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We	live	in	a	complex	world

� Large	number	of	
interacting	elements

� Emergence

� Can	not	be	understood	by	
analysis	of	components

� Simulation	can	capture	
emergent	phenomena
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Example:	Traffic

� Street	networks
� Reactive	traffic	light	controllers
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Example:	Healthcare
Understanding
how	diseases
spread
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Example:	Manufacturing
Simulate	machine	breakdowns,	
stochastic	processing	times,	complex	
scheduling	rules,
etc.
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Example:	Engineering
Simulation	can	replace	physical	testing

6
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The	next	step:	
Simulation	optimisation

� Automatically	search	vast	spaces	of	parameter	
settings	to	find	“optimal”	settings

� Model	calibration
� Automated	design	and	optimisation	of	complex	

systems

SimulationParameters Objective	value
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Simulation	optimisation	examples
� Traffic:	Optimise	traffic	light	controller
� Healthcare:	Identify	optimal	vaccination	policies
� Manufacturing:	Find	optimal	dispatching	rules
� Engineering:	Find	optimal	wing	design
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Challenges

� Simulations	are	mostly	black	boxes
� Simulations	are	computationally	expensive
� There	are	often	multiple	criteria
� Simulations	are	often	stochastic



Warwick	Business	School

Outline

� Ranking	and	Selection
� Black	box	optimisation
� Optimisation	under	Noise
� Related	topics
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Selecting	the	Best	System
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Ranking	and	selection	problem

� Select,	out	of	k systems,	the	one	with	best	mean	
performance

� Let	Xij be	output	of	jth replication	of	ith system

� Sample	statistics:								and							based	on	ni
observations	seen	so	far

� Order	statistics:
� Correct	selection	if	selected	system	(k)	is	the	true	

best	system	[k]

{Xij : j = 1, 2, . . .} i.i.d.⇠ Normal(wi, �
2
i , ) i = 1, . . . , k

x̄i

x̄(1)  x̄(2)  . . .  x̄(k)

�̂2
i
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Standard:	Equal	allocation

� Sample	each	system	n	times

� Reduces	standard	error	by		
1p
n
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Comparison	of	m>2	alternatives

� Allocate	samples	sequentially
� Maximise the	value	of	information
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Myopic	approach	to	maximize	
probability	of	correct	selection
[Chick,	Branke,	Schmidt:	J.	of	Computing,	2010]	

� Assume	we	can	take	only	one	more	sample
� If	the	sample	doesn’t	change	selected	solution

->	information	had	no	value
� Expected	value	of	information	is	probability	of	a	

change	in	the	index	of	the	individual	with	the	
best	mean
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Expected	value	of	information	(PCS)
Change	of	best	system	if
� system	(i)	≠	(k)	is	evaluated	and	becomes	new	best	system
� system	(k)	is	evaluated	and	becomes	worse	than	second	best

EVI(i) =

8
>>>>>>>><

>>>>>>>>:

�
n(i)�1

0

B@ x̄(i)�x̄(k)s
�̂2
(i)

n(i)(n(i)+1)

1

CA if (i) 6= (k)

�
n(k)�1

0

B@ x̄(k�1)�x̄(k)s
�̂2
(k)

n(k)(n(k)+1)

1

CA if (i) = (k)
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Algorithm

Sample	each	alternative	n0 times
Determine	sample	statistics						and						and	order

statistics
WHILE	stopping	criterion	not	reached	DO

Take	additional	sample	of	system	i with	
maximal	EVI

Update	sample	and	order	statistics
Pick	solution	with	maximal	 x̄i

x̄i �2
i

x̄(1) � . . . � x̄(k)
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Stopping	rule	[Branke,	Chick,	Schmidt,	Mngmt Sci,	2007]	

� So	far:	Fixed	budget
� Now:	Estimate	Probability	of	Correct	Selection	(PCS)

PCS

Bayes

= Pr(W(k) � max

j 6=(k)
W(j)) | ⌅}

�
Y

j:(j) 6=(k)

Pr(W(k) > W(j)) | ⌅}

⇡
Y

j:(j) 6=(k)

�⌫(j)(k)(d
⇤
jk)
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Empirical	evaluation	(find	best	out	of	10	systems)
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Black	box	optimisation

