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FINDING THE BEST MATERIALS 

q  Single candidate property 
(one column to the left) 
Ø  Hours 

 
q  Million+ candidates 

Ø  Infeasible! 
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Search for target material/property 

Unmodified image in: G. Ceder and K. Persson. Scientific American (2013) 



FINDING THE BEST MATERIALS 

q  Single candidate property 
(one column to the left) 
Ø  Hours 

 
q  Million+ candidates 

Ø  Infeasible! 

q  Need for surrogate models 
Ø  Rapid configuration space 

exploration 
Ø  Allows design of materials 
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Search for target material/property 

Unmodified image in: G. Ceder and K. Persson. Scientific American (2013) 



USING SURROGATES IN 
ALLOY MODELING 



THE CLUSTER EXPANSION 
 
q  Alloy surrogate model 

Ø  The cluster expansion 
 

q  Cluster with n points:  
n-pt cluster 

q  Expansion coefficients Jk: ECI 
Ø  Effective cluster 

interactions 
 

q  Clusters similar under space 
group symmetries 
Ø  Same ECI 
Ø  “High symmetry: 

few unknowns” 
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Cluster Expansions: J. Sanchez, F. Ducastelle, and D. Gratias, Physica A (1984) 

basis functions 

basis functions = clusters 

E(�) ⇡
X

i

Ji�i +
X

i,j

Ji,j�i�j + · · ·+ (M)



CAN INFORMATION THEORY 
IMPROVE THERMODYNAMIC 
ALLOY MODELING WITH 

SURROGATES? 

J. Kristensen, I. Bilionis, and N. Zabaras. Physical Review B 87.17 (2013) 



COMMON METHODOLOGY 
q  Expensive data set 

q  Much-used approach: 
Least squares 
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ECI 
Design matrix 

Can we do better if the objective 
is to obtain the ground states? 



FITTING THE BOLTZMANN DISTRIBUTION 

q  Partition function 
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Replace Boltzmann with 
surrogate distribution 

Ab initio energy: expensive 
σ: Configurational states of the system 

ECI 

We aim to match distributions rather than energies! 



QUANTIFY INFORMATION LOSS 

9 

“Distance” of choice: 

True 
Model 

S[�] =

Z

M
p(�) ln

✓
p(�)

p(�|�)

◆
d� � 0

Choose ECI to minimize area! 

Relative Entropy 
(Rel Ent) 



REL ENT VS. LEAST SQUARES 
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We ideally minimize 

Least squares ideally 
minimizes L[�] =

X

�

(E(�)� E(�;�))2

Gaussian approximation of S[�] =

Z

M
p(�) ln

✓
p(�)

p(�|�)

◆
d�

Matching distributions becomes a weighted least 
squares problem (from minimizing S above) with weights 

(IN � pN1N )diag(pN )(IN � pN1N )t

pN :=

✓
exp(��E(�(1)

))

ZN
, · · · , exp(��E(�(N)

))

ZN

◆
(t = transpose) 



Rel Ent Behavior 
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Relative Entropy 

Least Squares 

Energy 

Low T 

S
ta

te
s 

Ignore high 
energy states 

Relative Entropy 

Least Squares 

High T 

All states 
equally likely 

Energy 

S
ta

te
s 



HOW TO COMPUTE PHASE 
TRANSITIONS 



Phase Space
Probability

Resample

THERMODYNAMICS USING MCMC 
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Particle 
approximation 

More steps taken è 

Thermodynamic quantity Q 
(specific heat in case of 
phase transition) 

(step s) 

Fully parallelizable: 
Each particle on its own core 



ASMC ALGORITHM: IMPLEMENTATION 

14 

Adaptive step size according to how 
much distribution changes 

Threshold: Re-locate particles 



CASE STUDY: 
SILICON GERMANIUM 

Predict two-phase coexistence to disorder  
phase transition at 50 % composition 



50 % SI-GE: FIT TO ENERGIES 
q  Use ASMC to obtain phase transitions 
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~325 K 

