Stochastic effects in mesoscale materials simulations

Steve Fitzgerald

s.p.fitzgerald@leeds.ac.uk

Department of Applied Mathematics
Diffusion: fluctuation and dissipation

- Nuclear applications require high operating temperatures
- Irradiation drives systems away from equilibrium
- Stochastic effects govern microstructural evolution
- Dislocation motion, atomic migration is *overdamped*
- Diffusion-type behaviour
 - Mathematically, this means one time derivative, not two
- Can’t have dissipation without fluctuations *(Einstein)*
Stochastic effects, elastic forces

Movie courtesy Prof K Arakawa, Shimane University, irradiated Fe at 400C
Stochastic effects, elastic forces

W irradiated to 1.5dpa, 500°C, 2MeV W+. 1 hour anneals
F Ferroni, P Edmondson, SPF et al Acta Mat 2014
Clustering in irradiated W-Re-Os

"Solute" migration mediated by vacancies and interstitials, hence enhanced by irradiation

Strongly dependent on temperature, dose

Xu et al, Acta Mat 2015
Clustering in irradiated W-Re-Os

“Solute” migration mediated by vacancies and interstitials, hence enhanced by irradiation.

Strongly dependent on temperature, dose.

Xu et al, Acta Mat 2015
Modelling paradigms

Atomic coordinates

- DFT* – hundreds of atoms, no free parameters, ps, 0K
- MD – millions of atoms, potential dependent, ns, finite temp.
- kMC – large length and time scales, dependent on rates (need all a priori)

Collective coordinates (far fewer)

- DDD – microns, milliseconds, need local rules to deal with interactions
- Langevin dynamics – large length and timescales, need phenomenological models, no rates or rare event assumptions

Mean field (densities and concentrations)

- Phase field – specify system by a few phase/conc. variables, evolve according to Cahn-Hilliard/Allen-Cahn equations

*DFT uses a density field for the electrons
This talk

- Collective coordinates
 » defects, not atoms

- Crowdions in transition metals and alloys
 » upscaling the mechanics of defects

- Langevin dynamics and diffusion
 » a new paradigm for stochastic simulations

- Discrete dislocation dynamics
 » adding fluctuations to the dissipation
 » damage in thin films and microcantilevers
 » nonlinear velocity response
Returning to the dimensional units, we find that the field of atomic displacements in the string is described by the function

$$u(z, t) = \frac{2a_p \arctan \exp!}{c\left(\frac{1}{C_0 V^2} - \frac{1}{c^2}\right)} \frac{z_0}{C_0 (V + Vt)}$$

This solution shows that the field of atomic displacements in the string has the form of a kink (a crowdion) localized near the point $z = z_0 + Vt$. The dimensionless width of the crowdion (using units of the equilibrium distance a between atoms in the string) is determined by the ratio $N = c!/0a$. The approximation of slowly varying atomic displacements adopted in the derivation of equation (5) is justified in the limit $N << 1$. At the same time, comparisons given in figures 3 and 4 show that fields of atomic displacements evaluated using molecular dynamics for crowdion defects in several bcc metals can be very well approximated by the solution (12) even in the limit $N << 1$ (a possible origin of this unexpectedly high accuracy of the FK model is discussed below).

The total energy of the defect is given by the integral of the density of energy associated with the deformed string

$$E = \frac{1}{2} \int a m^2 u_o t^2 C_{18/C_{19}} + a^2 C_{1^11/C_{1^12}} + m!^2 0a^2 \sin^2 p u_a C_{16/C_{17}}. \#$$

Figure 2. Atomic structure of the $\langle 111 \rangle$ crowdion in the bcc lattice. The equilibrium atomic structure shown in this figure was found by performing a total energy minimization for an ensemble of atoms interacting via the Finnis–Sinclair-type many-body interatomic potential parametrized by Ackland et al. (1997). Atoms shown in darker colour form the crowdion defect.

Example: $<111>$ crowdions in bcc metals

S. L. Dudarev, Phil. Mag. 2008

crowdion shown in red
not just one atom!

