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Aggregation phenomena : motivation

@ Many particles of one
material dispersed in
another.

@ Transport is diffusive or
advective.

@ Particles stick together on

S contact.

Applications: surface physics, colloids, atmospheric science,

earth sciences, polymers, cloud physics.

Today we will focus on simple theoretical models of the
statistical dynamics of such systems.

THE UNIVERSITY OF

WARWICK

http://www.slideshare.net/connaughtonc PRL 109, 168304 (2012); EPL 117(1):10002 (2017)



Simplest model of clustering: coalescing random

walks

) @ Particles perform random walks on a
iy ;>\/\/\/\/\/ lattice.

@ Multiple occupancy of lattice sites is

allowed.
Sy il @ Particles on the same site merge
5377 8 it with probability rate k: A+ A — A.
1‘/\’\/\/\/ @ A source of particles may or may not
0 g & be present.
Cartoon of dynamics in @ No equilibrium - lack of detailed
1-D with kK — oc. balance.
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Mean field description

Equation for the average density, N(x, t), of particles:
OdN=DAN—kN® +y

k - reaction rate, D - diffusion rate, J - injection rate, N(® -

density of same-site pairs.

Mean field assumption:
@ No correlations between particles: N@) ~ 1 N2:
@ Spatially homogeneous case, N(x,t) = N(t).

Mean field rate equation:

N
d—:—%szJrJ N(0) = No
at
A B 2Ny 1
J=0:N(t) = 5 kNot "~ ki as t — oo
2J THE UNIVERSITY OF
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A more sophisticated model of clustering:

size-dependent coalescence

A better model would track the sizes distribution of the clusters:

Am1 + Am2 — Am1+m2.

@ Probability rate of particles sticking should be a function,
K(my, mo), of the particle sizes (bigger particles typically
have a bigger collision cross-section).

@ Micro-physics of different applications is encoded in
K(my, mg)

@ Given the kernel, objective is to determine the cluster size
distribution, Nn(t), which describes the average number of
clusters of size m as a function of time.
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Mean-field theory of irreversible coagulation

Assume the system is statistically homogeneous and
well-mixed so that there are no spatial correlations.
Particle size distribution, Np(t), satisfies the kinetic equation :

Smoluchowski equation :

1 m
2 Jo

M
— Np(D) /0 dmy K(m, my) Nim, (1)
aF J(S(m—mo)

Microphysics is encoded in the coagulation kernel, K(my, mo).
@ Source: particles of size my are continuously added to the
system at rate J.
° s;r;i(érﬁarncles larger than cut-off, M, are removed fromw/}gwiaz
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Scale-invariant coagulation kernels

Notation:In many applications kernel is homogeneous:
K(amy,amp) = a* K(my, my)
K(my, mo) ~ mims my<m.

Clearly A = p+ v.
Examples:
Brownian coagulation of spherical droplets (v = £, = —3):

1 1
my\ 3 ms\ 3
K = —= e
(my, my) (m2> +<m1> +2
Gravitational settling of spherical droplets in laminar flow
(v = %, w=0):

2 2
3 3
m; —m;
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Self-similar solutions of Smoluchowski equation

10° 0° o,
108 "‘*‘ For homogeneous kernels, clus-
+|| ter size distribution often self-
Z 100 ¢+ similar. Without source:

Nm(t) ~s(t)2F(2) z=

107 b g ox10! ——

1=4.0x10°

t=4.0x10° —e—

12,0107 —4— \

10° 102 10* 10° 108
o

s(t) is the typical cluster size. The scaling function, F(z),
determining the shape of the cluster size distribution, satisfies:

m
s()

1020

—2F(z)+zd,;(zz) / dz1K(z1,z — z1)F(z1)F(z — zv)
— / dz1K(z,z1)F(z).
WARWICK
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Stationary solutions of the Smoluchowski equation

with a source and sink

@ Add monomers at rate, J.
Remove those with m > M.

el @ Stationary state is obtained for
. R - large t which balances
’“““:’*ﬁ:;{ﬁggys injection and removal.
"‘-‘-_;%“nw @ Constant mass flux in range
1 [mo, M]
@ Model kernel:

1
K(my, me) = o (e m+ )

Stationary state for t — oo, my < m < M (Hayakawa 1987):

— (1 — )2 — .

N — \/J(1 (v —p) )2cos((u W)[2) s
vis

Require mass flux to be local: | — v| < 1. But what if it isn’\’[/’{?AKV\J/ICK
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Asymptotic solution of the nonlocal case

Nonlocal stationary state is not like the Hayakawa solution:

@ Stationary state has the
asymptotic form for M > 1:

y=v—pu—1.
@ Stretched exponential for small
m, power law for large m.

@ Agrees well with numerics
without any adjustable
parameters.

8
10° 10 10% 10° 10
m

Stationary state (theory vs numerics).

Note: the stationary state vanishes as M — co. What happensmw or
to the mass flux? WARWICK
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Hopf bifurcation of stationary state as M increased

M(t)

=

=
=

stability analysis of the exact
stationary state.

@ Concluded that the nonlocal
stationary state is linearly
Total gensig’ N(t). vs time unstable for large enough M.

for v noo= 5-

@ Constant mass flux is replaced
by time-periodic pulses.