A. van de Walle and G. Ceder,  
J. Phase Equilibria 23, 348 (2002) 

Method:  
Least Squares (ATAT) 

+traditional MCMC 

Least squares 
≈ relative entropy 

~325 K 

two-phase 
coexistence 

disorder 

Existing literature 



SILICON GERMANIUM 
q Why the similarity? 
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Small difference 
(< 0.04 meV) 

Region of transitions 

Note: This is not probabilistic, but gives an idea of the behavior 
versus temperature 



CASE STUDY: 
MAGNESIUM LITHIUM 

Predict order/disorder phase transitions 
at 33 %, 50 %, and 66 % Mg 



MAGNESIUM LITHIUM 
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R. Taylor, S. Curtarolo, and G. Hart, Phys. Rev. B (2010) 

33 % Mg composition: ~190 K 
50 % Mg composition: ~300-450 K 
66 % Mg composition: ~210 K 

 

C. Barrett and O. Trautz. Trans. Am. Inst. 175  (1948) 

All compositions: ~140-200 K 

Fitting observed energies 
(cluster expansion) 

Experimental (non-conclusive) 
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R. Taylor et al. Phys. Rev. B. 81 (2010) 

Method: 
Genetic Algorithm+MCMC 

33 % Mg 

50 % Mg 

66 % Mg 

Experiments: 
140-200 K 

Experiments: 
140-200 K 

Experiments: 
140-200 K 
(largest error) 



MAGNESIUM LITHIUM 
q Why the difference? 
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Large Difference 
(~0.5 meV) 

Region of transitions 



RELATIVE ENTROPY CONCLUSIONS 
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Alloy x Fit energies 
(our work) 

Fit energies 
(literature) 

Relative  
Entropy 

Experiment 

SixGe1-x 50 % ~339 K ~325 K ~339 K N/A 

MgxLi1-x 33 % ~226 K ~190 K ~170 K ~140-200 K 

50 %  ~304 K ~300-450 K ~214 K ~140-200 K 

66 % ~207 K ~210 K ~240 K ~140-200 K 
(largest error) 

q Summary table 



BAYESIAN APPROACH TO 
PREDICTING MATERIALS 

PROPERTIES 
 

PROPAGATING UNCERTAINTY FROM A SURROGATE TO, 
E.G., A PHASE TRANSITION 



Fully Bayesian Approach 
q  The former part of this presentation does not per se offer ways of 

answering central questions such as: 
 

Ø  What is the uncertainty in a quantity of interest (e.g., a phase 
transition) given that we do not know the best cluster expansion 
and that we have limited data? 

 
q  When computing a phase transition we want to know how uncertain 

we are about its value 
 

Ø  Unknown whether what we predict is OK 

q  The Bayesian approach can provide answers to such questions 
 
q  We show how surrogate models can be used to accomplish this 
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Fully Bayesian Approach 
q  Probability means a reasonable degree of belief* 

q  Prior belief on clusters + ECI 
 
q  Likelihood function 

Ø  Given a model (i.e., set of clusters + ECI) 
how likely is D 

q  Posterior belief on clusters + ECI 

q  Use Bayes theorem** to update degree of belief upon receiving 
new evidence D (what D is depends on the application) 
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p(�|D) =
p(D|�)p(�)

p(D)

*Laplace, Analytical Theory of Probability (1812) 
**Bayes, Thomas. Philosophical Transactions (1763) 

 
 

Note: 
D is limited, we 
can only see so 
many observations 



Propagating Uncertainty 
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Prior on property (quantity of interest) “I” 
Prior on cluster and ECI “θ” 

q  Then we observe an expensive data set D which helps us to learn 
more about the clusters and the ECI 
Ø  In this work the data set was expensive energy computations 