CSC Seminar, Warwick, November 2016
Returning to the dimensional units, we find that the field of atomic displacements in the string is described by the function

$$u(z, t) = \frac{2a}{\pi} \arctan \exp \left(\frac{c0}{\frac{1}{c0} V^2} \right)^{\frac{1}{2}} \left(\frac{z0}{c0} + Vt \right)$$

This solution shows that the field of atomic displacements in the string has the form of a kink (a crowdion) localized near the point $$z = z_0 + Vt$$. The dimensionless width of the crowdion (using units of the equilibrium distance $$a$$ between atoms in the string) is determined by the ratio $$N = c/c_0 a$$. The approximation of slowly varying atomic displacements adopted in the derivation of equation (5) is justified in the limit $$N \ll 1$$. At the same time, comparisons given in figures 3 and 4 show that fields of atomic displacements evaluated using molecular dynamics for crowdion defects in several bcc metals can be very well approximated by the solution (12) even in the limit $$N \ll 1$$ (a possible origin of this unexpectedly high accuracy of the FK model is discussed below).

The total energy of the defect is given by the integral of the density of energy associated with the deformed string

$$E = \int a m^2 o u o t / c_{18}/c_{19}^2 + a^2 / c_{11}^2 + m!^2 / c_{18}/c_{19}^2$$

$$\#$$

Example: <111> crowdions in bcc metals

S. L. Dudarev, Phil. Mag. 2008

crowdion shown in red not just one atom!
Returning to the dimensional units, we find that the field of atomic displacements in the string is described by the function

\[u(z, t) = \frac{a}{\pi} \arctan \exp \left(\frac{c (z - z_0)}{Vt} \right) \frac{1}{2} \left(\frac{z_0}{c_0} + Vt \right) \]

This solution shows that the field of atomic displacements in the string has the form of a kink (a crowdion) localized near the point \(z = z_0 + Vt \). The dimensionless width of the crowdion (using units of the equilibrium distance \(a \) between atoms in the string) is determined by the ratio \(N = \frac{c_0}{a} \).

The total energy of the defect is given by the integral of the density of energy

\[
E = \frac{1}{2} a m_0 u_0^2 + \frac{1}{2} a^2 \rho^2 \sin^2 \theta
\]

The total of interstitial defects in a crystalline material

\[
\text{Integrate out atoms}
\]

Treat defect as fundamental object – point in this case

Example: <111> crowdions in bcc metals

S. L. Dudarev, Phil. Mag. 2008
Example: Dislocations

Integrate out atoms
Treat defect as fundamental object – line in this case
Defect equations of motion

\[m \ddot{x} = -\nabla V(x) \]

- Newton’s second law
- Need a *phenomenological model* to assign effective mass and coupling to effective potential
- Deterministic
- No dissipation
Defect equations of motion

\[mx'' + \gamma x' = -\nabla V(x) + \eta(t) \]

- Add friction and noise, neglect inertia
- (assume particle reaches terminal velocity very fast)
- Sidesteps effective mass issue
Fluctuation – dissipation theorem

\[\gamma D = k_B T \]

\[D = \frac{k_B T}{\gamma} \]

\[\langle v(t)v(t') \rangle = 2D\delta(t - t') \]

Thermal velocity autocorrelation function – assume uncorrelated “white noise”. This is the “D” in diffusion/Fokker-Planck equation:

\[\dot{\rho} = (\gamma^{-1} (-\nabla V \rho) + D \rho_x)_x \]

- Relates damping, fluctuations and temperature
- At low temperature and high damping, fluctuations are small
- Not so at high T…

CSC Seminar, Warwick, November 2016
Langevin dynamics

- Directly integrate stochastic equation of motion for $x(t)$

$$\gamma \dot{x} = -\nabla V(x) + \eta(t)$$

- Includes random force drawn from suitable distribution each timestep
- cf Ginzburg-Landau approach
 - Also cf Allen-Cahn
- Dynamics is a gradient flow (plus noise), no inertia
- Quasi-off lattice method

See eg Swinburne et al PRB 2013, Dudarev et al PRB 2010
Frenkel-Kontorova model for crowdions

- Few parameters (lattice spacing a, spring constant β, height of sine potential V_0, mass of atoms m)

