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Crystalline solids

» Many everyday solid materials are crystalline
» Simplest structures are Bravais lattices (Iron, cubic structures)
» More generally, multilattices (Graphite, hexagonal lattice structure)
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Body-Centred Cubic (BCC) Face-Centred Cubic (FCC)




Crystal plasticity

Crystal Plasticity = ‘slip’ of crystallographic planes.

http://www.doitpoms.ac.uk/tlplib/miller_indices/uses.php



Crystal plasticity
Orowan (1934), Polanyi (1934), Taylor (1934):
Slip occurs via motion of dislocations.

Energy barrier ~ Area

Energy barrier ~ Length




Dislocations

» Geometric lattice defects
» Assigned a Burgers vector, b, and line direction, I.
» Simplest types: screw (b || I) and edge (b L I).
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Computational modelling of crystal plasticity

Hierarchy of crystal plasticity models:

Electronic structure: True chemistry, ~ 103 atoms
| Potentials for/coupling to: |

Molecular Dynamics: Statistical mechanics. ~ 10° atoms, but longest
feasible trajectory length ~ 10~ s

H Mobility + topological laws for: H

Discrete Dislocation Dynamics: Statistical mechanics: single
crystal /multiple grains, trajectory length ~ 107 1s.

J Numerical constitutive laws for: |

Continuum crystal plasticity: human time— and length—scales.



Dislocation Dynamics

http://computation.llnl.gov/largevis/atoms/ductile-failure/



Dislocation Dynamics

http://paradis.stanford.edu/site/about



Dislocation Dynamics
Discrete Dislocation Dynamics (DDD) is the solution of the problem

[(s) = M[f(s, 1],
where

» [(s) is a parametrisation of time—dependent dislocation lines
» f is the Peach—K&hler force, f = (o - b) Al, with:

» o the stress at '(s),

» b the Burgers vector, and

> | = % the line direction.

» M is a mobility function, usually M[f] = af, or a(l — n® n)f.
Note:
» o is a nonlocal function of the dislocation configuration.

» Dislocation junctions are more complicated.

‘Questions: When is DDD valid, and what should M be?




Kinetic Monte Carlo models

» Hamiltonian H(p, q) = 3|p|*> + V(q).

Initial condition

» Temperature T, 3 := k;lel.
» Equilibrium density = Gibbs measure

Z(B) texp (—BV(q))dg.

Sample via ergodic dynamics, e.g. Descent into well

Change of state/_\

v

g=M"p
p=-VV(q)-yM 'p+ /2981 W

If 5> 1, g 'waits’ near local minima.

v

Eyring—Kramers rule:
Waiting times for transitions between
minima are exponentially distributed.



Kinetic Monte Carlo models

1. Define states u, v.
2. Fix neighbouring states V,,.

3. Eyring—Kramers rule: jump time from p to v exponentially
distributed [Hanggi—Talker—Borcovec ‘90, Berglund ‘13] with rate
R(p—v)=A(u — v)exp [ - BB(p— v)],

where
» A(p — v) is entropic prefactor &~ ‘width’ of the minimal pathway

» B(u — v) is energy barrier = ‘height’ of saddle between states.



Kinetic Monte Carlo models
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R(p—v)=A(u — v)exp [ - BB(p— v)],

where
» A(p — v) is entropic prefactor &~ ‘width’ of the minimal pathway

» B(u — v) is energy barrier = ‘height’ of saddle between states.

4. KMC model: Wait until first transition, move to new state, repeat. If
transition times are independent:

T ~ Vrg}i\l}ﬂ Exp[R(pn — v)] = ExpLg\; R — y)},
R(p— V')
ZI/ENN R(:u - V) '

and Plu— V] =



Toy model for screw dislocations

» Project along Burgers vector: C

~> lattice L in—plane.

v

Assume vertical movement of
‘columns’ only.

v

v

Anti—plane deformation:
y :nDpo — R.

Finite diff, dy(b) := y(e) — y(€').
Assume NN interaction.

\4

\4

Potential: (r) = I\ dist(r, Z)?

Total energy: E,( Z Y (dy(b))
bED,,l

Cylinder, cross—section Dpo =nDNL. p
dy(b)




Toy model for screw dislocations

Smallest ‘height’ difference:

a(b) = dy(b) mod 1 = dy(b) — z(b),
z(b) = argmin,cz|z — dy(b)| ®

Define Burgers vector of ‘cell’ C: )

> a(b) € {~1,0,+1}. dy(b)
beaC

~ ldentification of dislocations.

NB: Ambiguous if dy(b) € Z + 1
<> Change of dislocation position. ¢

True
distance

Theorem [H-Ortner ‘14, H-Ortner ‘15, H ‘16|
Under appropriate assumptions on the dislocation geometry, there exist
local minima of the energy E, containing dislocations.



Toy model for screw dislocations
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Toy model for screw dislocations

Transition p — v:




Toy model for screw dislocations

Final state v:




KMC model for screw dislocation motion

Recall: R = Ae PB. Can we say anything about the energy barriers?