Likelihood: What information 
the data contains about the 
clusters and ECI 

Notice how we integrate out the clusters and the ECI! 
(In principle) all cluster and ECI choices (models) consistent with D 
are considered 



The Quantity of Interest 
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q  Different quantities of interest I can require different data sets D 
q  This framework allows for very general quantities of interest I 

q  Some examples: 
 

Ø  I = phase transition 
•  The phase transition is found from the internal energy 
•  The data set D consists of high-accuracy (expensive) energies 

Ø  I = ground state line 
•  The ground state line is found from the internal energy as well 
•  The data set D consists of expensive energies 

Ø  I = maximum band gap structure 
•  The maximum band gap structure is found, e.g., from knowing the 

band gap of each structure or the entire band diagram 
•  The data set D consists of expensive band gaps 



Propagating Uncertainty In Surrogate 
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How likely is the cluster 
expansion upon seeing D 
including what we knew before? 
(Bayes theorem!) 

Posterior on truncation and ECI 

 
 
 
q  We stress here that we now have a probability distribution on the 

property—not a single estimate 
Ø  From this, the uncertainty estimate follows 

q  We now have a way to propagate uncertainty from the cluster 
expansion to the quantity of interest 

q  Next, we select a Bayesian posterior 

Posterior on property 



Bayesian Posterior using a Surrogate 
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q  Choose Bayesian posterior* 

 
q  Based on LASSO-inspired priors 

Ø  Models describing physics are typically sparse** 

q  Expectation values with this posterior not in closed form! 
Ø  Resolution: MCMC Sampling 

*C. Xiaohui, J. Wang, and M. McKeown (2011) 

p(✓|D) /�(k)B(k, p� k + 1)||J ||�k
1 ||y �XJ ||�n

2

Penalize 
size of ECI 

k = model 
complexity 
(# of clusters) 

Clusters 

ECI 

Size of D 

p = arbitrary 
max set of clusters 
to be used LASSO Regularization 

**L. Nelson et al. Physical Review B 87.3 (2013) 



Motivating Model Selection 

 
 
q  There is an infinite number of cluster expansions (each symbolized 

by its own θ in the integral above) 
 

Ø  Which ones are most relevant to determining the value of the integral? 

q  We now explore model selection as an option 

30 



CAN MODEL SELECTION BE 
USED TO QUANTIFY 

EPISTEMIC UNCERTAINTIES 
WITH LIMITED DATA? 

J. Kristensen and N. Zabaras. Computer Physics Communications 185.11 (2014) 



MODEL SELECTION 
SELECTION OF BOTH BASIS FUNCTIONS AND 

EXPANSION COEFFICIENTS 



Reversible Jump Markov Chain Monte Carlo 
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q  We used reversible jump Markov chain Monte Carlo (RJMCMC)* 
to perform the model selection 
 
 

q  Define 3 move types: 

q  Practically speaking it behaves 
like a standard MCMC chain 
Ø  Use 50 % burn-in 
Ø  Use thinning if you want to 

(for memory reasons, e.g.) 

Birth step (+1) 
 
Death step (-1) 
 
Update step (0) 

(Birth step) 

*P. Green. Biometrika 82.4 (1995) 

add cluster? 

Basis set (clusters) represented 
as a binary string 
(ECI not shown) 



RJMCMC CHAIN: ALGORITHM 

34 

Model selection 
of clusters 

Initialization 

*N. Metropolis, et al. The journal of chemical physics 21.6 (1953) 

Standard Metropolis-Hastings* 

Model selection 
of the ECI 



RESULTS ON REAL ALLOYS 



MODEL SELECTION RESULTS 
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Sparse solution! 

