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Diffusion: fluctuation and dissipation 

§  Nuclear applications require high operating temperatures 

§  Irradiation drives systems away from equilibrium 

§  Stochastic effects govern microstructural evolution 

§  Dislocation motion, atomic migration is overdamped 

§  Diffusion-type behaviour 

§  Mathematically, this means one time derivative, not two 

§  Can’t have dissipation without fluctuations   (Einstein) 
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Stochastic effects, elastic forces 
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Movie courtesy Prof K Arakawa, Shimane University, irradiated Fe at 400C 



Stochastic effects, elastic forces 
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    500°C           800°C           950°C           1100°C        1400°C 

W irradiated to 1.5dpa, 500°C, 2MeV W+. 1 hour anneals 
F Ferroni, P Edmondson, SPF et al Acta Mat 2014 



Clustering in irradiated W-Re-Os 
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“Solute” migration 
mediated by vacancies 
and interstitials, hence 
enhanced by irradiation 

Xu et al, Acta Mat 2015 

Strongly dependent 
on temperature, 
dose 
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Modelling paradigms 

§  DFT* – hundreds of atoms, no free parameters, ps, 0K 
§  MD – millions of atoms, potential dependent, ns, finite temp.  
§  kMC – large length and time scales, dependent on rates (need 

all a priori) 
 
 
§  DDD – microns, milliseconds, need local rules to deal with 

interactions 
§  Langevin dynamics – large length and timescales, need 

phenomenological models, no rates or rare event assumptions 

§  Phase field – specify system by a few phase/conc. variables, 
evolve according to Cahn-Hilliard/Allen-Cahn equations  
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Atomic coordinates 

Collective coordinates (far fewer) 

Mean field (densities and concentrations) 

*DFT uses a density field for the electrons 



This talk 
§  Collective coordinates  

» defects, not atoms 

§  Crowdions in transition metals and alloys  
» upscaling the mechanics of defects 

§  Langevin dynamics and diffusion 
» a new paradigm for stochastic simulations 

 
§  Discrete dislocation dynamics 

» adding fluctuations to the dissipation 
» damage in thin films and microcantilevers 
» nonlinear velocity reponse 
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Returning to the dimensional units, we find that the field of atomic displacements in
the string is described by the function

uðz, tÞ ¼ 2a

p
arctan exp

!0

cð1$ V2=c2Þ1=2
ðz0 $ zþ VtÞ

! "# $
: ð12Þ

This solution shows that the field of atomic displacements in the string has the form
of a kink (a crowdion) localized near the point z ¼ z0 þ Vt. The dimensionless width
of the crowdion (using units of the equilibrium distance a between atoms in the
string) is determined by the ratio N ¼ c=!0a. The approximation of slowly varying
atomic displacements adopted in the derivation of equation (5) is justified in the limit
N & 1. At the same time, comparisons given in figures 3 and 4 show that fields of
atomic displacements evaluated using molecular dynamics for crowdion defects in
several bcc metals can be very well approximated by the solution (12) even in the
limit N ' 1 (a possible origin of this unexpectedly high accuracy of the FK model is
discussed below).

The total energy of the defect is given by the integral of the density of energy
associated with the deformed string
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Coherent motion of interstitial defects in a crystalline material 3581

Figure 2. Atomic structure of the h111i crowdion in the bcc lattice. The equilibrium atomic
structure shown in this figure was found by performing a total energy minimization for
an ensemble of atoms interacting via the Finnis–Sinclair-type many-body interatomic
potential parametrized by Ackland et al. (1997). Atoms shown in darker colour form
the crowdion defect.
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crowdion shown in red 
not just one atom! 

Example:              <111> crowdions in bcc metals 

S. L. Dudarev, Phil. Mag. 2008 
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Integrate out atoms 

S. L. Dudarev, Phil. Mag. 2008 

Treat defect as fundamental object – point in this case 

Example:              <111> crowdions in bcc metals 
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Example:       Dislocations 

T T T 

Integrate out atoms 
Treat defect as fundamental object – line in this case 



Defect equations of motion 

§  Newton’s second law 

§  Need a phenomenological model  to assign effective mass and coupling to 
effective potential 

§  Deterministic 
§  No dissipation 
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November 2016 

mẍ = ��V (x)

inertia potential gradient 



§  Add friction and noise, neglect inertia 

§  (assume particle reaches terminal velocity very fast) 

§  Sidesteps effective mass issue 
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Defect equations of motion 

mẍ + �ẋ = ��V (x) + �(t)

inertia potential gradient friction 

noise 



Fluctuation – dissipation theorem 

§  Relates damping, fluctuations and temperature 

§  At low temperature and high damping, fluctuations are small 
 
§  Not so at high T… 
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�D = kBT
�v(t)v(t �)� = 2D�(t � t �)

D =
kBT

�

Thermal velocity autocorrelation function – 
assume uncorrelated “white noise”. This is 
the “D” in diffusion/Fokker-Planck equation: 