- Lagrangian for displacement of n^{th} atom $u_n(t)$:

$$\mathcal{L} = \sum_{n=-\infty}^{\infty} \left(\frac{m\dot{u}_n^2}{2} - \frac{\beta}{2} (u_{n+1} - u_n)^2 - V_0 \sin^2 \left(\frac{\pi u}{a} \right) \right)$$

- Equation of motion (in continuum limit β term becomes a derivative, $u_n(t) \rightarrow u(z, t)$):

$$m\ddot{u}(z, t) - \beta a^2 u(z, t)'' = V_0 \sin \left(2\pi u(z, t)/a \right)$$ \text{sine-Gordon equation}

- Kink solution:

$$u = \frac{2}{\pi} \arctan \left(\exp \left[-\mu(z - Vt - z_0) \right] \right)$$

$$\mu^2 = \frac{2V_0\pi^2}{\beta a^4}$$
Displacement field “kink” solution (schematic, not to scale)

\[\tan^{-1}(e^{-z}) \]
DFT calculation of V_0 for tungsten

- Not sinusoidal
- Clear local minimum
- Sine approximation can be viewed as first term in Fourier series of true potential
- Can we do better?
DFT calculation of V_0 for tungsten

- Yes!
- 2 parameter fit very accurate
- Captures local minimum
- Can still get an analytical form for the displacement field:

$$V_0 = \mu^2 \left(\sin^2 \frac{\pi Z}{a} + \lambda \sin^2 \frac{2\pi Z}{a} \right)$$

$$u = \frac{a}{\pi} \tan^{-1} \left(\frac{\alpha}{\sinh(\mu a(z - z_0))} \right)$$

Solution first found by Frank and van der Merwe for dislocations
Clear group-specific trend – “double-hump” most pronounced in Group VI metals

SPF and Nguyen Manh PRL 2008
Migration barriers

- *Lattice* potential ~ few eV

- What about *defect migration potential*? Much lower

- Soliton solution *locally* partitions energy equally between string and substrate

- So can write energy in discrete form as:

\[
E = \int_{-\infty}^{\infty} \left[\frac{\beta}{2} \left(\frac{\partial u}{\partial z} \right)^2 + V(u) \right] \, dz \longrightarrow 2 \sum_{n=-\infty}^{\infty} V(u_n)
\]

\[
u_n = u(z_n) = u(na - z_0)
\]

Crowdion centre of mass

collective coordinate

Energy no longer indpt of \(z_0\)
Migration potential – *Peierls potential*

- Can calculate Fourier series for defect migration potential

\[E_0 \text{ is ctm energy} \]

\[E(z_0) = E_0 + \sum_{j=1}^{\infty} l_j \cos \left(\frac{2\pi j z_0}{a} \right) \]

\[l_j = \frac{2V_0 \alpha \pi}{\mu a} \text{cosech} \left(\frac{\xi \pi}{2} \right) \]

\[\times \left\{ \xi \cos \left(\frac{\xi}{4} \ln \frac{q_+}{q_-} \right) - \frac{1}{\alpha \sqrt{\alpha^2 - 1}} \sin \left(\frac{\xi}{4} \ln \frac{q_+}{q_-} \right) \right\} \]

\[\xi = \frac{2\pi j}{\alpha \mu a}, \quad q_{\pm} = 1 - 2\alpha^2 \pm 2\alpha \sqrt{\alpha^2 - 1} \]

- Note considerable simplification for single-sine case \((\alpha = 1)\)
All barriers small, group 5B \textit{VERY} small
\(<\text{ DFT errorbar for supercell calculation of } E_B\) &
V (group 5) shifted half period w.r.t. W (group 6)
Migration temperatures

<table>
<thead>
<tr>
<th>Metal</th>
<th>Group</th>
<th>(T_M) (K)</th>
<th>(E_B/k_B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>5B</td>
<td><6</td>
<td>~8</td>
</tr>
<tr>
<td>Nb</td>
<td>5B</td>
<td><6</td>
<td>~0</td>
</tr>
<tr>
<td>Ta</td>
<td>5B</td>
<td><6</td>
<td>~0</td>
</tr>
<tr>
<td>Cr</td>
<td>6B</td>
<td>~40</td>
<td>~100</td>
</tr>
<tr>
<td>Mo</td>
<td>6B</td>
<td>35</td>
<td>~30</td>
</tr>
<tr>
<td>W</td>
<td>6B</td>
<td>27</td>
<td>~30</td>
</tr>
</tbody>
</table>

