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Crystalline solids

I Many everyday solid materials are crystalline
I Simplest structures are Bravais lattices (Iron, cubic structures)
I More generally, multilattices (Graphite, hexagonal lattice structure)

Body-Centred Cubic (BCC) Face-Centred Cubic (FCC)



Crystal plasticity

Crystal Plasticity = ‘slip’ of crystallographic planes.

http://www.doitpoms.ac.uk/tlplib/miller_indices/uses.php



Crystal plasticity
Orowan (1934), Polanyi (1934), Taylor (1934):

Slip occurs via motion of dislocations.



Dislocations
I Geometric lattice defects
I Assigned a Burgers vector, b, and line direction, l.
I Simplest types: screw (b ‖ l) and edge (b ⊥ l).



Computational modelling of crystal plasticity

Hierarchy of crystal plasticity models:

Electronic structure: True chemistry, ∼ 103 atoms

↓ Potentials for/coupling to: ↓

Molecular Dynamics: Statistical mechanics. ∼ 106 atoms, but longest
feasible trajectory length ∼ 10−6s

↓ Mobility + topological laws for: ↓

Discrete Dislocation Dynamics: Statistical mechanics: single
crystal/multiple grains, trajectory length ∼ 10−1s.

↓ Numerical constitutive laws for: ↓

Continuum crystal plasticity: human time– and length–scales.



Dislocation Dynamics

http://computation.llnl.gov/largevis/atoms/ductile-failure/



Dislocation Dynamics

http://paradis.stanford.edu/site/about



Dislocation Dynamics
Discrete Dislocation Dynamics (DDD) is the solution of the problem

Γ̇(s) =M[f (s, Γ)],

where
I Γ(s) is a parametrisation of time–dependent dislocation lines
I f is the Peach–Köhler force, f =

(
σ · b

)
∧ l, with:

I σ the stress at Γ(s),
I b the Burgers vector, and
I l = Γ′(s)

|Γ′(s)| the line direction.
I M is a mobility function, usuallyM[f ] = αf , or α(I− n ⊗ n)f .

Note:
I σ is a nonlocal function of the dislocation configuration.
I Dislocation junctions are more complicated.

Questions: When is DDD valid, and what shouldM be?



Kinetic Monte Carlo models
I Hamiltonian H(p, q) = 1

2 |p|
2 + V (q).

I Temperature T , β := k−1
B T−1.

I Equilibrium density = Gibbs measure

Z (β)−1 exp
(
− βV (q)

)
dq.

I Sample via ergodic dynamics, e.g.

q̇ = M−1p

ṗ = −∇V (q)−γM−1p +
√
2γβ−1 Ẇ

I If β � 1, q ‘waits’ near local minima.

Eyring–Kramers rule:
Waiting times for transitions between
minima are exponentially distributed.



Kinetic Monte Carlo models

1. Define states µ, ν.

2. Fix neighbouring states Nµ.

3. Eyring–Kramers rule: jump time from µ to ν exponentially
distributed [Hänggi–Talker–Borcovec ‘90, Berglund ‘13] with rate

R(µ→ ν) = A(µ→ ν) exp
[
− β B(µ→ ν)

]
,

where
I A(µ→ ν) is entropic prefactor ≈ ‘width’ of the minimal pathway
I B(µ→ ν) is energy barrier = ‘height’ of saddle between states.

4. KMC model: Wait until first transition, move to new state, repeat. If
transition times are independent:

τ ∼ min
ν∈Nµ

Exp
[
R(µ→ ν)

]
= Exp

[ ∑
ν∈Nµ

R(µ→ ν)
]
,

and P[µ→ ν ′] = R(µ→ ν ′)∑
ν∈Nµ R(µ→ ν) .



Kinetic Monte Carlo models

1. Define states µ, ν.

2. Fix neighbouring states Nµ.

3. Eyring–Kramers rule: jump time from µ to ν exponentially
distributed [Hänggi–Talker–Borcovec ‘90, Berglund ‘13] with rate

R(µ→ ν) = A(µ→ ν) exp
[
− β B(µ→ ν)

]
,

where
I A(µ→ ν) is entropic prefactor ≈ ‘width’ of the minimal pathway
I B(µ→ ν) is energy barrier = ‘height’ of saddle between states.

4. KMC model: Wait until first transition, move to new state, repeat. If
transition times are independent:

τ ∼ min
ν∈Nµ

Exp
[
R(µ→ ν)

]
= Exp

[ ∑
ν∈Nµ

R(µ→ ν)
]
,

and P[µ→ ν ′] = R(µ→ ν ′)∑
ν∈Nµ R(µ→ ν) .



Toy model for screw dislocations

I Project along Burgers vector:
 lattice L in–plane.

I Cylinder, cross–section Dn,0 = nD ∩ L.

I Assume vertical movement of
‘columns’ only.

I Anti–plane deformation:
y : nDn,0 → R.

I Finite diff, dy(b) := y(e)− y(e′).
I Assume NN interaction.

Potential: ψ(r) = 1
2λ dist(r ,Z)2

Total energy: En(y) =
∑

b∈Dn,1

ψ
(
dy(b)

)
−1 −0.5 0 0.5 1

ψ(r ) = ψ l i n(r ) = 1
2λdist(r, Z) 2

ψ(r ) = c s in2(π r)



Toy model for screw dislocations

Smallest ‘height’ difference:
α(b) = dy(b) mod 1 = dy(b)− z(b),

z(b) = argminz∈Z|z − dy(b)|

Define Burgers vector of ‘cell’ C :∑
b∈∂C

α(b) ∈ {−1, 0,+1}.