FDT 

�̇ =
�
��1 (��V �) +D�x

�
x



Langevin dynamics 
§  Directly integrate stochastic equation of motion for x(t) 

§  Includes random force drawn from suitable distribution each 
timestep 

§  cf Ginzburg-Landau approach 
§  Also cf Allen-Cahn 

§  Dynamics is a gradient flow (plus noise), no inertia 

§  Quasi-off lattice method 

�
�q

�t
= �

�E

�q
+ �
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See eg Swinburne et al PRB 2013, Dudarev et al PRB 2010  

�ẋ = ��V (x) + �(t)



Frenkel-Kontorova model for crowdions 
§  Few parameters (lattice spacing a, spring constant β, height of 

sine potential V0, mass of atoms m) 

§  Lagrangian for displacement of nth atom un(t) : 

 

§  Equation of motion (in continuum limit β term becomes a 
derivative,                            ):  

§  Kink solution:  
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sine-Gordon 
equation 

L =
��

n=��

�
mu̇2n
2
�
�

2
(un+1 � un)

2 � V0 sin
2 �u

a

�

un(t) �� u(z, t)

mü(z, t)� �a2u(z, t)�� = V0 sin (2�u(z, t)/a)

The logo
This is the new UKAEA logo, which
should be used on all UKAEA
documentation. Use it consistently, 
and don’t alter it or separate the crest
from the logotype. 

Negative logo

UKAEA Brand Guidelines

Single-colour version
The logo is available in high resolution
black and white, which should be 
used for all black and white printed
applications – for example, newspapers
and other external publications.

Positive logo

CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority

• Originally used to model dislocation core

• Now applied to diverse fields, e.g. polymer 
physics, DNA dynamics, ...

• Basic idea: 1D chain of atoms connected by 
harmonic springs, periodic substrate 
potential

The Frenkel-Kontorova Model

Sunday, 21 August 2011

u =
2

�
arctan (exp [�µ(z � V t � z0)]) µ2 =

2V0�2

�a4
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Displacement field “kink” solution
(Schematic, not to scale)
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DFT calculation of V0 for tungsten 

§  Not sinusoidal 

§  Clear local minimum 

§  Sine approximation can 
be viewed as first term in 
Fourier series of true 
potential 

§  Can we do better? 

CSC Seminar, Warwick, 
November 2016 



DFT calculation of V0 for tungsten 

§  Yes!  

§  2 parameter fit very 
accurate 

§  Captures local minimum 

§  Can still get an analytical 
form for the displacement 
field: 

Solution first found by Frank and 
van der Merwe for dislocations 

V0 = µ2

�
sin2

�z

a
+ � sin2

2�z

a

�

u =
a

�
tan�1

�
�

sinh(µa(z � z0))

�
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Clear group-specific trend – “double-hump” most 
pronounced in Group VI metals 

SPF and Nguyen Manh PRL 2008 
CSC Seminar, Warwick, 
November 2016 



Migration barriers 
§  Lattice potential ~ few eV 

§  What about defect migration potential? Much lower 

§  Soliton solution locally partitions energy equally between string 
and substrate 

§  So can write energy in discrete form as: 

Crowdion centre of mass 

Energy no longer indpt of z0 

E =

� �

��

�
�

2

�
�u

�z

�2

+ V (u)

�

dz �� 2
��

n=��
V (un)

un = u(zn) = u(na � z0)
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collective coordinate 



Migration potential – Peierls potential 

§  Can calculate Fourier series for defect migration potential 

§  Note considerable simplification for single-sine case (α = 1) 

E0 is ctm energy E(z0) = E0 +
��

j=1

Ij cos

�
2�jz0

a

�

�
�
� cos

�
�

4
ln
q+
q�

�
�

1

�
�
�2 � 1

sin

�
�

4
ln
q+
q�

��
Ij =

2V0��

µa
cosech

�
��

2

�

q± = 1� 2�2 ± 2�
�
�2 � 1� = 2�j/�µa,
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V W Nb 
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Migration temperatures 
Metal Group TM (K) EB/kB 

V 5B <6 ~8 

Nb 5B <6 ~0 

Ta 5B <6 ~0 

Cr 6B ~40 ~100 

Mo 6B 35 ~30 

W 6B 27 ~30 

Ehrhart et al in Landolt-Bornstein 1991 (resistivity recovery) 

SPF and Nguyen-Manh, 
PRL 2008 
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Diffusion coefficients 
§  Generally (eg. for kMC rates) Arrhenius-type law is used 

§  Assumes E > kT – “rare event escapes” 

§  For crowdions at all but the very lowest temperatures this isn’t true 

§  Lifson-Jackson formula for diffusion in a periodic potential: 

§  Reduces to Arrhenius when  E >> kT 

§  See Swinburne at el, PRB 2013, Risken, “The Fokker-Planck Equation”  