Ehrhart et al in Landolt-Bornstein 1991 (resistivity recovery)

SPF and Nguyen-Manh, PRL 2008
Diffusion coefficients

- Generally (eg. for kMC rates) Arrhenius-type law is used

\[D = D_0 e^{-E_{\text{barrier}}/k_B T} \]

- Assumes \(E > kT \) – “rare event escapes”

- For crowdions at all but the very lowest temperatures this isn’t true

- Lifson-Jackson formula for diffusion in a periodic potential:

\[D \propto \frac{k_B T}{\left(\int e^{-V/k_B T} \, dx \right) \left(\int e^{+V/k_B T} \, dx \right)} \]

- Reduces to Arrhenius when \(E >> kT \)

- See Swinburne at el, PRB 2013, Risken, “The Fokker-Planck Equation”
Effect for small barriers

Lifson-Jackson

Linear

Saturating

Arrhenius

Diffusion coeff.

$\frac{2}{k_BT/E_{\text{barrier}}}$

<table>
<thead>
<tr>
<th>Metal</th>
<th>Group</th>
<th>T_M (K)</th>
<th>E_B/k_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>5B</td>
<td><6</td>
<td>~8</td>
</tr>
<tr>
<td>Nb</td>
<td>5B</td>
<td><6</td>
<td>~0</td>
</tr>
<tr>
<td>Ta</td>
<td>5B</td>
<td><6</td>
<td>~0</td>
</tr>
<tr>
<td>Cr</td>
<td>6B</td>
<td>~40</td>
<td>~100</td>
</tr>
<tr>
<td>Mo</td>
<td>6B</td>
<td>35</td>
<td>~30</td>
</tr>
<tr>
<td>W</td>
<td>6B</td>
<td>27</td>
<td>~30</td>
</tr>
</tbody>
</table>

Ehrhart et al in Landolt-Bornstein 1991 (resistivity recovery)

Swinburne at el, PRB 2013
Crowdion pair potential (W)

- Slight barrier to overcome, but once in the well it will stay there
- "Ostwald ripening" for loops is difficult
 - small loops may be absorbed by larger ones, but they won’t shrink much by emitting interstitials

\[V(x) = \frac{2V_0}{3\mu} \tanh \left(\frac{\mu x}{2} \right) \left(\frac{\mu x}{2} \right) + \tanh \left(\frac{\mu x}{2} \right) - \frac{2V_0}{3\mu} \]

*assumes const \(\mu \)

** Marinica et al JPCM 2013
Solutes

- Can generalize Frenkel-Kontorova model by changing one of the atoms in the string
 - change its mass, spring constant, coupling to the periodic potential

- Can derive an analytic potential

- For coupling/spring constant impurity, i.e. similar mass (Re,Ta in W for example)

\[V(x) = \Delta V_0 \text{sech}^2 \mu x \]

- \(\Delta V_0 \) is the difference in the coupling/spring constant (they add)

- Mass impurity is (much) more complicated – future work

Braun and Kivshar, PRB 1991
Crowdion dynamics in the FK model

- Few parameters:
 - lattice spacing a
 - spring constant β
 - height of sine potential V_0
 - mass of atoms m
 - solute potential ΔV_0

$$\mu^2 = \frac{2V_0 \pi^2}{\beta a^4}$$

$$V(x) = \Delta V_0 \text{sech}^2 \mu x$$

ΔV_0 (<0 here)

Collective coordinates
Fits to (one-parameter, \(\mu \) fixed) analytic potential

\[
V(x) = \Delta V_0 \text{sech}^2 \mu x
\]

