

Optimization and Design of Complex Systems

Dealing with uncertainty in simulation-based optimisation

Juergen Branke

We live in a complex world

- Large number of interacting elements
- Emergence

- Can not be understood by analysis of components
- Simulation can capture emergent phenomena

Example: Traffic

- Street networks
- Reactive traffic light controllers

Example: Healthcare

Understanding how diseases spread Measles in Fairfield County, CT Coverage = 80% Day 144

Example: Manufacturing

Simulate machine breakdowns, stochastic processing times, complex scheduling rules,

etc.

Example: Engineering

Simulation can replace physical testing

The next step: Simulation optimisation

 Automatically search vast spaces of parameter settings to find "optimal" settings

- Model calibration
- Automated design and optimisation of complex systems

Simulation optimisation examples

- Traffic: Optimise traffic light controller
- Healthcare: Identify optimal vaccination policies
- Manufacturing: Find optimal dispatching rules
- Engineering: Find optimal wing design

Challenges

- Simulations are mostly black boxes
- Simulations are computationally expensive
- There are often multiple criteria
- Simulations are often stochastic

Outline

- Ranking and Selection
- Black box optimisation
- Optimisation under Noise
- Related topics

Selecting the Best System

Ranking and selection problem

- Select, out of k systems, the one with best mean performance
- Let X_{ij} be output of *j*th replication of *i*th system $\{X_{ij} : j = 1, 2, ...\} \stackrel{i.i.d.}{\sim} \operatorname{Normal}(w_i, \sigma_i^2,) \quad i = 1, ..., k$
- Sample statistics: \bar{x}_i and $\hat{\sigma}_i^2$ based on n_i observations seen so far
- Order statistics: $\bar{x}_{(1)} \leq \bar{x}_{(2)} \leq \ldots \leq \bar{x}_{(k)}$
- Correct selection if selected system (k) is the true best system [k]

Standard: Equal allocation

• Sample each system *n* times

• Reduces standard error by $\frac{1}{\sqrt{n}}$

Comparison of m>2 alternatives

- Allocate samples sequentially
- Maximise the value of information

Myopic approach to maximize probability of correct selection

[Chick, Branke, Schmidt: J. of Computing, 2010]

- Assume we can take only one more sample
- If the sample doesn't change selected solution
 -> information had no value
- Expected value of information is probability of a change in the index of the individual with the best mean

Expected value of information (PCS)

Change of best system if

- system (i) \neq (k) is evaluated and becomes new best system
- system (k) is evaluated and becomes worse than second best

$$\mathrm{EVI}_{(i)} = \begin{cases} \Phi_{n_{(i)}-1} \begin{pmatrix} \frac{\bar{x}_{(i)} - \bar{x}_{(k)}}{\sqrt{\frac{\hat{\sigma}_{(i)}^2}{n_{(i)}(n_{(i)}+1)}}} \end{pmatrix} & \text{if } (i) \neq (k) \\ \Phi_{n_{(k)}-1} \begin{pmatrix} \frac{\bar{x}_{(k-1)} - \bar{x}_{(k)}}{\sqrt{\frac{\hat{\sigma}_{(k)}^2}{n_{(k)}(n_{(k)}+1)}}} \end{pmatrix} & \text{if } (i) = (k) \end{cases}$$

Algorithm

Sample each alternative n_0 times Determine sample statistics \bar{x}_i and σ_i^2 and order statistics $\bar{x}_{(1)} \leq \ldots \leq \bar{x}_{(k)}$ WHILE stopping criterion not reached DO Take additional sample of system *i* with maximal EVI Update sample and order statistics Pick solution with maximal \bar{x}_i

Stopping rule [Branke, Chick, Schmidt, Mngmt Sci, 2007]

- So far: Fixed budget
- Now: Estimate Probability of Correct Selection (PCS)

$$\begin{aligned} \text{PCS}_{\text{Bayes}} &= & \Pr(W_{(k)} \ge \max_{j \neq (k)} W_{(j)}) \mid \Xi \\ & \ge & \prod_{j: (j) \neq (k)} \Pr(W_{(k)} > W_{(j)}) \mid \Xi \\ & \approx & \prod_{j: (j) \neq (k)} \Phi_{\nu_{(j)(k)}}(d_{jk}^{*}) \\ & \text{with } d_{jk}^{*} &= & (\bar{x}_{(k)} - \bar{x}_{(j)}) \left(\frac{\hat{\sigma}_{(k)}^{2}}{n_{(k)}} + \frac{\hat{\sigma}_{(j)}^{2}}{n_{(j)}} \right)^{-1/2} \end{aligned}$$

Empirical evaluation (find best out of 10 systems)