D = D0e
�Ebarrier/kBT

D �
kBT��

e�V/kBT dx
� ��

e+V/kBT dx
�
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Ehrhart et al in Landolt-
Bornstein 1991 (resistivity 
recovery) 

Effect for small barriers 
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Saturating 

Metal Group TM (K) EB/kB 

V 5B <6 ~8 

Nb 5B <6 ~0 

Ta 5B <6 ~0 

Cr 6B ~40 ~100 

Mo 6B 35 ~30 

W 6B 27 ~30 

2 1 

CSC Seminar, Warwick, 
November 2016 Swinburne at el, PRB 2013 
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Crowdion pair potential (W) 

§  Slight barrier to overcome, 
but once in the well it will 
stay there 

§  “Ostwald ripening” for loops 
is difficult 

§  small loops may be absorbed 
by larger ones, but they 
won’t shrink much by 
emitting interstitials  

~12 atoms 

~3 eV 
for W* 

~0.25 eV 

CSC Seminar, Warwick, 
November 2016 ** Marinica et al JPCM 2013 

V (x) =
2V0
3µ

tanh
�µx

2

��µx
2
sech2

�µx
2

�
+ tanh

�µx
2

��
�

2V0
3µ

DFT 
says 
~2eV** 

*assumes const µ 
SPF, NIMB, 2014 



Solutes 
§  Can generalize Frenkel-Kontorova model by changing one of 

the atoms in the string 
§  change its mass, spring constant, coupling to the periodic potential 

§  Can derive an analytic potential 

§  For coupling/spring constant impurity, ie. similar mass (Re,Ta 
in W for example) 

§  ΔV0 is the difference in the coupling/spring constant (they add) 

§  Mass impurity is (much) more complicated – future work 

Braun and Kivshar, PRB 1991 
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V (x) = �V0sech
2µx



Crowdion dynamics in the FK model 
§  Few parameters:  

–  lattice spacing a 
– spring constant β 
– height of sine potential V0 

– mass of atoms m 
– solute potential ΔV0 
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V (x) = �V0sech
2µx

µ2 =
2V0�2

�a4
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 (<0 here) collective coordinates 



Fits to (one-parameter, µ fixed) 
analytic potential 
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SPF and Nguyen 
Manh PRL 2008 

V (x) = �V0sech
2µx

Points from DFT, Muzyk et al  PRB 2011 



Toy simulations, “Ta in W at 1000K” 

CSC Seminar, Warwick, 
November 2016 SPF, NIMB, 2014 
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Toy simulations, “Ta in W at 1000K” 

CSC Seminar, Warwick, 
November 2016 SPF, NIMB, 2014 

§  Simulations 106-7 times 
cheaper than MD 

§  But: depends on accuracy of 
phenomenological model 

crowdion 

solute 



DDD simulations 
§  PK force calculated on dislocation segments 

§  Resolved into glide and climb components 

§  Nodes moved according to mobility function,   

See eg Bulatov & Cai textbook, OUP 2006 

CSC Seminar, Warwick, 
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vnode � Fnode



Stochastic effects, elastic forces 
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    500°C           800°C           950°C           1100°C        1400°C 

W irradiated to 1.5dpa, 500°C, 2Mev W+. 1 hour anneals 
F Ferroni, P Edmondson, SPF et al submitted 2014 



Loop coalescence at 1000°C 
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(a) t=0 sec (b) t=66 sec (c) t=67 sec

(d) t=0 (e) t=1
sec

(f) t=26
sec

(g) t=27
sec

(h) t=0 (i) t=10
sec

(j) t=34
sec

(k) t=35
sec

(l) t=36
sec

(m) t=42
sec

Figure 12: Examples of loop coalescence: (a)-(c) at 900�C, a cluster of loops; (d)-(g) at
1000�C, several loops forming a large irregular loop. (h)-(m) at 1000�C, five loops coalescing
into an oblong finger loop. g=(02̄0) and held constant through-out frames.

the free surfaces. This process can be seen in Figure 15. Small void-like
features were also observed in the post-annealing characterisation.

6. Discussion

6.1. Defect behaviour

From the bulk isochronal results on number density in Figure 3, there is an
accelerated decrease between 800�C and 950�C. From the in situ results in
Figure 11, one can confirm that loop loss accelerates from 800�C. Despite con-
tradictory information in the available literature on the underlying mechanisms
of the recovery stages, several independent experiments on neutron-irradiated
pure tungsten recovery, using resistivity as a measure, observed a recovery stage
at ⇠ 970�C. Whereas early work attributed this to migration of single vacancies
[? ] (largely due to FIM results by [? ? ]), later studies attribute it to defect
clustering: “a complex recovery mechanism and could possibly be related to the
disappearance of some defect clusters or formation of voids” [? ].
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§  Damage loops coarsen and coalesce 
§  “Finger loops” form, lead to network dislocations 
§  loops escape to foil surface 
 