 Identification of dislocations.

NB: Ambiguous if dy(b) ∈ Z + 1
2

↔ Change of dislocation position.

Theorem [H–Ortner ‘14, H–Ortner ‘15, H ‘16]
Under appropriate assumptions on the dislocation geometry, there exist
local minima of the energy En containing dislocations.



Toy model for screw dislocations

Initial state µ:



Toy model for screw dislocations

Transition µ→ ν:



Toy model for screw dislocations

Final state ν:



KMC model for screw dislocation motion
Recall: R = Ae−βB. Can we say anything about the energy barriers?

Theorem [H ‘16]
There is an explicit formula for the energy barrier in terms of finite
differences of dual lattice Green’s functions. Moreover, asymptotically,

Bn(µ→ ν) = λc0 + n−1 1
2λf · a + o(n−1)

where:
I c0 is constant and depends only on the lattice, and
I f · a is the component of the Peach–Köhler force on the

dislocation moving in dual lattice direction a, where:
f = (σ · b) ∧ l,

σ = stress, b = Burgers vector, l = dislocation line direction.



KMC model for screw dislocation motion
Use explicit formula to prescribe rates

R(µ→ ν) = A0T exp
[
− βB(µ→ ν)

]
,

A0 = fixed prefactor, T = time scaling, β = inverse temperature.

0 50 100 150 200
0

50

100

150

200

beta = 10 t = 0



Deterministic scaling regime

Consider regime where:
I Temperature is low, βn � 1,
I Size of domain relative to lattice spacing is large  n� 1, and
I System is observed over a long timescale relative to microscopic

times  multiply rates uniformly by Tn � 1.

I If A(µ→ ν) = A0 + o(1) as β, n→∞, a key quantity is

TnRn(µ→ν)
n = TnA0e−βnλc0

n︸ ︷︷ ︸
=:A

exp
(
− βnλ

2n︸︷︷︸
=:B

f · a
)

+ o(n−1).

I ‘Macroscopic velocity’
I System behaviour governed by parameters A and B.



Deterministic scaling regime

I A = n−1TnA0e−βnλc0

I A0e−βnλc0 = hopping rate for 1 dislocation in full lattice (stress free).
I TnA0e−βnλc0 = microscopic hops in unit observed time.
I n−1TnA0e−βnλc0 = proportion of macroscopic body covered in unit

observed time.

I B = 1
2n−1βnλ

I n−1λf · a = work done against macroscopic stress in one hop.
I βn = inverse of thermal energy available.
I 1

2 n−1βnλ = ratio of microscopic energy barrier to thermal energy.

I Taking n, β, Tn →∞ with A and B fixed, the random process satisfies
a Large Deviations Principle, i.e. trajectories concentrate around a
deterministic limit.
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Deterministic scaling regime

Theorem [H ‘16]
If A and B are fixed as n → ∞, the Markov processes Xn

t with rates
TnRn(µ→ ν) the most probable trajectory of the system solves

ẋi =M
[
−∂xiE(x1, . . . , xm)

]
,

whereM is the nonlinear mobility function

M[ξ] =



A
∑4

i=1 sinh(Bξ · ei )ei for the hexagonal lattice,

A
∑6

i=1 sinh(Bξ · ai )ai for the square lattice
A
∑6

i=1 sinh(Bξ·ai )ai

2
∑3

i=1 cosh
(

1
3 Bξ·[a2i−1+a2i ]

) for the triangular lattice,

and ei and ai are nearest neighbour directions in the square and triangular
lattices respectively.

NB: −∂xiE(x1, . . . , xm) is the Peach–Köhler force on the dislocation at xi .



Deterministic scaling regime

Recall: DDD usually uses a linear mobility.
I Derived mobility is nonlinear, lattice–dependent:

 New model with accompanying parameter regime
I New justification for DDD from microscopic model

Is linearisation ever justified?
I B → 0 and A→∞ with AB = ω constant recovers isotropic linear

mobility (Γ–convergence: [Bonaschi-Peletier ‘14]).
I Corresponds to β � n:

 LDP invalid: temperature ‘too high’ (but see later)
I What about in practice?



Deterministic scaling regime
beta = 1000, trials = 200

β = 1000, n = 200. Dots = 200 KMC trials.
Dashed line = linear dynamics, Solid line = nonlinear dynamics.



Other regimes

I Suppose probability density ρ, then Fokker–Planck equation is

ρ̇(µ) = −
∑
ν∈Nµ

dρ(µ, ν)TnRn(µ→ ν)

=
∑

a

(
− n−1∇ρ · a + n−2D2ρ : [a, a] + o(n−2)

)
TnRn(µ→ ν).

I Expand TnRn(µ→ ν):

TnRn(µ→ ν) = TnA0e−βλc0
[
1− βλ

2n f · a + o(n−1)
]
.

I Collecting terms, write f = −∇E and use symmetry,

ρ̇ = Tn
n2A0e−βλc0

[
− 1

2βλc1∇E · ∇ρ+ c2∆ρ
]

+ o(n−2).

I When Tn ∼ n2 as n→∞  Brownian motion with drift ∇E .
I Q: Should DDD be random in even moderate temperature regimes?



Conclusion
Summary:
I Statistical mechanical treatment of simple anti–plane model for

studying screw dislocations
I Markovian model proposed for thermally–driven dislocation motion
I Large Deviations Principle in low temperature, large body regime
 explicit regime of validity and lattice–dependent mobility for
Discrete Dislocation Dynamics

Outlook:
I Moderate temperature regime, convergence of DDD schemes
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