Black box
Solution	candidate

Fitness
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Simulated	annealing
Stochastic	local	search	inspired	by	physical	annealing

C
os

t

Search spacex

),( tEfP ∂=
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Simulated	Annealing
� Acceptance	of	solution	is	

probabilistic	and	depends	on	
quality	difference	δ and	
temperature	T

Pa(�)
Pa(��)

= e��/T

PMetropolis

a

(�) =
⇢

1 : �  0
e��/T : � > 0

δ

P a
(δ
)		
			
	



Warwick	Business	School

Evolutionary	algorithm
INITIALIZE population

(set of solutions)

REPEAT

UNTIL termination-condition

EVALUATE Individuals
according to goal  ("fitness")

SELECT parents

RECOMBINE parents (CROSSOVER)

MUTATE offspring 

EVALUATE offspring
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Efficient	Global	Optimisation (EGO)
[Jones,	Schonlau,	Welch	1998]

� Fit	a	Gaussian	Process	(GP)	to	data
� Response	model	provides	information	about

� expected	value
� uncertainty

� Use	response	model	to	determine	next	data	
point	(replaces	genetic	operators)

� Expected	improvement	makes	explicit	trade-off	
between	exploration	and	exploitation
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Example:	GP	in	1	dimension
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Max	expected	improvement	principle
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Optimisation under	noise
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Noise	is	detrimental	for	selection
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Populations	are	robust	to	noise

� Implicit	averaging	over	the	neighbourhood
� With	infinite	populations,	fitness	proportional	

selection	is	not	affected	by	noise
� Theory	for	optimal	population	sizes	in	simplified	

cases
� Black-box	Optimization	Benchmark	competitions	

show	advantages	of	EAs	in	noisy	environments
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CRN	and	Evolutionary	Algorithms

� Use	CRN	for	all	individuals	to	be	compared	
within	a	generation
� may	drastically	improve	probability	of	correct	ranking
� risk	of	optimizing	for	one	random	seed

� Change	random	number	seeds	from	generation	
to	generation
� Only	individuals	that	work	on	a	wide	range	of	
scenarios	will	survive	for	a	long	time
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Use	metamodels – average	over	space	
[Branke	&	Schmidt	2001]
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Integrating	Ranking&Selection

t+1

t
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ParentsSelection
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Replace
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The	relevant	comparisons
�Steady-State-EA	with 2-Tournament

Population	size:	9,	offspring:	1
� Replacement:	Worst individual
� Stopping criterion:	Best	individual
� Selection:	Best	out	of {3,	7}	and {2,	5}

Observed	ranking
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Integrating	OCBA	and	EA

Procedure	OCBAEA

1. Evaluate	each	new individual	n0 times.	Estimate	
the	ranks

2. Determine	set	of	relevant	comparisons	C
3. WHILE	evidence	is	not	sufficient

a) allocate	new	sample	to	individual	according	to	
modified	OCBA	rule

b) if	ranks	have	changed,	update	C



Warwick	Business	School

Benefits	over	the	run
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Optimal	Stochastic	Annealing	(OSA)
[Ball,	Branke,	Meisel 2017]

� Tends	to	deterministically	select	the	better	
solution

� Uses	sequential	sampling
� Acceptance	criterion	modified	to	maintain	

detailed	balance
� At	every	stage,	decision	to	accept,	reject	or	

continue
� Acceptance	criterion	has	optimal	efficiency	

(acceptance	probability	per	sample)

Pa(�)
Pa(��)

= e��/T
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OSA	acceptance	rule
� Based	on	sum	of	samples	taken	so	far

� Acceptance	probability	at	current	stage:

� If	not	accepted,	reject	if	cn>0
� Continue	otherwise

cn =
n�

i=1

�i

A(cn, cn�1) =
�

1 cn < ���2/2
e�2(cn+��2/2)(cn�1+��2/2) otherwise
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Benchmark	algorithms
� SANE	[Branke	et	al.	2007]
� CD1	[Ceperley&Dewing 1999]

� Adjusted	acceptance	criterion,	obeys	detailed	balance
� CD10	[Ceperley&Dewing 1999]