Theorem [H '16]
There is an explicit formula for the energy barrier in terms of finite
differences of dual lattice Green's functions. Moreover, asymptotically,

Bo(u—v)=Ao+ntIN-a+o(n?)

where:
> (p is constant and depends only on the lattice, and

» f-ais the component of the Peach—Kahler force on the
dislocation moving in dual lattice direction a, where:

f=(c-b)Al

o = stress, b = Burgers vector, | = dislocation line direction.



KMC model for screw dislocation motion
Use explicit formula to prescribe rates

R(p — v) = AT exp [ — B(pn — v)],

Ag = fixed prefactor, 7T = time scaling, [ = inverse temperature.

beta=10t=0

150

100




Deterministic scaling regime

Consider regime where:
» Temperature is low, 3, > 1,
» Size of domain relative to lattice spacing is large ~> n>> 1, and

» System is observed over a long timescale relative to microscopic
times ~» multiply rates uniformly by 7, > 1.

» If A(p — v) = Ag + o(1) as 5, n — o0, a key quantity is

—BnAq _
T”R"(n“_“’) — 7—"“406” % exp ( — % f- a) + o(n 1).
=A =B

» ‘Macroscopic velocity'

» System behaviour governed by parameters A and B.



Deterministic scaling regime

» A=n1T, Age Frrc

» Apge P*% = hopping rate for 1 dislocation in full lattice (stress free).

» TrAge Prr% = microscopic hops in unit observed time.

» n~ 1T, Age Fr*% = proportion of macroscopic body covered in unit
observed time.



Deterministic scaling regime
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observed time.

» B= %n_lﬁn)\
» n~I\f-a = work done against macroscopic stress in one hop.
» [, = inverse of thermal energy available.

> %n’lﬁn)\ = ratio of microscopic energy barrier to thermal energy.



Deterministic scaling regime
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» ThAge Prr% = microscopic hops in unit observed time.

» n~ 1T, Age Fr*% = proportion of macroscopic body covered in unit
observed time.

» B= %n_lﬁn)\
» n~I\f-a = work done against macroscopic stress in one hop.
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> %n’lﬂn)\ = ratio of microscopic energy barrier to thermal energy.

» Taking n, B, T, — oo with A and B fixed, the random process satisfies
a Large Deviations Principle, i.e. trajectories concentrate around a
deterministic limit.



Deterministic scaling regime

Theorem [H '16]
If A and B are fixed as n — oo, the Markov processes X{' with rates
TaRn(p — v) the most probable trajectory of the system solves

)'<,' = ./\/l [—BXiS(xl, oo ,Xm)},
where M is the nonlinear mobility function
A% sinh(BE - e;)e; for the hexagonal lattice,
Mig] = A8 sinh(B¢ - aj)a; for the square lattice

AE sinh(B¢-a;)a;
2577 cosh (335 [a2i—1+a2i])

for the triangular lattice,

and e; and a; are nearest neighbour directions in the square and triangular
lattices respectively.

NB: —0,,E(x1,...,Xm) is the Peach—Kahler force on the dislocation at x;.



Deterministic scaling regime

Recall: DDD usually uses a linear mobility.

» Derived mobility is nonlinear, lattice—dependent:
~> New model with accompanying parameter regime

» New justification for DDD from microscopic model

Is linearisation ever justified?
» B — 0 and A — oo with AB = w constant recovers isotropic linear
mobility (FT—convergence: [Bonaschi-Peletier ‘14]).

» Corresponds to 8 < n:
~> LDP invalid: temperature ‘too high’ (but see later)

» What about in practice?



Deterministic scaling regime

beta = 1000, trials = 200

B = 1000, n = 200. Dots = 200 KMC trials.
Dashed line = linear dynamics, Solid line = nonlinear dynamics.



Other regimes

» Suppose probability density p, then Fokker—Planck equation is

plp) == > dp(p, V) TaRa(p = v)
VGN//,

= Z (—n'Vp-a+n2D?p:[a,a] + o(n ) TaRa(p — v).

v

Expand 7T,Rn(p — v):

ToRa(pt — v) = ToAoe P91 — B2F a4 o(n1)].

» Collecting terms, write f = —V & and use symmetry,
p= %Aoe’ﬁ)‘c‘J [ — %BAQVE -Vp+ czAp} + o(n7?).
» When 7, ~ n? as n — co ~» Brownian motion with drift VE.

v

Q: Should DDD be random in even moderate temperature regimes?



Conclusion

Summary:
» Statistical mechanical treatment of simple anti—plane model for
studying screw dislocations
» Markovian model proposed for thermally—driven dislocation motion
» Large Deviations Principle in low temperature, large body regime

~ explicit regime of validity and lattice—dependent mobility for
Discrete Dislocation Dynamics

Outlook:
» Moderate temperature regime, convergence of DDD schemes
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