Any particular blue point in upper plot  
represents a cluster expansion truncation: 
1) y-axis measures number of included 
clusters (but not which). 
2) Actual values of ECI not shown 

Noise agrees 
with DFT 

p(✓|D) /�(k)B(k, p� k + 1)||J ||�k
1 ||y �XJ ||�n

2

Million steps 
(after 50 % burn-in) 

+ RJMCMC 



GROUND STATE LINE UNCERTAINTY 
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q  Bayesian uncertainty in ground state line with limited data 

 
 

q  This is the uncertainty induced in the quantity of interest from 
the uncertainty in the surrogate model 
Ø  If error bars too large: you need to increase/change your data set! 

Predictive variance 
of ground state line 
is around 12 % 

% Mg in MgLi 

p(I|D, ·) =
Z

d✓�(I[f(·; ✓)]� I)p(✓|D, ·) I = ground state line 

Data set from VASP* 
(expensive energies) 

*G. Kresse and J. Hafner. Physical Review B 47.1 (1993) 

Material: MgLi 

We can implicitly conclude 
whether the data set is 
large enough! 



PHASE TRANSITION UNCERTAINTY 
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q  Bayesian uncertainty in phase transition from two-phase coexistence 
to disorder with limited data 

 
q  This is the uncertainty induced in the quantity of interest from 

the uncertainty in the surrogate model 
Ø  If error bars too large: you need to increase/change your data set! 

Predictive  
variance of phase 
transition is 
around 6 % 

19 K 

p(I|D, ·) =
Z

d✓�(I[f(·; ✓)]� I)p(✓|D, ·)
I = two-phase coexistence 
to disorder phase transition 

Material: SiGe 
at 50 % 

Transitions computed via ASMC 



USING SURROGATES FOR 
DESIGNING MATERIALS 

J. Kristensen and N. Zabaras. In review (2014) 
 



MATERIALS BY DESIGN 
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q  We are now confident about the predictive capabilities of surrogate 
models 

q  Can we also use surrogates for designing new structures with 
specified properties? 

Ø  Materials by design 

q  Application: 
Ø  Optimize thermal conductivity in nanowires* 

•  Heat dissipation in nanochips 
•  Thermoelectric materials 

–  Solar cells 
–  Refrigeration 

Ø  But: Nanowires require a different way of using the cluster expansion 
•  by “the cluster expansion” we mean the standard bulk expansion 

implemented in, e.g., ATAT** 
•  We show shortly how we addressed this issue 

**A. Walle, M. Asta, and G. Ceder. Calphad 26.4 (2002) 
*N. Mingo et al. Nano Letters 3.12 (2003) 



WHICH SI-GE NANOWIRE 
CONFIGURATION MINIMIZES THE 

THERMAL CONDUCTIVITY? 



DESIGN GOAL 
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q  Find the configuration with lowest thermal conductivity 

Green-Kubo method:* 

using microscopic heat current: 

and a Tersoff** potential energy b/w bonds: 

*R. Kubo Journal of the Physical Society of Japan 12.6 (1957) 
*M. Green The Journal of Chemical Physics 20.8 (1952) 

**J. Tersoff Physical Review B 39.8 (1989) 
 



NANOWIRE CHALLENGE: LOW SYMMETRY 
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q  Alloy optimization problem 

Ø  Use cluster expansion surrogate 

q  Problem for nanowires: 
Ø  Low-symmetry system 
Ø  ECI become layer-dependent close 

to surfaces 
Ø  Easily thousands of unknowns! 

q  Energy is additive so we can write*: 

�HCE

f = �Hvol

f +�Hsurf

f

*D. Lerch et al. Modelling and Simulation in Materials Science and Engineering 17.5 (2009) 
 

Bulk part Surface part 



NEW CLUSTER EXPANSION APPROACH 
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q  Idea: embed structure of any geometry in sea of ghost sites 
q  Group clusters under bulk symmetries 

Ø  We get bulk contribution alone, but for any geometry! 

Silicon

Germanium Ghost site

3-pt cluster
(a) (b)

Green atoms: 
Atoms part of 3-pt 
cluster (visual aid) 

�HCE

f = �Hvol

f +�Hsurf

f

Could be any 
shape on any lattice: 
bcc sphere, 
fcc nanowire,  
sc 2D sheets, etc. 