� As	CD1,	but	with	10	samples	per	move	decision



Warwick	Business	School

Efficiency	high	noise	(σ/T=10)
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Optimization	performance	(TSP,	σ2=3200)
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Related	topics
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Input	uncertainty
� A	simulation	model	often	has	parameters	estimated	

by	experts	of	learned	from	data
� Given	a	probability	distribution	of	these	parameters,	

we	want	to	find	the	solution	with	the	best	expected	
performance
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Searching	for	robust	solutions
� Given	a	probability	distribution	of	

manufacturing	tolerances,	find	the	solution	with	
the	best	expected	performance

� Re-use	previous	evaluations
� Where	to	take	new	sample	to	minimise	

estimation	error?
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Reliability
� How	likely	is	it	that	a	solution	is	feasible?DEB et al.: RELIABILITY-BASED OPTIMIZATION USING EVOLUTIONARY ALGORITHMS 1055

The paper is structured as follows. Section II introduces the
reliability-based optimization problem and describes currently
used classical reliability-based methodologies. Further related
work, in particular in the area of evolutionary computation,
is surveyed in Section III. Then, three possible scenarios for
reliability-based optimization are described in Section IV.
Our evolutionary approach describing the computationally
faster technique is presented in Section V. Then, Sections VI
to VIII report empirical results of our approach on the
aforementioned three scenarios with a comparison to classical
approaches. The paper concludes with a summary and some
ideas for future work in Section IX.

II. PROBLEM DEFINITION AND

CLASSICAL RELIABILITY-BASED METHODOLOGIES

A. Problem Definition

Let us consider here a reliability-based single-objective
optimization problem of the following type:

Minimize
(x,d)

f (x, d, p)

subject to g j (x, d, p) ≥ 0, j = 1, 2, . . . , J
hk(d) ≥ 0, k = 1, 2, . . . , K
x(L) ≤ x ≤ x(U ),
d(L) ≤ d ≤ d(U ).

(1)

Here, x is a set of design variables which are uncertain. That
is, for a particular vector µx considered in the optimization,
the realized value is distributed with a probability distribution.
In our discussion here, we shall assume a normal distribution
N (µx, σx) with mean µx and a covariance matrix σx, which
is dependent on the variable vector value µx. Appropri-
ate transformation techniques are available to consider other
probability distributions as well [4]. Similarly, p is a set of
uncertain parameters (which are not design variables) and
follow a probability distribution N (µp, σp) representing the
uncertainty. However, d is a set of deterministic design vari-
ables, which are not uncertain and can be realized as they are
specified exactly. Thus, the stochasticity in the optimization
problem comes from two sets of parameters: x and p. However,
although the above problem is written in a way to mean
that x and d are decision variable vectors to the optimization
problem, in reality, µx and d are decision variable vectors. In
most cases, fixed covariance vectors are used for x and p, or
covariances as known functions of x and p are assumed.

Here, we only consider inequality constraints. This is be-
cause if an equality constraint involves x or p, there may not
exist a solution for any arbitrary desired reliability against
failure. All inequality constraints can be classified into two
categories: 1) stochastic constraints g j involving at least one
stochastic quantity (x, p or both) and 2) hk involving no
stochastic quantity.

Fig. 1 shows a hypothetical problem with two stochastic
inequality constraints. Typically, the deterministic optimal
solution [the solution to the problem given in (1) without
any uncertainty in x or p] lies on a particular constraint
boundary or at the intersection of more than one constraints,
as shown in the figure. In the event of uncertainties in design
variables, as shown in the figure with a probability distribution

Uncertainities
in x1 and x2

Deterministic
optimum

Feasible
region

x2

x1

Reliable
solution

Fig. 1. Concept of reliability-based optimization procedure.

around the optimal solution, in many instances, such a solution
will be infeasible. In order to find a solution that is more
reliable (meaning that there is a small probability of resulting
in an infeasible solution), the true optimal solution must be
sacrificed, and a solution interior to the feasible region may
be chosen. For a desired reliability measure R, it is then
desired to find that feasible solution that will ensure that the
probability of having an infeasible solution instance created
through uncertainties from this solution is at most (1 − R).
To arrive at such a solution, the above optimization problem
can be converted into a new optimization problem. Since the
objective function f and constraints g j are probabilistic due
to the randomness in variable set x and parameter set p, the
following deterministic formulation can be made:

Minimize
(µx,d)

f (µx, d, µp)

subject to P(
∧J

j=1(g j (x, d, p) ≥ 0)) ≥ R
hk(d) ≥ 0, k = 1, 2, . . . , K
x(L) ≤ µx ≤ x(U ),
d(L) ≤ d ≤ d(U )

(2)

where µx and µp denote the mean of variables x and p,
respectively. The term P() signifies the joint probability of
the solution x being feasible from all J constraints under
the uncertainty assumption. The quantity R is the desired
reliability (within [0, 1]) for satisfying all the constraints.
The conversion of the constraint g j (x, d, p) ≥ 0 into a
probabilistic constraint with the introduction of a reliability
term is a standard technique and the transformed probabilistic
constraint is also known as a chance constraint. However,
finding the joint probability of a solution being feasible from
multiple constraints is a difficult mathematical proposition and
approximate methods are used to make an estimate of the
above probability. We discuss some of the commonly used
procedures in Section II-B and shall discuss a couple of ways
of handling the joint probability term for multiple constraints
later in Section II-D. Many reliability-based optimization
studies simply break the above probability constraint into J
chance constraints as follows:

P(g j (x, d, p) ≥ 0) ≥ R j , j = 1, 2, . . . , J (3)

where R j is the desired probability of constraint satisfaction
of the j th constraint. Of course, this requires the definition
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Fig. 2. PMA approach.
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Fig. 3. Fast approach for solving the PMA problem.

Although the above optimization problem involves an equal-
ity constraint, a customized optimization procedure can be
employed to consider solutions only on the ∥U∥ = βr

j hy-
persurface, thereby making every solution a feasible solution.
Such a customized algorithm will make the search process
comparatively faster.

b) Fast performance measure approach (FastPMA): A
faster variant of the PMA approach is suggested in [14] and
is illustrated in Fig. 3. To speed up PMA, a gradient vector
∇g0

j of each probabilistic constraint g j is first computed at
the origin of the U-space. Its intersection (point A) with a
circle of radius βr

j is computed and a new gradient (∇g1
j ) is

recomputed at this point (A). Thereafter, the intersection (point
B) of this new gradient direction from the origin with the circle
is recomputed and a new gradient vector (∇g2

j ) is computed
at B. This procedure is continued till a convergence of the
norm of two consecutive gradient vectors with a predefined
tolerance (ϵP M A) or a fixed number of iterations ηP M A is
met. This point (U∗) is an estimate of the MPP of the original
PMA problem.

G = 0

β j
r

G < 0

U−Space

u1

u2

0

Infeasible
region,

MPP

U*
j

j

Fig. 4. RIA approach.

c) Reliability index approach (RIA): In this method, the
following optimization problem is solved:

Minimize ∥U∥
subject to G j (U) = 0.

(8)

Here, the MPP is calculated by finding a point which is
on the constraint curve in the U-space and is closest to the
origin. The optimum point U∗ is used to replace the original
probability constraint as follows:

∥U∥ ≥ βr
j . (9)

Fig. 4 illustrates the procedure. During the optimization
procedure, the desired reliability index βr

j is ignored, and
the minimum U-vector on the constraint boundary is found.
Thereafter, the minimal U∗ is compared with βr

j .
This approach also involves an equality constraint. Although

this method is computationally more expensive than the PMA
approach, a nice aspect is that the optimization problem
directly returns the distance of the solution from the constraint
(which is directly related to the reliability against a violation
of the constraint). The PMA approach, on the other hand, only
determines whether a solution is reliable or not against con-
straint satisfaction with respect to a specified reliability index.

d) Fast reliability index approach (FastRIA): There can
also be a relatively fast yet less-accurate variant of RIA,
which we propose here. First, we find an intermediate MPP
point (U∗

P M A) on a unit circle (assuming βr
j = 1) based on

the above FastPMA approach. As discussed, this operation is
computationally fast. Thereafter, we perform a unidirectional
search along U∗

P M A and locate the point for which G j (U) = 0.
We employ the Newton–Raphson approach for performing
the unidirectional search [15]. Due to the conversion of the
original multivariable problem to a single-variable problem,
the computation is usually fast, requiring only a numerical
derivative of the constraint function in the U-space. However,
it is worth mentioning here that the MPP point obtained by
this dual procedure is an approximation to the exact MPP,
particularly for highly nonlinear constraints.
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Fig. 19. Optimal objective value reduced with desired reliability index.