NB can be attractive or repulsive, inhibits clustering either way

Ta very good, Re less so

Likely to relate to the double hump lattice potential in W

Points from DFT, Muzyk et al PRB 2011
Toy simulations, “Ta in W at 1000K”
Toy simulations, “Ta in W at 1000K”

- SIA clustering into nascent loops
 - ○ crowdion
 - ○ solute

- Solute pinning

 - Simulations 10^6-7 times cheaper than MD
 - But: depends on accuracy of phenomenological model
DDD simulations

- PK force calculated on dislocation segments
- Resolved into glide and climb components
- Nodes moved according to *mobility function*, $v_{node} \propto F_{node}$

See eg Bulatov & Cai textbook, OUP 2006
Stochastic effects, elastic forces

W irradiated to 1.5dpa, 500°C, 2Mev W+. 1 hour anneals
F Ferroni, P Edmondson, SPF et al submitted 2014
Loop coalescence at 1000°C

- Damage loops coarsen and coalesce
- “Finger loops” form, lead to network dislocations
- Loops escape to foil surface
- Stochastic effects anneal out damage, need stochastic dynamics to quantify

F Ferroni, SPF et al submitted 2014; see also work of Jenkins, Yao, Kirk et al
Glide

- Motion confined to glide plane
- Relatively easy, bonds break and re-form
- Above very low temperatures and applied stresses, weakly dependent on temperature

Hirth and Lothe
Climb

Motion out of the glide plane (edge cpts only)

Requires diffusion of point defects to and around dislocation core

Strongly temperature dependent (via vacancy concentration and diffusivity)

Gao and Cocks
Fluctuations and dissipation for extended objects

- Dislocation drag/friction/dissipation well established
- Overdamped dynamics observed in TEM (see eg Caillard Acta 2010)
- Edge drag << screw drag << climb* drag
- Strong temperature dependence, esp climb
- What about fluctuations at high temperatures?
- What does the FDT look like?

*this is “mean field”, no resolution of individual vacancies
Stochastic DDD simulations

Figure 12: Examples of loop coalescence: (a)-(c) at 900°C, a cluster of loops; (d)-(g) at 1000°C, several loops forming a large irregular loop. (h)-(m) at 1000°C, five loops coalescing into an oblong finger loop.

F Ferroni, SPF
Stochastic DDD simulations

- Fast glide to form loop chains
- Slower climb & fluctuations form finger loop
- Finger loop then diffuses along glide prism

NB stochastic motion of loops also treated by Dudarev, Derlet et al JNM 2014
- Treated loops as interacting particles – collective coordinates again
- Captured chain formation but not coalescence

F Ferroni, SPF
DDD simulations of experiments

- TEM foils are thin
 - loop loss to surface due to image forces

- Microcantilever mech. prop. experiments
 - size effect, disl. starvation etc
 - large body of work on this

- Need to treat free surfaces
 - spectral method for thin films
 - need FEM for 3D geometry

F Ferroni, SPF et al

D Armstrong, S Roberts et al
- Thin films: can use spectral method for images (*Weinberger, Aubry, … Cai 2009*)

- Also need virtual segments to correctly model escape-to-surface

- Use GPU code to accelerate

- 50x speed-up

Ferroni, Tarleton, SPF, MSMSE 2014, J Comp Phys 2014
GPU acceleration

NVIDIA Titan Black ~£1000
Thin films, eg TEM foils: can use spectral method for images (Weinberger, Aubry, … Cai 2009); more complex geometries need FEM, see Ed’s talk

Also need virtual segments to correctly model escape-to-surface

- Use GPU code to accelerate
- >50x speed-up

Ferroni, Tarleton, SPF, MSMSE 2014, J Comp Phys 2014

Figure 1: Parallelism of the N^2 segment interactions (a), surface traction at k grid points (b) and image stress on N segments (c).
Figure 2: (A) Time taken for segment-segment force calculations using original DDLab code, a serial standalone C/C++ code, and the GPU CUDA code, for increasing number of segments, up to $\sim 1 \times 10^5$. (B) Speed-up of the GPU CUDA code compared to the CPU C++ code. Benchmarked on a NVIDIA K20.