§  Stochastic effects anneal out damage, need stochastic 

dynamics to quantify 

F Ferroni, SPF et al submitted 2014; 
see also work of Jenkins, Yao, Kirk 
et al 



Glide 

§  Motion confined to glide plane 

§  Relatively easy, bonds break and re-form 

§  Above very low temperatures and applied stresses, weakly 
dependent on temperature 

N 

b 

Hirth and Lothe 

CSC Seminar, Warwick, 
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Climb 

§  Motion out of the glide plane (edge cpts only) 

§  Requires diffusion of point defects to and around dislocation 
core 

§  Strongly temperature dependent (via vacancy concentration 
and diffusivity) 

Gao and 
Cocks 

N 

b 

CSC Seminar, Warwick, 
November 2016 



Fluctuations and dissipation for extended objects 

§  Dislocation drag/friction/dissipation well established 

§  Overdamped dynamics observed in TEM (see eg Caillard Acta 2010) 

§  Edge drag << screw drag << climb* drag 

§  Strong temperature dependence, esp climb  

§  What about fluctuations at high temperatures? 

§  What does the FDT look like?  

CSC Seminar, Warwick, 
November 2016 

*this is “mean field”, no resolution of individual vacancies 



Stochastic DDD simulations 
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the free surfaces. This process can be seen in Figure 15. Small void-like
features were also observed in the post-annealing characterisation.

6. Discussion

6.1. Defect behaviour

From the bulk isochronal results on number density in Figure 3, there is an
accelerated decrease between 800�C and 950�C. From the in situ results in
Figure 11, one can confirm that loop loss accelerates from 800�C. Despite con-
tradictory information in the available literature on the underlying mechanisms
of the recovery stages, several independent experiments on neutron-irradiated
pure tungsten recovery, using resistivity as a measure, observed a recovery stage
at ⇠ 970�C. Whereas early work attributed this to migration of single vacancies
[? ] (largely due to FIM results by [? ? ]), later studies attribute it to defect
clustering: “a complex recovery mechanism and could possibly be related to the
disappearance of some defect clusters or formation of voids” [? ].
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Stochastic DDD simulations 
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§  Fast glide to form loop chains 

§  Slower climb & fluctuations 
form finger loop 

§  Finger loop then diffuses along 
glide prism 

§  NB stochastic motion of loops 
also treated by Dudarev, Derlet 
et al JNM 2014 

§  Treated loops as interacting 
particles – collective 
coordinates again 

§  Captured chain formation but 
not coalescence 



DDD simulations of experiments 
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November 2016 

F Ferroni, 
SPF et al 

§  TEM foils are thin 
§  loop loss to surface due to 

image forces 
 

§  Microcantilever mech. prop. 
experiments 

§  size effect, disl. starvation etc 
§  large body of work on this 

 

§  Need to treat free surfaces 
§  spectral method for thin films 
§  need FEM for 3D geometry 

D Armstrong, S Roberts et al 
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§  Thin films: can use spectral 
method for images (Weinberger, 
Aubry,… Cai 2009) 

§  Also need virtual segments to 
correctly model escape-to-surface 

§ Use GPU code to 
accelerate 

§ 50x speed-up 2 2.5 3 3.5 4 4.5 5
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CUDA,GPU vs. C++,CPU

Ferroni, Tarleton, SPF, MSMSE 2014, J Comp Phys 2014 
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GPU acceleration 

NVIDIA Titan Black ~£1000 
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§  Thin films, eg TEM foils: can use spectral method for images (Weinberger, 
Aubry,… Cai 2009); more complex geometries need FEM, see Ed’s talk 

§  Also need virtual segments to correctly model escape-to-surface 
§  Use GPU code to accelerate 
§  >50x speed-up Ferroni, Tarleton, SPF, MSMSE 2014, J 

Comp Phys 2014 

depend on O(N2) and require substantial time to compute; therefore, they are the target
for GPU acceleration. Improving the performance of the all-pairs algorithm will have
synergistic effects on the far-field performance. An accelerated all-pairs component means
the balance between far-field and an accelerated near-field (all-pairs) can be shifted to
assign more work to the latter [13].
From Figure 1, one can imagine the all-pairs algorithm as calculating each entry fij in
an N×N grid of all segment pair-wise forces. The total force fi on segment i is obtained
from the sum of all entries in row i.

Figure 1: Parallelism of the N2 segment interactions (a), surface traction at k grid points (b) and image
stress on N segments (c).