Black box optimisation

Simulated annealing

Stochastic local search inspired by physical annealing

Simulated Annealing

 Acceptance of solution is probabilistic and depends on quality difference δ and temperature T

$$\frac{P_a(\delta)}{P_a(-\delta)} = e^{-\delta/T}$$

$$P_a^{Metropolis}(\delta) = \begin{cases} 1 & : & \delta \le 0 \\ e^{-\delta/T} & : & \delta > 0 \end{cases}$$

Evolutionary algorithm

INITIALIZE population (set of solutions)

EVALUATE Individuals according to goal ("*fitness*")

REPEAT

SELECT parents

RECOMBINE parents (CROSSOVER)

MUTATE offspring

EVALUATE offspring

FORM next population

UNTIL termination-condition

Efficient Global Optimisation (EGO)

[Jones, Schonlau, Welch 1998]

- Fit a Gaussian Process (GP) to data
- Response model provides information about
 - expected value
 - uncertainty
- Use response model to determine next data point (replaces genetic operators)
- Expected improvement makes explicit trade-off between exploration and exploitation

Example: GP in 1 dimension

Max expected improvement principle

Optimisation under noise

Noise is detrimental for selection

Populations are robust to noise

- Implicit averaging over the neighbourhood
- With infinite populations, fitness proportional selection is not affected by noise
- Theory for optimal population sizes in simplified cases
- Black-box Optimization Benchmark competitions show advantages of EAs in noisy environments

CRN and Evolutionary Algorithms

- Use CRN for all individuals to be compared within a generation
 - may drastically improve probability of correct ranking
 - risk of optimizing for one random seed
- Change random number seeds from generation to generation
 - Only individuals that work on a wide range of scenarios will survive for a long time

Use metamodels – average over space

[Branke & Schmidt 2001]

Benefit

Integrating Ranking&Selection

The relevant comparisons

●Steady-State-EA with 2-Tournament

Population size: 9, offspring: 1

- Replacement: Worst individual
- Stopping criterion: Best individual
- Selection: Best out of {3, 7} and {2, 5}

$$\operatorname{PGS}_{\operatorname{Slep},\delta^*}^{EA} = \prod_{(i,j)\in C} \Phi_{\nu_{ij}}((d_{ij} + \delta^*)/s_{ij})$$

Integrating OCBA and EA

Procedure OCBA^{EA}

- 1. Evaluate each new individual n_0 times. Estimate the ranks
- 2. Determine set of relevant comparisons C
- 3. WHILE evidence is not sufficient
 - a) allocate new sample to individual according to modified OCBA rule
 - b) if ranks have changed, update C

Benefits over the run

Optimal Stochastic Annealing (OSA)

[Ball, Branke, Meisel 2017]

- Tends to deterministically select the better solution
- Uses sequential sampling
- Acceptance criterion modified to maintain detailed balance $\frac{P_a(\delta)}{P_a(-\delta)} = e^{-\delta/T}$
- At every stage, decision to accept, reject or continue
- Acceptance criterion has optimal efficiency (acceptance probability per sample)

OSA acceptance rule

Based on sum of samples taken so far
 Aligned et al.
 Al

$$c_n = \sum_{i=1}^n \delta_i$$

• Acceptance probability at current stage:

$$A(c_n, c_{n-1}) = \begin{cases} 1 & c_n < -\beta\sigma^2/2 \\ e^{-2(c_n + \beta\sigma^2/2)(c_{n-1} + \beta\sigma^2/2)} & \text{otherwise} \end{cases}$$

- If not accepted, reject if $c_n > 0$
- Continue otherwise

Benchmark algorithms

- SANE [Branke et al. 2007]
- CD1 [Ceperley&Dewing 1999]
 - Adjusted acceptance criterion, obeys detailed balance
- CD10 [Ceperley&Dewing 1999]
 - As CD1, but with 10 samples per move decision

Efficiency high noise ($\sigma/T=10$)

Optimization performance (TSP, σ²=3200)

Related topics

Input uncertainty

- A simulation model often has parameters estimated by experts of learned from data
- Given a probability distribution of these parameters, we want to find the solution with the best expected performance

UNI OC

Searching for robust solutions

- Given a probability distribution of manufacturing tolerances, find the solution with the best expected performance
- Re-use previous evaluations
- Where to take new sample to minimise estimation error?

Reliability

• How likely is it that a solution is *feasible*?

Conclusion

- Simulation-based optimisation is powerful tool for design of complex systems
- Evolutionary algorithms, simulated annealing and Bayesian optimisation
- Uncertainty is major challenge
- Reduce uncertainty where most helpful
- Exploit neighbourhood information

Discussion