4.2. Surface Traction

Figure 3: (A) Time taken for surface traction calculations using original DDLab code, a serial standalone C/C++ code, and the GPU CUDA code, for increasing number of grid points, up to $\sim 1 \times 10^6$. (B) Speed-up of the GPU CUDA code compared to the CPU C++ code. Benchmarked on a NVIDIA K20.

CSC Seminar, Warwick, November 2016

GPU acceleration

CUDA speed-up vs # of segments (seg-seg force calcs)

CUDA speed-up vs # of segments (image stress calcs)
Large Simulations

Start of simulation

End of simulation

(A)

(B)

(C)

(D)

(E)

(F)
Large Simulations
DDD simulations of experiments

3D geometries require FEM coupling (see also Tang, Marian, Arsenlis; Fivel et al)

Tarleton, Ferroni, SPF 2015

CSC Seminar, Warwick, November 2016
Nonlinear dislocation response

- Dislocation statics well-understood within elasticity theory
- Dynamics far less well understood
- Strongly nonlinear temperature and strain rate dependence

\[\text{At low } T, \ v \sim \sigma^{20-40}, \text{ at RT } v \sim \sigma^4 \]

Christian and Altschuler 1967
Turner and Veeland 1970

- Atomistic modelling restricted to short times and extremely high strain rates
- Discrete dislocation simulations have far greater scope, but require phenomenological input -- sometimes highly speculative, eg:

\[\text{velocity } = \mathbf{v} = B \cdot \sigma = \text{const. drag matrix } \otimes \text{ stress} \]
Dislocation velocities

- Dislocation velocities measured by slip band growth technique
- Iron single crystals
- NB: caution, log-log plot!

Figure 7. Velocity of edge dislocations in iron single crystals as a function of resolved shear stress for several temperatures.
MD simulations of dislocation motion

- Note nonlinearity at low stresses
- Most pronounced at lowest temperatures
- Linear results at higher stresses suggest kink nucleation no longer governing the motion

Gilbert, Queyreau, Marian PRB 2011
Kinks

- Dislocation motion appears overdamped
 - *in situ* straining experiments, dislocations stop immediately the stress is removed
- Dislocations move through “washboard” Peierls potential
- Generally accepted that this is mediated by nucleation and propagation of kinks*
- Tilt is the applied force

See e.g. Seeger and Schiller, Hirth and Lothe, Joos and Duesbery, many others since
Kinks

- Rate of kink pair nucleation and/or propagation controls dislocation’s velocity \textit{out of equilibrium}

- Sounds simple – but it isn’t.

- Experimental measurement difficult, extremely sensitive to impurities

- Guess: velocity $\sim \exp\left[-(H_{KP} - \sigma V)/kT \right]$
 - H_{KP} is the kink pair elastic energy, \sim few eV
 - σ is the applied stress
 - V is “activation volume” \sim few $|b|^3$
 - leads to temperature-dependent activation energy fits

- May work for high stresses, low temperatures, but not good for low stresses close to Peierls stress – creep, fracture

- Quantum effects can be important at low temperatures.

Fluctuation – dissipation theorem

\[\gamma D = k_B T \]

FDT

\[D = \frac{k_B T}{\gamma} \]

- Relates damping, fluctuations and temperature
- At low temperature and high damping, fluctuations are small
- Not so at high \(T \)…

Probability distribution for Gaussian white noise (other types of noise are available!). This is the “D” in diffusion/Fokker-Planck equation:

\[\mathcal{P}[\eta] \sim e^{-\frac{1}{4D} \int \eta^2 dt} \]

\[\frac{\partial \rho}{\partial t} = D \frac{\partial^2 \rho}{\partial x^2} \]
Stochastic equation of motion

- Start from the Frenkel-Kontorova model/sine-Gordon equation:

\[\mathcal{L} = \frac{1}{2} \phi_t^2 - \frac{1}{2} \beta \phi_x^2 - V_0 \sin^2 \pi \phi \]

\[\rho \phi_{tt} - \beta \phi_{xx} = -V_0 \pi \sin 2\pi \phi \]

- Leads to kink solutions:

\[\phi(x, t) = \frac{2}{\pi} \tan^{-1} \exp \mu (x - Vt) \]