O(N2) parallelism is available, thus each entry can be computed independently, and then
globally reduced. However, this approach also requires O(N2) memory and is limited by
memory bandwidth.
Consequently, N -order parallelism is utilized, with N -order serialization. In other words,
a number of threads equal to the number of segments in the simulation is invoked. Each
thread is assigned a unique segment, and each thread serially computes the forces between
that segment and all the other segments and adds (serially) the force contributions, see
figure 1 (a). Therefore, each thread gives the nodal force on a single segment as a result
of the entire dislocation structure. This approach also has the advantage that there is no
read/write competition of memory addresses between threads. The order in which single
threads sequentially compute segment-segment interactions is kept identical. This thread
synchronization allows for optimal data reuse, since the data defining the particular
segment (nodal positions, burgers vector) used for a particular sequential calculation is
the same for all threads.
In earlier GPU architectures, such as NVIDIA Fermi, the way to achieve this data reuse
necessitated employing shared memory, and was limited to each thread block. One must
remember that a large allocation of shared memory means a smaller amount of register
space per thread.
Owing to an addition of a global L2 cache in Kepler (and future) architecture GPUs, use
of shared memory was not found to be strictly necessary for good performance. Shared
GPU memory supports concurrent reads from multiple threads to a single memory ad-
dress, so there are no shared-memory-bank conflicts of the interactions. However, the
use of shared memory requires a greater algorithmic complexity and more indexing oper-
ations, and its allocation comes at the expense of total register space. For DD segment-
segment force calculations, the simple approach without shared memory was found to

4

GPU acceleration 
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CUDA,GPU vs. C++,CPU

Figure 4: (A) Time taken for surface traction calculations using original DDLab code, a serial standalone
C/C++ code, and the GPU CUDA code, for increasing number of segments, up to ∼ 1 · 105. 128× 128
point grid. (B) Speed-up of the GPU CUDA code compared to the CPU C++ code. Benchmarked on
a NVIDIA K20.

4.3. Image Stresses
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CUDA,GPU vs. C++,CPU

Figure 5: (A) Time taken for surface traction calculations using original DDLab code, a serial standalone
C/C++ code, and the GPU CUDA code, for increasing number of segments, up to ∼ 1 · 105. 128× 128
point grid. (B) Speed-up of the GPU CUDA code compared to the CPU C++ code. Benchmarked on
a NVIDIA K20.
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CUDA speed-up 
vs # of segments 
(image stress 
calcs) 

4.1. Segment-Segment Interactions
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CUDA,GPU vs. C++,CPU

Figure 2: (A) Time taken for segment-segment force calculations using original DDLab code, a serial
standalone C/C++ code, and the GPU CUDA code, for increasing number of segments, up to ∼ 1 · 105.
(B) Speed-up of the GPU CUDA code compared to the CPU C++ code. Benchmarked on a NVIDIA
K20.

4.2. Surface Traction
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CUDA,GPU vs. C++,CPU

Figure 3: (A) Time taken for surface traction calculations using original DDLab code, a serial standalone
C/C++ code, and the GPU CUDA code, for increasing number of grid points, up to ∼ 1 · 106. 512
dislocation segments in domain. (B) Speed-up of the GPU CUDA code compared to the CPU C++
code. Benchmarked on a NVIDIA K20.
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Large Simulations 
Start of simulation End of simulation 
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Large Simulations 



DDD simulations of experiments 

3D geometries require FEM coupling (see also Tang, Marian, Arsenlis; 
Fivel et al) 

LOAD 

 Tarleton, Ferroni, SPF 2015 

FIX 
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•  Dislocation statics well-understood within elasticity theory 

•  Dynamics far less well understood 

•  Strongly nonlinear temperature and strain rate dependence 

•  Atomistic modelling restricted to short times and extremely high strain 
rates 

•  Discrete dislocation simulations have far greater scope, but require 
phenomenological input -- sometimes highly speculative, eg: 

Nonlinear dislocation response 

See eg. Nadgornyi Prog Mater Sci 1988 
Christian and Altschuler 1967 
Turner and Veeland 1970 

At low T, v ~ σ20-40, at RT v ~ σ4 

CSC Seminar, Warwick, 
November 2016 

velocity = v = B ··· � = const. drag matrix⌦ stress



Dislocation velocities 

§  Dislocation velocities measured 
by slip band growth technique 

§  Iron single crystals 

§  NB: caution, log-log plot! 

§  Turner and Vreeland, Acta Met. 
1970 
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MD simulations of dislocation motion 

Gilbert, Queyreau, Marian PRB 2011 

•  Note nonlinearity at low 
stresses 

•  Most pronounced at lowest 
temperatures 

•  Linear results at higher 
stresses suggest kink 
nucleation no longer 
governing the motion 

m/s 

MPa 
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Kinks 
§  Dislocation motion appears 

overdamped 

§  in situ straining experiments, 
dislocations stop immediately 
the stress is removed 

§  Dislocations move through 
“washboard” Peierls potential  

§  Generally accepted that this is 
mediated by nucleation and 
propagation of kinks* 

§  Tilt is the applied force 

V(x) 

x 
*See e.g. Seeger and Schiller, Hirth and Lothe, 
Joos and Duesbery, many others since 
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Kinks 
§  Rate of kink pair nucleation and/or propagation controls dislocation’s 

velocity                            out of equilibrium 
§  Sounds simple – but it isn’t.   
§  Experimental measurement difficult, extremely sensitive to impurities 
§  Guess: velocity ~ exp [ −(HKP − σ*V)/kT ] 

§  HKP  is the kink pair elastic energy, ~ few eV 

§  σ is the applied stress  

§  V is “activation volume” ~ few |b|3 

§  leads to temperature-dependent activation energy fits  
§  May work for high stresses, low temperatures, but not good for low 

stresses close to Peierls stress – creep, fracture 
§  Quantum effects can be important at low temperatures.  