Fig. 19 also depicts that the worsening of optimal objective
value is almost linear in the increase in reliability index βr .
Fig. 20 shows how the optimal solution starting near the global
optimum (for a small reliability requirement) moves inside the
feasible search space with an increased demand in reliability,
then moves near the local optimum, and finally moves further
interior to the search space with an increase in reliability index.
Such information provides a good understanding of how the
optimal solution varies depending on the desired reliability and
is extremely valuable to designers and practitioners in solving
real-world optimization problems.

We now consider an engineering design problem and
employ both the closest constraint and multiple constraint
strategies to find and analyze the solutions to decipher
more meaningful design principles associated with reliable
solutions.

B. Car Side-Impact Problem

A car is subjected to a side-impact based on European
Enhanced Vehicle-Safety Committee (EEVC) procedures. The
effect of the side-impact on a dummy in terms of head
injury (HIC), load in abdomen, pubic symphysis force, viscous
criterion (V ∗C), and rib deflections at the upper, middle, and
lower rib locations are considered. The effect on the car are
considered in terms of the velocity of the B-Pillar at the middle
point and the velocity of the front door at the B-Pillar. An
increase in dimension of the car parameters may improve the
performance on the dummy but with a burden of increased
weight of the car, which may have an adverse effect on the
fuel economy. Thus, there is a need to find a design balancing
the weight and the safety performance. The optimization
problem formulated elsewhere [55] included the minimization
of the weight of the car subject to EEVC restrictions on
safety performance. There are 11 design variables x which
can be grouped into two sets: uncertain decision variables
x = (x1, . . . , x7) and uncertain parameters p = (x8, . . . , x11).
All variables/parameters (in millimeters) are assumed to be
stochastic with standard deviations (in millimeters) given
below. Problem parameters x8 to x11 are assumed to take
a particular distribution with a fixed mean of 0.345, 0.192,
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Fig. 20. Location of optimal solutions with desired reliability index.

0, and 0 mm, respectively. Thus, the stochastic optimization
problem involves seven decision variables and three stochastic
parameters which all vary with a normal distribution. Their
description and the standard deviation of their variations are
given in the Appendix.

We use a population of size of 100 and run NSGA-II to
optimize two objectives f (x) (minimize weight function) and
R (maximize reliability index) for 100 generations. Fig. 21
shows the tradeoff, nondominated front obtained using three
methodologies: 1) the approach which uses only the closest
constraint to compute MPP (direction for MPP is computed
at a unit circle); 2) the approach which uses Ditlevsen’s upper
bound to compute reliability; and 3) the Ditlevsen’s approach
which does not consider redundant constraints to compute
reliability.

We make a few interesting observations from this figure.
First, the shape of the tradeoff front suggests that till up to
a reliability index near 1.5, the worsening of optimal weight
with an increased reliability requirement is less compared to
that for solutions beyond a reliability index of 1.5. This means
that larger sacrifice in weight is needed compared to the gain in
reliability index for achieving a solution having such a large
reliability requirement. Thus, unless a very large reliability
is needed, it may not be wise to unnecessarily set a high
reliability demand.

Second, the nondominated front obtained using multiple
constraint consideration is located inside the feasible objective
space relative to the nondominated front obtained using a
single-constraint case. This is due to the fact that a single-
constraint (albeit closest) consideration overestimates the prob-
ability of feasibility, thereby resulting in a front which appears
to be better. To illustrate this fact, we have computed the
overall reliability index value using the Ditlevsen’s bound for
each of the solutions obtained using the closest constraint
strategy and plotted them against the reported reliability index
in Fig. 22. It is clear from the figure that each solution
obtained using the closest constraint strategy corresponds to a
smaller overall reliability index than that obtained with respect
to closest constraint alone. Thus, when all constraints are
considered using the Ditlevsen’s bound, each of these solutions
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Fig. 19. Optimal objective value reduced with desired reliability index.

