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We live in a complex world

® Large number of ® Can not be understood by
interacting elements analysis of components
® Emergence ® Simulation can capture

emergent phenomena
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Example: Traffic

® Street networks

® Reactive traffic light controllers
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Example: Healthcare

Measles in Fairfield County, CT

Understanding Covrage =80%
how diseases

spread

-00:15 o)
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Example: Manufacturing

Simulate machine breakdowns,
stochastic processing times, complex
scheduling rules, =

etc.
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Example: Engineering

Simulation can replace physical testing




The next step:
Simulation optimisation

® Automatically search vast spaces of parameter
settings to find “optimal” settings

w—

® Model calibration

® Automated design and optimisation of complex
systems
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Simulation optimisation examples

® Traffic: Optimise traffic light controller

® Healthcare: Identify optimal vaccination policies
® Manufacturing: Find optimal dispatching rules
® Engineering: Find optimal wing design
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Challenges

® Simulations are mostly black boxes

® Simulations are computationally expensive
® There are often multiple criteria

® Simulations are often stochastic

Warwick Business School

whbs.ac.u



Outline

® Ranking and Selection

® Black box optimisation

® Optimisation under Noise
® Related topics
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Selecting the Best System
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Ranking and selection problem

® Select, out of k systems, the one with best mean
performance

® Let X, be output of jth replication of ith system
{Xi;:79=1,2,...} bih Normal(w;,07,) i=1,...,k

® Sample statistics: I; and 6? based on n,
observations seen so far

® Order statistics: (1) < T (2) < ...< T (k)

® Correct selection if selected system (k) is the true
best system [K]
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Standard: Equal allocation

® Sample each system n times

1
® Reduces standard error by Jn
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Comparison of m>2 alternatives

® Allocate samples sequentially
® Maximise the value of information
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Myopic approach to maximize
probability of correct selection

[Chick, Branke, Schmidt: J. of Computing, 2010]

® Assume we can take only one more sample

® If the sample doesn’t change selected solution
-> information had no value

® Expected value of information is probability of a
change in the index of the individual with the

best mean
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Expected value of information (PCS)

Change of best system if

® system (i) # (k) is evaluated and becomes new best system

® system (k) is evaluated and becomes worse than second best
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Algorithm

Sample each alternative n, times

Determine sample statistics I, and a?and order
statistics T(1) < ... < Tg)

WHILE stopping criterion not reached DO

Take additional sample of system i with
maximal EVI

Update sample and order statistics
Pick solution with maximal Z;
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StO p pi ng ru Ie [Branke, Chick, Schmidt, Mngmt Sci, 2007]

® So far: Fixed budget
® Now: Estimate Probability of Correct Selection (PCS)

PCSBayes = Pr(Wi = maxW;) |}

> H PI(W(k) > W(j)) ‘ E}
3:(5)#(k)

~ H (I)V@)(k)( ;kk)

J3:(3)#(k)

IR
with dj, = (J?(k)ﬂ?(j))( | ‘7.)
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Empirical evaluatiOn (find best out of 10 systems)
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Black box optimisation

- mn canm
\ Fitney
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Simulated annealing

Stochastic local search inspired by physical annealing

P=f(3E,1)

Cost

X 'y Search space
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Simulated Annealing

® Acceptance of solution is -
e 1 \Metropolis
probabilistic and depends on \ Glauber
quality difference 6 and |
temperature T

Pa(é) _ 6—5/T

Pa(_5)

Metropolis _
ORI
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Evolutionary algorithm

INITIALIZE population
(set of solutions)

EVALUATE Individuals
according to goal ("fitness")

REPEAT

SELECT parents Y [

RECOMBINE parents (CROSSOVER)

_ ||{\\\\N N\
MUTATE offspring ' '

D\
EVALUATE offspring BN

FORM next population I ©

UNTIL termination-condition

SUMMINYY 14 [N 7
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Efficient Global Optimisation (EGO)

[Jones, Schonlau, Welch 1998]