Arrhenius behaviour 

See for example Petukhov and Pokrovskii Soviet JETP 1973; Tarleton et al, 
Acta Mat 2008;  Proville, Rodney, Marinica Nature Mat 2012 CSC Seminar, Warwick, 

November 2016 



Fluctuation – dissipation theorem 

§  Relates damping, fluctuations and temperature 

§  At low temperature and high damping, fluctuations are small 
 
§  Not so at high T… 

�D = kBT

D =
kBT

�

Probability distribution for Gaussian 
white noise (other types of noise are 
available!). This is the “D” in diffusion/
Fokker-Planck equation: 

FDT 

@⇢

@t

= D
@

2
⇢

@x

2

P[⌘] ⇠ e�
1
4D

R
⌘2dt
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Stochastic equation of motion 

§  Start from the Frenkel-Kontorova 
model/sine-Gordon equation: 

 

§  Leads to kink solutions:  

 
§  µ is the inverse kink width ~                          

(LH / RH kinks) 

�(x, t) =
2

�
tan�1 expµ(x � V t)

⇢�
tt

� ��
xx

= �V0⇡ sin 2⇡�

±
p
2V0⇡2/�

L =
1

2
�2
t

�
1

2
��2
x

� V0 sin2 ⇡�
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§  Add friction, driving force, random force, neglect inertia 
(overdamped limit) gives Langevin equation 

§  H is the string Hamiltonian or energy: 

 
§  Integral of elastic (first term) plus potential (second term) 

��
t

= ��
xx

� V0⇡ sin 2⇡�� F + ⇠(x, t) = ��H
��

+ ⇠(x, t)

H[�] =
Z 1

�1

✓
1

2
��

2
x

+ V (�)

◆
dx

V (�) = V0 sin
2 ⇡�� F�
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§  Simplest option for the noise is uncorrelated Gaussian white 
noise, with correlation function 

§  and distribution 

§  D is the noise strength and D = ΓkBT by the fluctuation-
dissipation theorem  

§  Rearrange Langevin equation to 

§  Substitute for ξ leads to …  

h⇠(x, t)⇠(x 0, t 0)i = 2D�(x � x 0)�(t � t 0)

P[⇠] / exp�
1

4D

Z Z
⇠(x, t)

2
dxdt

��t +
�H
��

= ⇠(x, t)
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§  Distribution for φ(x,t) ! (I have glossed over some details here) 

§  Rate of transition from metastable well to stable one given by: 

 
§  where the sum/integral is taken over all configurations φ that 

satisfy the initial and final conditions 

P[�] / exp� 1
4D

Z Z ✓
��t +

�H
��

◆2
dxdt

X

paths�
i

e�S[�i ]/4D =

Z
D� e�
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t

���
xx

+V 0(�))2/4D

⌘ exp�
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4D
S[�] Onsager-Machlup action S 
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§  This object is possibly infinite, and is awkward to define rigorously 

§  It is the stat. mech. analogue of the Feynman path integral for the 
quantum mech. matrix element 

§  The integrand                              is the analogue of the Lagrangian 

§  In the weak noise limit, the integral will be dominated by φs which 
satisfy the Euler-Lagrange equations  

Z
D� e�

R
(��

t

���
xx

+V 0(�))2/4D
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�
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t
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x

� V 00(�)
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t
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xx
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V (�) = V0 sin
2 ⇡�� F�CSC Seminar, Warwick, 
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§  Two solutions:           satisfying 

§  (noiseless equation of motion) 

§           satisfying  

§  Like the noiseless equation of motion, but with the potential 
flipped 

§  Motion against the barrier – controls the escape rate, and 
hence the kink pair nucleation rate.  

§  cf instantons in quantum field theory (G t’Hooft, S Coleman, …) 

�
�@
t

+ �@2
x

� V 00(�)
�
(��

t

� ��
xx
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xx
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xx

� V 0(�+) = 0
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§  KP nucleation rate given by  

§  But what is         ? Do we need to 
solve that horrible equation to find it? 

§  Luckily no: 

§  S+ is the saddle point action, max 
energy configuration  

§  cf particle escaping from a well  

exp�
S[�+]
4D�+

FIG. 2: Potentials for small, medium, and large applied forces (left to right). Dashed line: potential V (�).