Ghost lattice method (GLM) 



GLM ON NANOWIRE PROJECT 
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q  Nanowire implementation with the GLM 
Ø  Two different representations of the same wire (OVITO* used for 

visualization) 

ATAT representation

ghost site

Si
Ge

one periodic image
of the wire

“image” Si

“image” Ge

End view Side view

(a) (b)

1.88 nm

LAMMPS representation

GeSi

1.5 nm x

Compute correlation functions 
with ATAT modified for GLM 
(i.e., modified to parse ghosts) Compute thermal conductivity in LAMMPS 

*A. Stukowski. Modelling and Simulation in Materials Science and Engineering 18.1 (2010) 



VERIFY GENERAL LAMMPS IMPLEMENTATION 
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q  Bulk Si and Ge (easy case): Use method in Ref. [*] in LAMMPS** 

We predict 170 W/m.K for Silicon. 
Experimental value = 150 W/m.K. 
 
We predict 90 W/m.K for Germanium. 
Experimental value is 60 W/m.K. 
 
Tersoff is known to overshoot. 
We obtain great agreement! 

*J. Chen, G. Zhang, and B. Li. Physics Letters A 374.23 (2010) 
**S. Plimpton. Journal of computational physics 117.1 (1995) 



VERIFY NANOWIRE IMPLEMENTATION 
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q  Compare data with Ceder’s group at MIT* 

W/mK Pure Si wire PPG (defined 
later) 

Our work 
(LAMMPS) 

4.1 +/- 0.4 0.12 +/- 0.03 

Ceder group 
(XMD) 

4.1 +/- 0.3 0.23 +/- 0.05 

Main sources of discrepancy 
•  thermalization techniques 
•  MD software 
•  thermalization times 

Annealed heating of the (relatively large) 
surface area was necessary. 

κ 

Convergence … when? 

*M. Chan et al. Physical Review B 81.17 (2010) 



Nanowire Data set 
q  140 wires each with random 

Si/Ge configuration 
Ø  This is the random nanowire 

dataset (RW) 
q  Split RW into train and test 

sets 
Ø  Train CE with GLM on train 

 
q  Additional data sets: 

Ø  Planes of pure Ge (PPG) 
Ø  Similar to PPG (SPPG) 

•  Perturbed: atom(s) from 
plane swapped with 
atom (s) from non-plane 
region 
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CE-GLM Fit on Random Nanowires 
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Using the new cluster expansion surrogate approach 
to fit the nanowire data set 

Now that we have surrogate; find global minimum 



Lowest Thermal-Conductivity Structure? 
 
q  We find the PPG to have 

lowest thermal conductivity 

q  Very strong case for the GLM 

Ø  Evidence that thermal 
conductivity of nanowires is 
well captured by first term 
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SPPGs generally lower than 
RW train and test sets as expected 

�HCE

f = �Hvol

f +�Hsurf

f

(in our case) 

≈ 0 



Compare with Literature 
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From Ref. [*] on the same problem 
(but using a slightly different surrogate model) 
 
They found as well that the PPG wire has lowest κ 

*M. Chan et al. Physical Review B 81.17 (2010) 

(this image of the PPG wire is from Ref. [*]) 



CONCLUDING REMARKS 



Work in Progress 
q  Quantify uncertainties in 

Ø  Band gaps 
Ø  Energies 
Ø  Phase Diagrams 
Ø  Thermal Conductivities 
Ø  Any material property 

q  Use information theory to design materials 

q  Help improve how data is collected (and the resources spent in doing 
so) in general 

Ø  Choosing the limited data set in most informed way 

q  What happens to uncertainty quantification across length and time 
scales? 

Ø  How do uncertainties in microscopic properties affect macroscopic 
properties? 
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