- \(\mu \) is the inverse kink width \(\sim (\text{LH} / \text{RH} \text{ kinks}) \)

\[\pm \sqrt{2V_0 \pi^2 / \beta} \]
\[\Gamma \phi_t = \beta \phi_{xx} - V_0 \pi \sin 2\pi \phi - F + \xi(x, t) = -\frac{\delta \mathcal{H}}{\delta \phi} + \xi(x, t) \]

- Add friction, driving force, random force, neglect inertia (overdamped limit) gives *Langevin equation*

- \(H \) is the string Hamiltonian or energy:

\[
\mathcal{H}[\phi] = \int_{-\infty}^{\infty} \left(\frac{1}{2} \beta \phi_x^2 + V(\phi) \right) \, dx
\]

- Integral of elastic (first term) plus potential (second term)

\[
V(\phi) = V_0 \sin^2 \pi \phi - F \phi
\]
Simplest option for the noise is uncorrelated Gaussian white noise, with correlation function

\[\langle \xi(x, t)\xi(x', t') \rangle = 2D\delta(x - x')\delta(t - t') \]

and distribution

\[\mathcal{P}[\xi] \propto \exp\left(-\frac{1}{4D} \int \int \xi(x, t)^2 dx dt \right) \]

- \(D \) is the noise strength and \(D = \Gamma k_B T \) by the fluctuation-dissipation theorem
- Rearrange Langevin equation to

\[\Gamma \phi_t + \frac{\delta \mathcal{H}}{\delta \phi} = \xi(x, t) \]

- Substitute for \(\xi \) leads to …
\[\mathcal{P}[\phi] \propto \exp -\frac{1}{4D} \int \int \left(\Gamma \phi_t + \frac{\delta \mathcal{H}}{\delta \phi} \right)^2 \, dx \, dt \]

\[\equiv \exp -\frac{1}{4D} S[\phi] \]

- Distribution for \(\phi(x,t) \) ! (I have glossed over some details here)

- Rate of transition from metastable well to stable one given by:

\[\sum_{\text{paths } \phi_i} e^{-S[\phi_i]/4D} = \int \mathcal{D}\phi \exp -\int (\Gamma \phi_t - \beta \phi_{xx} + V'(\phi))^2 / 4D \]

- where the sum/integral is taken over all configurations \(\phi \) that satisfy the initial and final conditions
\[\int \mathcal{D}\phi \, e^{-\int (\Gamma \phi_t - \beta \phi_{xx} + V'(\phi))^2 / 4D} \]

- This object is possibly infinite, and is awkward to define rigorously.
- It is the stat. mech. analogue of the Feynman path integral for the quantum mech. matrix element.
- The integrand \(\left(\Gamma \phi_t + \frac{\delta \mathcal{H}}{\delta \phi} \right)^2 \) is the analogue of the Lagrangian.
- In the weak noise limit, the integral will be dominated by \(\phi \)s which satisfy the Euler-Lagrange equations:

\[
\left(\Gamma \partial_t + \beta \partial_x^2 - V''(\phi) \right) \left(\Gamma \phi_t - \beta \phi_{xx} + V'(\phi) \right) = 0
\]

\[
V(\phi) = V_0 \sin^2 \pi \phi - F \phi
\]
\[
(\Gamma \partial_t + \beta \partial_x^2 - V''(\phi)) (\Gamma \phi_t - \beta \phi_{xx} + V'(\phi)) = 0
\]

- Two solutions: \(\phi^- \) satisfying \(\Gamma \phi_t^- - \beta \phi_{xx}^- + V'(\phi^-) = 0 \)
- (noiseless equation of motion)
- \(\phi^+ \) satisfying \(\Gamma \phi_t^+ + \beta \phi_{xx}^+ - V'(\phi^+) = 0 \)
- Like the noiseless equation of motion, but with the potential flipped
- Motion *against the barrier* – controls the escape rate, and hence the kink pair nucleation rate.
- cf *instantons* in quantum field theory (*G t’Hooft, S Coleman, …*)