Dotted line: inverted potential �V . Solid line: square root of the potential. The area under this curve is the

saddle point energy (see text).

Saddle point action — Using the equation of motion for �+ (8), the action can be

determined [15]:

S+ =
Z
dt

Z
dx

�
2��+

t

�2

= 4�

Z
dx

Z saddle

min

d�+
�H
��+

= 4�

�H[�+saddle]�H[�+min]
�
. (9)

�+min and �+saddle are the initial (minimum) and saddle (maximum) energy string configura-

tions respectively, and the potential can be shifted so that H[�+min] = 0. The task remains

to determineH⇤ ⌘ H[�+saddle], and it turns out that this can be done exactly, without explicit

knowledge of the field configuration �+saddle. The problem is to maximize H[�] over fields

�(x) that lie in a potential minimum � = �0, say, as x ! ±1, and contain a protuberance

out of the minimum and some distance over the potential barrier towards the neighbour-

ing well. For F small in comparison to V0 (i.e. F ⌧ ⇡V0), this will be a well-separated

kink pair, Fig.1(left), more of which below, whilst for F approaching ⇡V0, it will be a small

bump whose maximum extent � = �1 need not reach the neighbouring minimum at all,

Fig.1(right). In any case, we can assume that the protuberance is centred on x = 0, is

even in x , and satisfies the Euler-Lagrange equation for H[�]:

��
xx

= +V 0(�);
1

2

��2
x

= V (�); ��
x

= ±
p
2�V (�). (10)

5

At low F, it will be a 
well-separated kink 
pair, at high F it will be 
a small bump 

Bray et al 1990 
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§  For the saddle, need to find φ that maximizes 

§  Use Euler-Lagrange equations for H[φ] 

§  which lets us write 

H[�] =
Z 1

�1

✓
1

2
��

2
x

+ V (�)

◆
dx

FIG. 2: Potentials for small, medium, and large applied forces (left to right). Dashed line: potential V (�).

Dotted line: inverted potential �V . Solid line: square root of the potential. The area under this curve is the

saddle point energy (see text).

Saddle point action — Using the equation of motion for �+ (8), the action can be

determined [15]:

S+ =
Z
dt

Z
dx

�
2��+

t

�2

= 4�

Z
dx

Z saddle

min

d�+
�H
��+

= 4�

�H[�+saddle]�H[�+min]
�
. (9)

�+min and �+saddle are the initial (minimum) and saddle (maximum) energy string configura-

tions respectively, and the potential can be shifted so that H[�+min] = 0. The task remains

to determineH⇤ ⌘ H[�+saddle], and it turns out that this can be done exactly, without explicit

knowledge of the field configuration �+saddle. The problem is to maximize H[�] over fields

�(x) that lie in a potential minimum � = �0, say, as x ! ±1, and contain a protuberance

out of the minimum and some distance over the potential barrier towards the neighbour-

ing well. For F small in comparison to V0 (i.e. F ⌧ ⇡V0), this will be a well-separated

kink pair, Fig.1(left), more of which below, whilst for F approaching ⇡V0, it will be a small

bump whose maximum extent � = �1 need not reach the neighbouring minimum at all,

Fig.1(right). In any case, we can assume that the protuberance is centred on x = 0, is

even in x , and satisfies the Euler-Lagrange equation for H[�]:
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p
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This allows us to write

H⇤ =
Z 1

�1
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x

d�

dx
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Z
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�0

p
2�V (�)d�. (11)

Now, since �
x

= 0 at �(0) = �1, Eqs.(10) tell us that V (�1) = 0 also, so we simply need to

integrate the square root of the potential between the zero at its initial local minimum, �0,

and its next zero. This is again precisely analogous to the quantum-mechanical instanton

calculation, where one imagines a particle rolling from a local maximum in the inverted

potential, through a minimum, to a position of equal height further along, before returning

to its starting point. This is illustrated in Fig.2 for small, medium and large values of

the applied force. The dashed line is the potential V (�), the dotted line is the inverted

potential �V , and the solid line is the (scaled) square root of the potential. The saddle

point energy which determines the rate is the area under this curve. Fig.3 shows H⇤ as a

function of the applied force (solid curve), along with an approximation (dashed curve) to

be discussed below. Since S/4D = H/kBT , the rate can be written as

rate ⇠ exp
✓
� 2
kBT

Z
�1

�0

p
2�V (�)d�

◆
, (12)

the central result of this Report. This expression is exact as far as the potential is con-

cerned, and holds for any value of F between zero and the Peierls force V0⇡. It does not

require the explicit form of the saddle point configuration, and hence avoids the need for

eigenfunction expansions, or other sophisticated approximation techniques. It can imme-

diately be applied to more complex potentials than the sinusoidal one considered here,

e.g. the double-sine form employed in [5]. It is valid at temperatures kBT < H⇤, corre-

sponding to the tree-level Feynman diagrams in quantum field theory. This means it will

break down as F ! V0⇡ and H⇤ ! 0. Loop corrections, corresponding to larger thermal

fluctuations, may be possible if not analytically tractable. For many metals the above rate

will be accurate for applied stresses not too close to the Peierls stress, since H⇤ at zero

F is of order 1eV [17].

