

Cracking me softly: The mechanics of hyper elastic Kirigami structures

Dr Ettore Barbieri School *of* Engineering *and* Materials Science Division *of* Engineering Science

Fracture @QMUL

Cutting

Automatic intersection of crack paths leading to fragment generation

Multiple intersecting cracks

Crack Propagation

Three-dimensional effects, such as curvature and twisting

Crack Propagation

Extremely curved crack paths

with Rubén Sevilla, Swansea

Three-dimensional fracture surfaces in metals

Extremely Curved Cracks:

- study of biological materials
- toughening engineering materials

High strain-rate behaviour of rubber suspensions

High strain-rate fracture for ceramic armours: a multiscale study Grant: CDE34762

Barts Health NHS Trust Craniofacial Trauma

Multiscale modelling of composites in underwater stuctures

With: Prof Simon Holmes (Royal London Hospital) Mattia Gaglione

ScienceDaily[®]

ANSAit

Rudolph's antlers inspire next generation of unbreakable materials

Kirigami

(photo courtesy of artist Mizuho Ozaki)

Kirigami Structures

Griffith Energy Balance

Crack Propagation Direction

$$J(\mathbf{d}, \theta) = J_1(\mathbf{d})\cos(\theta) + J_2(\mathbf{d})\sin(\theta) = \mathbf{j}^h(\mathbf{d}) \cdot \mathbf{e}$$

Rubber sheet with aligned cracks

Not really stretchable

Rubber sheet with misaligned cracks

Much more stretchable

Rubber sheet with misaligned cracks

Much more stretchable!

Rubber sheet with misaligned cracks

Much more stretchable!

Kirigami Structures

Making structures more stretchable...by cracking it!

Single Layer

Some designs...

LAYERING of patterns

- increases strength
- promotes helicoidal motion

ALTERNATING of patterns determines

- stress distribution
- delay of failure
- opponent motion

Some designs...

30

Dr Ettore Barbieri e.barbieri@qmul.ac.uk

Federica Ongaro Francesca Carleo Paolino De Falco Mattia Gaglione Simone Falco