Fig. 19 also depicts that the worsening of optimal objective
value is almost linear in the increase in reliability index βr .
Fig. 20 shows how the optimal solution starting near the global
optimum (for a small reliability requirement) moves inside the
feasible search space with an increased demand in reliability,
then moves near the local optimum, and finally moves further
interior to the search space with an increase in reliability index.
Such information provides a good understanding of how the
optimal solution varies depending on the desired reliability and
is extremely valuable to designers and practitioners in solving
real-world optimization problems.

We now consider an engineering design problem and
employ both the closest constraint and multiple constraint
strategies to find and analyze the solutions to decipher
more meaningful design principles associated with reliable
solutions.

B. Car Side-Impact Problem

A car is subjected to a side-impact based on European
Enhanced Vehicle-Safety Committee (EEVC) procedures. The
effect of the side-impact on a dummy in terms of head
injury (HIC), load in abdomen, pubic symphysis force, viscous
criterion (V ∗C), and rib deflections at the upper, middle, and
lower rib locations are considered. The effect on the car are
considered in terms of the velocity of the B-Pillar at the middle
point and the velocity of the front door at the B-Pillar. An
increase in dimension of the car parameters may improve the
performance on the dummy but with a burden of increased
weight of the car, which may have an adverse effect on the
fuel economy. Thus, there is a need to find a design balancing
the weight and the safety performance. The optimization
problem formulated elsewhere [55] included the minimization
of the weight of the car subject to EEVC restrictions on
safety performance. There are 11 design variables x which
can be grouped into two sets: uncertain decision variables
x = (x1, . . . , x7) and uncertain parameters p = (x8, . . . , x11).
All variables/parameters (in millimeters) are assumed to be
stochastic with standard deviations (in millimeters) given
below. Problem parameters x8 to x11 are assumed to take
a particular distribution with a fixed mean of 0.345, 0.192,
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Fig. 20. Location of optimal solutions with desired reliability index.

0, and 0 mm, respectively. Thus, the stochastic optimization
problem involves seven decision variables and three stochastic
parameters which all vary with a normal distribution. Their
description and the standard deviation of their variations are
given in the Appendix.

We use a population of size of 100 and run NSGA-II to
optimize two objectives f (x) (minimize weight function) and
R (maximize reliability index) for 100 generations. Fig. 21
shows the tradeoff, nondominated front obtained using three
methodologies: 1) the approach which uses only the closest
constraint to compute MPP (direction for MPP is computed
at a unit circle); 2) the approach which uses Ditlevsen’s upper
bound to compute reliability; and 3) the Ditlevsen’s approach
which does not consider redundant constraints to compute
reliability.

We make a few interesting observations from this figure.
First, the shape of the tradeoff front suggests that till up to
a reliability index near 1.5, the worsening of optimal weight
with an increased reliability requirement is less compared to
that for solutions beyond a reliability index of 1.5. This means
that larger sacrifice in weight is needed compared to the gain in
reliability index for achieving a solution having such a large
reliability requirement. Thus, unless a very large reliability
is needed, it may not be wise to unnecessarily set a high
reliability demand.

Second, the nondominated front obtained using multiple
constraint consideration is located inside the feasible objective
space relative to the nondominated front obtained using a
single-constraint case. This is due to the fact that a single-
constraint (albeit closest) consideration overestimates the prob-
ability of feasibility, thereby resulting in a front which appears
to be better. To illustrate this fact, we have computed the
overall reliability index value using the Ditlevsen’s bound for
each of the solutions obtained using the closest constraint
strategy and plotted them against the reported reliability index
in Fig. 22. It is clear from the figure that each solution
obtained using the closest constraint strategy corresponds to a
smaller overall reliability index than that obtained with respect
to closest constraint alone. Thus, when all constraints are
considered using the Ditlevsen’s bound, each of these solutions
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Conclusion

� Simulation-based	optimisation	is	powerful	tool	
for	design	of	complex	systems

� Evolutionary	algorithms,	simulated	annealing	
and	Bayesian	optimisation

� Uncertainty	is	major	challenge
� Reduce	uncertainty	where	most	helpful
� Exploit	neighbourhood	information
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Discussion