® Fit a Gaussian Process (GP) to data

® Response model provides information about
e expected value
® uncertainty

® Use response model to determine next data
point (replaces genetic operators)

® Expected improvement makes explicit trade-off
between exploration and exploitation
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Example: GP in 1 dimension

1.5

0.5
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Max expected improvement principle

EGO lllustration
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Optimisation under noise
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Noise is detrimental for selection

o [
1200
1000

800

Solution quality

600

400 |
0 50000 100000

lterations

Warwick Business School whbs.ac.uk




Populations are robust to noise

® Implicit averaging over the neighbourhood

® With infinite populations, fitness proportional
selection is not affected by noise

® Theory for optimal population sizes in simplified
cases

® Black-box Optimization Benchmark competitions
show advantages of EAs in noisy environments
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CRN and Evolutionary Algorithms

® Use CRN for all individuals to be compared
within a generation
e may drastically improve probability of correct ranking
e risk of optimizing for one random seed

® Change random number seeds from generation
to generation

¢ Only individuals that work on a wide range of
scenarios will survive for a long time
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Use metamodels — average over space

[Branke & Schmidt 2001]

f(x)]
w(d)

f(x*)
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Integrating Ranking&Selection

Offspring
m
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The relevant comparisons

®Steady-State-EA with 2-Tournament Observed ranking
. . . 1 2 3 4 5 6 7 8 9 10
Population size: 9, offspring: 1

e Replacement: Worst individual
e Stopping criterion: Best individual
e Selection: Best out of {3, 7} and {2, 5}

Observed ranking

o (e} ~ (o)} (2] H w N = V2

x x x x x x x x x

[y
o

PASEL, 5 = L1 o ((dy +8%)/5)
(i,7)eC
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Integrating OCBA and EA

Procedure OCBAEA

1. Evaluate each new individual n, times. Estimate
the ranks

2. Determine set of relevant comparisons C
3. WHILE evidence is not sufficient

a) allocate new sample to individual according to
modified OCBA rule

b) if ranks have changed, update C
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Benefits over the run
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Optimal Stochastic Annealing (OSA)

[Ball, Branke, Meisel 2017]

® Tends to deterministically select the better
solution

® Uses sequential sampling

® Acceptance criterion modified to maintain

: Pa(5) _ =6/
detailed balance B—g) ~ ¢ o/T

® At every stage, decision to accept, reject or
continue

® Acceptance criterion has optimal efficiency
(acceptance probability per sample)
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OSA acceptance rule

® Based on sum of samples taken so far

n
Cn — E 5@
1=1

® Acceptance probability at current stage:

1 Cpn < _502/2
Alcn, en-1) = { e—2(cnt+B0%/2)(cn—1+B07/2)  Giherwise

@ If not accepted, reject if ¢,>0

® Continue otherwise
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Benchmark algorithms
O] SANE [Branke et al. 2007]

® CD]. [Ceperley&Dewing 1999]
e Adjusted acceptance criterion, obeys detailed balance
® CD].O [Ceperley&Dewing 1999]

e As CD1, but with 10 samples per move decision
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Efficiency high noise (o/1=10)
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Optimization performance (rsp, o2=3200)
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Input uncertainty

® A simulation model often has parameters estimated

by experts of learned from data

® Given a probability distribution of these parameters,
we want to find the solution with the best expected
performance
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Searching for robust solutions

® Given a probability distribution of
manufacturing tolerances, find the solution with
the best expected performance

® Re-use previous evaluations

® Where to take new sample to minimise
estimation error?

search space

O. ®
= ® disturbance
E ® @ | region
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<2, ® ®

® () ®
®

Uncertainty

Warwick Business School whbs.ac.uk



Reliability

® How likely is it that a solution is feasible?
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Conclusion

® Simulation-based optimisation is powerful tool
for design of complex systems

® Evolutionary algorithms, simulated annealing
and Bayesian optimisation

® Uncertainty is major challenge
® Reduce uncertainty where most helpful
® Exploit neighbourhood information
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Discussion
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