@ Oscillatory behaviour due to
an attracting limit cycle
embedded in this very

L high-dimensional dynamical

e m we w0 o system.

. NWWW @ We did a (semi-analytic) linear

o
0 200 400 600 800 1000 1200 1400
t

Numerical measurements °
100 | Linear stabilty prediction

Density contrast, N(t)-N(0) (at peaks)
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Scaling of period and amplitude of oscillation with M

at)

Total mass, M, t)

g 0
o [ s(t)= 12x10 g 04
s(t)=1.1x10% o-g 0
s(t)A.Oxm; iw"
s(t)=1.0x10° 107
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s()=14 .
s(t)=1.4x1 o‘
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Self-simliarity of mass pulse
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@ Oscillations are a sequence of
"resets” of self-similar pulses:
N(t) =s()?F(&)  with &= T,
where
a= UHEES gy

2

@ Period estimated as the time, 7y,
required for s(7y) ~ M. Amplitude,
A, estimated as the mass supplied
in time 7y:

v 1—v—p
™ ~~ M 2 AM ~ “I\varzumw‘m
WARWICK
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Other examples: collisional evaporation /

fragmentation models

@ With probabilty A < 1, collisions result in:
e evaporation (both particles removed) with J fixed.
e complete fragmentation (both particles converted to
monomers) with J = 0
@ Rate equations are almost the same (except for equation
for monomer density in fragmentation case):

ONm(t)
ot

1 m
= E Z Km—m17m1 Nm—m1 Nm1

my=1
= (1 +X) N Y Kinmy Nony + J 51
my=1

I e 1
Keep the model kernel K(my, mp) = z(mymy + mymy).
C. Connaughton, A. Dutta, R. Rajesh, and O. Zaboronski. Universality properties of steady driven coagulatiW W\}/\R/\]JE: ](2

collisional evaporation. EPL Europhys. Lett., 117(1):10002, 2017

http://www.slideshare.net/connaughtonc PRL 109, 168304 (2012); EPL 117(1):10002 (2017)



Oscillatory kinetics for collisional evaporation /

fragmentation model

Oscillatory regime observed for both models when A <« 1 (for
certain kernels).

v=3/2, p=-3/2, A=0.0125, M=500

Non-conserved model

-
Conserved model .

Mo(t)

Oscillations in collisional evaporation / fragmentation models

THE UNIVERSITY OF

Oscillations are not a result of "hard" cut-off. WARWICK

PRL 109, 168304 (2012); EPL 117(1):10002 (2017)

http://www.slideshare.net/connaughtonc



Conclusions and open questions

Summary:
@ Stationary solution of Smoluchowski equation with source
investigated in regime |v — pu| > 1.
@ Size distribution can be calculated asymptotically and has
a novel functional form.
@ Amplitude of state vanishes as the dissipation scale grows.

@ Stationary state can become unstable so the long-time
behaviour of the cascade dynamics is oscillatory.

Questions:
@ Do any physical systems really behave like this?
@ What happens in spatially extended systems?
@ Other examples of oscillatory kinetics? Eg in wave
turbulence?
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Violation of mass conservation: the gelation transition

Microscopic dynamics conserve mass: Am, + Am, — Am,+m,-

@ Smoluchowski equation formally
® conserves the total mass,
T Mi(t) = [o° mN(m,t)dm.
@ However for A > 1:

M; (1) </ mN(m,0)dm t > t*.
0

1.6
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zzz=
333
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u (Lushnikov [1977], Ziff [1980])

0 1 2 3 4 5 6 7

time

My (1) for K(my, mg) = (my mg)?/*. @ Mean field theory violates mass
conservation!!!

Best studied by introducing cut-off, M, and studying limit
M — oo. (Laurencot [2004])
Physical interpretation? Intermediate asymptotics... WARWICK
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Instantaneous gelation

Asymptotic behaviour of the kernel controls the aggregation of
small clusters and large:

K(my, mp) ~ mimy my<ms.

1+ v = X so that gelation always occurs if v is big enough.

Instantaneous Gelation

@ If v > 1then t* = 0. (Van Dongen & Ernst [1987])
@ Worse: gelation is complete: M(t) =0 for t > 0.

Instantaneously gelling kernels cannot describe even the
intermediate asymptotics of any physical problem.
Mathematically pathological?
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Droplet coagulation by gravitational settling: a puzzle

settling is important in the
evolution of the droplet size
distribution in clouds and
‘ the onset of precipitation.
® @ Droplets are in the Stokes
regime — larger droplets
u fall faster merging with
slower droplets below them.
Some elementary calculations give the collision kernel

@ @ The process of gravitational

1 2 2
K(my, mp) o< (M3 +m3)? |m3 — m$

v = 4/3 suggesting instantaneous gelation but model seems
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Instantaneous gelation in the presence of a cut-off

@ With cut-off, M, regularized
gelation time, ty,, is clearly
identifiable.

@ fy, decreases as M increases.

@ Van Dongen & Ernst recovered in

e o limit M — .

time

Sol mass

3
M(t) for K(my, mp) = m2 + mg/g.

@ Decrease of fy; as M is very slow. Numerics and heuristics

suggest:
]

V/logM
This suggests such models are physically reasonable.
@ Consistent with related results of Krapivsky and Ben-Naim
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and Krapivsky [2003] on exchange-driven growth. WARWICK
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