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Aggregation phenomena : motivation

Many particles of one
material dispersed in
another.
Transport is diffusive or
advective.
Particles stick together on
contact.

Applications: surface physics, colloids, atmospheric science,
earth sciences, polymers, cloud physics.

This talk:
Today we will focus on simple theoretical models of the
statistical dynamics of such systems.

http://www.slideshare.net/connaughtonc PRL 109, 168304 (2012); EPL 117(1):10002 (2017)



Simplest model of clustering: coalescing random
walks

Cartoon of dynamics in
1-D with k →∞.

Particles perform random walks on a
lattice.
Multiple occupancy of lattice sites is
allowed.
Particles on the same site merge
with probability rate k : A + A→ A.
A source of particles may or may not
be present.
No equilibrium - lack of detailed
balance.
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Mean field description

Equation for the average density, N(x , t), of particles:

∂tN = D ∆ N − k N(2) + J

k - reaction rate, D - diffusion rate, J - injection rate, N(2) -
density of same-site pairs.

Mean field assumption:
No correlations between particles: N(2) ∼ 1

2 N2:
Spatially homogeneous case, N(x , t) = N(t).

Mean field rate equation:

dN
dt

= − 1
2 k N2 + J N(0) = N0

J = 0 : N(t) =
2 N0

2 + k N0 t
∼ 1

k t
as t →∞

J 6= 0 : N(t) ∼
√

2 J
k

as t →∞
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A more sophisticated model of clustering:
size-dependent coalescence

A better model would track the sizes distribution of the clusters:

Am1 + Am2 → Am1+m2 .

Probability rate of particles sticking should be a function,
K (m1,m2), of the particle sizes (bigger particles typically
have a bigger collision cross-section).
Micro-physics of different applications is encoded in
K (m1,m2)

Given the kernel, objective is to determine the cluster size
distribution, Nm(t), which describes the average number of
clusters of size m as a function of time.
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Mean-field theory of irreversible coagulation

Assume the system is statistically homogeneous and
well-mixed so that there are no spatial correlations.
Particle size distribution, Nm(t), satisfies the kinetic equation :

Smoluchowski equation :

∂tNm(t) =
1
2

∫ m

0
dm1 K (m1,m −m1) Nm1(t) Nm−m1(t)

− Nm(t)
∫ M

0
dm1 K (m,m1) Nm1(t)

+ J δ(m −m0)

Microphysics is encoded in the coagulation kernel, K (m1,m2).
Source: particles of size m0 are continuously added to the
system at rate J.
Sink: particles larger than cut-off, M, are removed from the
system.
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Scale-invariant coagulation kernels

Notation:In many applications kernel is homogeneous:

K (am1,am2) = aλ K (m1,m2)

K (m1,m2) ∼ mµ
1 mν

2 m1�m2.

Clearly λ = µ+ ν.
Examples:
Brownian coagulation of spherical droplets (ν = 1

3 , µ = −1
3 ):

K (m1,m2) =

(
m1

m2

) 1
3

+

(
m2

m1

) 1
3

+ 2

Gravitational settling of spherical droplets in laminar flow
(ν = 4

3 , µ = 0) :

K (m1,m2) =

(
m

1
3
1 + m

1
3
2

)2 ∣∣∣∣m 2
3
1 −m

2
3
2

∣∣∣∣
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Self-similar solutions of Smoluchowski equation

For homogeneous kernels, clus-
ter size distribution often self-
similar. Without source:

Nm(t) ∼ s(t)−2 F (z) z =
m

s(t)

s(t) is the typical cluster size. The scaling function, F (z),
determining the shape of the cluster size distribution, satisfies:

−2F (z) + z
dF (z)

dz
=

1
2

∫ z

0
dz1K (z1, z − z1)F (z1)F (z − z1)

− F (z)

∫ ∞
0

dz1K (z, z1)F (z1).
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Stationary solutions of the Smoluchowski equation
with a source and sink

Add monomers at rate, J.
Remove those with m > M.
Stationary state is obtained for
large t which balances
injection and removal.
Constant mass flux in range
[m0,M]

Model kernel:

K (m1,m2) =
1
2

(mµ
1 mν

2+mν
1mµ

2 )

Stationary state for t →∞, m0 � m� M (Hayakawa 1987):

Nm =

√
J (1− (ν − µ)2) cos((ν − µ)π/2)

2π
m−

ν+µ+3
2 .

Require mass flux to be local: |µ− ν| < 1. But what if it isn’t?
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Asymptotic solution of the nonlocal case

Nonlocal stationary state is not like the Hayakawa solution:

Stationary state (theory vs numerics).

Stationary state has the
asymptotic form for M � 1:

Nm =

√
2Jγ log M

M
Mm−γ

m−ν .

γ = ν − µ− 1.
Stretched exponential for small
m, power law for large m.
Agrees well with numerics
without any adjustable
parameters.