Bray et al, PRB 1990
- KP nucleation rate given by
- But what is ϕ^+? Do we need to solve that horrible equation to find it?
- Luckily no:

$$S^+ = \int dt \int dx \ (2\Gamma \phi_t^+)^2$$

$$= 4\Gamma \int dx \int_{\min}^{\text{saddle}} d\phi^+ \frac{\delta \mathcal{H}}{\delta \phi^+}$$

$$= 4\Gamma \left(\mathcal{H}[\phi_{\text{saddle}}^+] - \mathcal{H}[\phi_{\min}^+] \right).$$

- S^+ is the saddle point action, max energy configuration
- cf particle escaping from a well

$$\exp - \frac{S[\phi^+]}{4D}$$

At low F, it will be a well-separated kink pair, at high F it will be a small bump

Bray et al 1990
- For the saddle, need to find \(\varphi \) that maximizes

\[
\mathcal{H}[\varphi] = \int_{-\infty}^{\infty} \left(\frac{1}{2} \beta \phi_x^2 + V(\phi) \right) \, dx
\]

- Use Euler-Lagrange equations for \(H[\varphi] \)

\[
\beta \phi_{xx} = +V'(\phi); \quad \frac{1}{2} \beta \phi_x^2 = V(\phi); \quad \beta \phi_x = \pm \sqrt{2\beta V(\phi)}.
\]

- which lets us write

\[
\mathcal{H}^* = \int_{-\infty}^{\infty} \left(\frac{1}{2} \beta \phi_x^2 + V(\phi) \right) \, dx = \int_{-\infty}^{\infty} \beta \phi_x \frac{d\phi}{dx} \, dx
\]

\[
= 2 \int_{\phi_0}^{\phi_1} \sqrt{2\beta V(\phi)} \, d\phi.
\]
and finally velocity ~

\[\exp - \frac{S[\phi^+]}{4D} = \exp - \frac{\mathcal{H}^*}{k_B T} = \exp - \frac{2}{k_B T} \int_{\phi_0}^{\phi_1} \sqrt{2\beta V(\phi)} \, d\phi \]

Integrals taken between two zeros of \(V \); area under red curves

Exact as far as potential concerned, works for \(0 < F < \sigma_P \)

- \(F \) small
- \(F \) medium
- \(F \) large
- A simple formula velocity = fct. (stress) would be nice for eg implementation in DDD simulations.

- At small stresses, saddle configuration should be a well-separated kink pair:
 \[\phi = \frac{2}{\pi} \tan^{-1} e^{-\mu(x-R/2)} + \frac{2}{\pi} \tan^{-1} e^{\mu(x+R/2)} - 1 \]

- Insert this in \(H \), maximize over \(R \), gives
 \[H_{\text{KP}}^* = \sqrt{\frac{\beta V_0}{2\pi^2}} \left(8 - \mathcal{F} - \mathcal{F} \ln \left(\frac{16}{\mathcal{F}} \right) \right) \quad \mathcal{F} = F/V_0 \]

- This is where the wild nonlinearity comes from:
 \[\exp - \frac{H^*}{k_B T} \]

has no power series at small \(F \).
- Left: exact formula (red) and KP approximation (black dashed) fitted to H^* extracted from data for edge dislocation velocities in Fe \((\text{Turner and Vreeland 1970})\)
- Right: DFT-based calculation for some bcc metals of H^* \((\text{Dezerald et al 2015})\)

Dashed line: \[
\left(1 - \left(\frac{F}{V_0}\right)^0.5\right)^{1.25}
\]
Right: fit of
\[A \exp \left(-\frac{\mathcal{H}^*}{k_B T} \right) \]

to MD velocities (Gilbert et al 2011)

Screw dislocations in Fe

Power law isn’t appropriate – looks more like a threshold

Fe, 100K
Conclusions and acknowledgments

- Mesoscale modelling is crucial to bridge the gap in understanding between micro and macro
- Capabilities increasing all the time
- Plenty of room in the middle!

- Thanks to Francesco Ferroni, Ed Tarleton, Daniel Thompson, Dave Armstrong, Steve Roberts and the MFFP group at Oxford; Sergei Dudarev, Duc Nguyen Manh, Tom Swinburne at CCFE