar to PPG (SPPG)
 - Perturbed: atom(s) from plane swapped with atom (s) from non-plane region

CE-GLM Fit on Random Nanowires

Using the new cluster expansion surrogate approach to fit the nanowire data set

Now that we have surrogate; find global minimum

Lowest Thermal-Conductivity Structure?

□ We find the PPG to have lowest thermal conductivity

- Very strong case for the GLM
 - Evidence that thermal conductivity of nanowires is well captured by first term

$$\Delta H_f^{\rm CE} = \Delta H_f^{\rm vol} + \Delta H_f^{\rm surf}$$
(in our case)

Compare with Literature

From Ref. [*] on the same problem (but using a slightly different surrogate model)

They found as well that the PPG wire has lowest κ

(this image of the PPG wire is from Ref. [*])

*M. Chan et al. Physical Review B 81.17 (2010)

CONCLUDING REMARKS

- Quantify uncertainties in
 - Band gaps
 - Energies
 - Phase Diagrams
 - Thermal Conductivities
 - > Any material property
- Use information theory to design materials
- Help improve how data is collected (and the resources spent in doing so) in general
 - Choosing the limited data set in most informed way
- What happens to uncertainty quantification across length and time scales?
 - How do uncertainties in microscopic properties affect macroscopic properties?