Kink pair approximation — Eq.(12) is exact and can be easily evaluated numerically

for any F . However, a simple fully analytical expression would be more helpful for use

6
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§  and finally velocity ~ 

§  Integrals taken between two zeros of V; area under red curves 

§  Exact as far as potential concerned, works for 

§        F small                     F medium                       F large     

exp�S[�
+
]

4D
= exp� H

⇤

kBT
= exp� 2

kBT

Z �1

�0

p
2�V (�)d�

0 < F < �P

0.5 1.0 0.5 1.0 -0.5 0.5 1.0

FIG. 2: Potentials for small, medium, and large applied forces (left to right). Dashed line: potential V (�).

Dotted line: inverted potential �V . Solid line: square root of the potential. The area under this curve is the

saddle point energy (see text).

Saddle point action — Using the equation of motion for �+ (8), the action can be

determined [15]:

S+ =
Z
dt

Z
dx

�
2��+

t

�2

= 4�

Z
dx

Z saddle

min

d�+
�H
��+

= 4�

�H[�+saddle]�H[�+min]
�
. (9)

�+min and �+saddle are the initial (minimum) and saddle (maximum) energy string configura-

tions respectively, and the potential can be shifted so that H[�+min] = 0. The task remains

to determineH⇤ ⌘ H[�+saddle], and it turns out that this can be done exactly, without explicit

knowledge of the field configuration �+saddle. The problem is to maximize H[�] over fields

�(x) that lie in a potential minimum � = �0, say, as x ! ±1, and contain a protuberance

out of the minimum and some distance over the potential barrier towards the neighbour-

ing well. For F small in comparison to V0 (i.e. F ⌧ ⇡V0), this will be a well-separated

kink pair, Fig.1(left), more of which below, whilst for F approaching ⇡V0, it will be a small

bump whose maximum extent � = �1 need not reach the neighbouring minimum at all,

Fig.1(right). In any case, we can assume that the protuberance is centred on x = 0, is

even in x , and satisfies the Euler-Lagrange equation for H[�]:

��
xx

= +V 0(�);
1

2

��2
x

= V (�); ��
x

= ±
p
2�V (�). (10)
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§  A simple formula velocity = fct. (stress) would be nice for eg 
implementation in DDD simulations.  

§  At small stresses, saddle configuration should be a well-
separated kink pair:  

§  Insert this in H, maximize over R, gives 

§  This is where the wild nonlinearity comes from:  

has no power series at small F.  
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FIG. 3: Saddle point energy as a function of the applied force. Points: data taken from Fig.7 of [18],

fitted with EKP=0.32eV, ⇡V0/|b|=95MPa. Solid red curve: exact result Eq.(12). Dashed curve: kink pair

approximation, Eq.(15).

in dislocation dynamics simulations, as well as providing greater insight into the origin

of the nonlinearity in the observed rate. This can be obtained by inserting into H[�] the

approximate solution for a sine-Gordon kink pair separated by R:

� =
2

⇡
tan

�1
e

�µ(x�R/2)
+

2

⇡
tan

�1
e

µ(x+R/2) � 1, (13)
⇣
µ =

p
2V0⇡2/�

⌘
which leads to

H(R) = 4
⇡

p
2�V0

�
1� 2µe�µR�� FR. (14)

The three terms above correspond to the kink ‘rest energy’, the kink-kink interaction en-

ergy, and the energy gain from the applied bias. Maximizing this expression over R, and

writing F = F/V0 gives

H⇤KP =
r
�V0
2⇡2

✓
8� F � F ln

✓
16

F
◆◆
. (15)

H⇤ has been determined numerically using density functional methods (DFT) for the bcc

transition metals (see in particular Figure 4 in [17]), and the calculation above is the

analytical equivalent of the procedure adopted in [17], where a kink pair ansatz was

iterated numerically until converged to the extremal configuration. H⇤ has also been

computed using nudged elastic band simulations for W [19].
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§  Left: exact formula (red) and KP approximation (black dashed) fitted to 
H* extracted from data for edge dislocation velocities in Fe (Turner and 
Vreeland 1970) 

§  Right: DFT-based calculation for some bcc metals of H* (Dezerald et 
al 2015) 

§  Dashed line:  
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Conclusions and acknowledgments 

§  Mesoscale modelling is crucial to bridge the gap in 
understanding between micro and macro 

§  Capabilities increasing all the time 

§  Plenty of room in the middle! 

§  Thanks to Francesco Ferroni, Ed Tarleton, Daniel Thompson, 
Dave Armstrong, Steve Roberts and the MFFP group at Oxford; 
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