Note: the stationary state vanishes as M →∞. What happens
to the mass flux?
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Hopf bifurcation of stationary state as M increased

Total density, N(t), vs time
for ν = 3

2 , µ = − 3
2 .

Linear stability analysis

We did a (semi-analytic) linear
stability analysis of the exact
stationary state.
Concluded that the nonlocal
stationary state is linearly
unstable for large enough M.
Constant mass flux is replaced
by time-periodic pulses.
Oscillatory behaviour due to
an attracting limit cycle
embedded in this very
high-dimensional dynamical
system.
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Scaling of period and amplitude of oscillation with M

Self-simliarity of mass pulse

Oscillations for different M

Oscillations are a sequence of
”resets” of self-similar pulses:

Nm(t) = s(t)a F (ξ) with ξ = m
s(t) ,

where

a = −ν + µ+ 3
2

s(t) ∼ t
2

1−ν−µ .

Period estimated as the time, τM ,
required for s(τM) ≈ M. Amplitude,
AM , estimated as the mass supplied
in time τM :

τM ∼ M
1−ν−µ

2 AM ∼ J M
1−ν−µ

2 .
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Other examples: collisional evaporation /
fragmentation models

With probabilty λ� 1, collisions result in:
evaporation (both particles removed) with J fixed.
complete fragmentation (both particles converted to
monomers) with J = 0

Rate equations are almost the same (except for equation
for monomer density in fragmentation case):

∂Nm(t)
∂t

=
1
2

m∑
m1=1

Km−m1,m1Nm−m1Nm1

− (1 + λ) Nm

∞∑
m1=1

Km,m1Nm1 + J δm,1

Keep the model kernel K (m1,m2) = 1
2(mµ

1 mν
2 + mν

1mµ
2 ).

C. Connaughton, A. Dutta, R. Rajesh, and O. Zaboronski. Universality properties of steady driven coagulation with

collisional evaporation. EPL Europhys. Lett., 117(1):10002, 2017
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Oscillatory kinetics for collisional evaporation /
fragmentation model

Oscillatory regime observed for both models when λ� 1 (for
certain kernels).

Oscillations in collisional evaporation / fragmentation models

Oscillations are not a result of "hard" cut-off.
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Conclusions and open questions

Summary:
Stationary solution of Smoluchowski equation with source
investigated in regime |ν − µ| > 1.
Size distribution can be calculated asymptotically and has
a novel functional form.
Amplitude of state vanishes as the dissipation scale grows.
Stationary state can become unstable so the long-time
behaviour of the cascade dynamics is oscillatory.

Questions:
Do any physical systems really behave like this?
What happens in spatially extended systems?
Other examples of oscillatory kinetics? Eg in wave
turbulence?
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Violation of mass conservation: the gelation transition

Microscopic dynamics conserve mass: Am1 + Am2 → Am1+m2 .

M1(t) for K (m1,m2) = (m1m2)
3/4.

Smoluchowski equation formally
conserves the total mass,
M1(t) =

∫∞
0 m N(m, t) dm.

However for λ > 1:

M1(t) <
∫ ∞

0
m N(m,0) dm t > t∗.

(Lushnikov [1977], Ziff [1980])
Mean field theory violates mass
conservation!!!

Best studied by introducing cut-off, M, and studying limit
M →∞. (Laurencot [2004])
Physical interpretation? Intermediate asymptotics...
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Instantaneous gelation

Asymptotic behaviour of the kernel controls the aggregation of
small clusters and large:

K (m1,m2) ∼ mµ
1 mν

2 m1�m2.

µ+ ν = λ so that gelation always occurs if ν is big enough.

Instantaneous Gelation
If ν > 1 then t∗ = 0. (Van Dongen & Ernst [1987])
Worse: gelation is complete: M1(t) = 0 for t > 0.

Instantaneously gelling kernels cannot describe even the
intermediate asymptotics of any physical problem.
Mathematically pathological?
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Droplet coagulation by gravitational settling: a puzzle

The process of gravitational
settling is important in the
evolution of the droplet size
distribution in clouds and
the onset of precipitation.
Droplets are in the Stokes
regime→ larger droplets
fall faster merging with
slower droplets below them.

Some elementary calculations give the collision kernel

K (m1,m2) ∝ (m
1
3
1 + m

1
3
2 )2

∣∣∣∣m 2
3
1 −m

2
3
2

∣∣∣∣
ν = 4/3 suggesting instantaneous gelation but model seems
reasonable in practice. How is this possible?
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Instantaneous gelation in the presence of a cut-off

M(t) for K (m1,m2) = m
3
2
1 + m3/2

2 .

With cut-off, M, regularized
gelation time, t∗M , is clearly
identifiable.
t∗M decreases as M increases.
Van Dongen & Ernst recovered in
limit M →∞.

Decrease of t∗M as M is very slow. Numerics and heuristics
suggest:

t∗M ∼
1√

log M
.

This suggests such models are physically reasonable.
Consistent with related results of Krapivsky and Ben-Naim
and Krapivsky [2003] on exchange-driven growth.
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