# Oscillatory kinetics in cluster-cluster aggregation

#### Colm Connaughton

Mathematics Institute and Centre for Complexity Science, University of Warwick, UK

> London Mathematical Laboratory, 14 Buckingham St, London WC2N 6DF

Collaborators: R. Ball (Warwick), A. Dutta (Chennai), P.P. Jones (Warwick), R. Rajesh (Chennai), O. Zaboronski (Warwick).

WCPM MIRaW Day University of Warwick 12 June 2017

THE UNIVERSITY OF

イロト イポト イヨト イヨ

### Aggregation phenomena : motivation



- Many particles of one material dispersed in another.
- Transport is diffusive or advective.
- Particles stick together on contact.

**Applications**: surface physics, colloids, atmospheric science, earth sciences, polymers, cloud physics.

#### This talk:

Today we will focus on simple theoretical models of the statistical dynamics of such systems.

# Simplest model of clustering: coalescing random walks



Cartoon of dynamics in 1-D with  $k \to \infty$ .

- Particles perform random walks on a lattice.
- Multiple occupancy of lattice sites is allowed.
- Particles on the same site merge with probability rate k: A + A → A.
- A source of particles may or may not be present.

• = • •

• No equilibrium - lack of detailed balance.

### Mean field description

Equation for the average density, N(x, t), of particles:

$$\partial_t N = D \Delta N - k N^{(2)} + J$$

*k* - reaction rate, *D* - diffusion rate, *J* - injection rate,  $N^{(2)}$  - density of same-site pairs.

### Mean field assumption:

- No correlations between particles:  $N^{(2)} \sim \frac{1}{2} N^2$ :
- Spatially homogeneous case, N(x, t) = N(t).

### Mean field rate equation:

$$\frac{dN}{dt} = -\frac{1}{2} k N^2 + J \qquad N(0) = N_0$$

$$J = 0: N(t) = \frac{2N_0}{2+kN_0 t} \sim \frac{1}{kt} \text{ as } t \to \infty$$

$$J \neq 0: N(t) \sim \sqrt{\frac{2J}{k}} \text{ as } t \to \infty$$

$$V = V = V = 0$$

$$V = V = V = 0$$

$$V = V = V = 0$$

http://www.slideshare.net/connaughtonc PRL 109, 168304 (2012); EPL 117(1):10002 (2017)

## A more sophisticated model of clustering: size-dependent coalescence

A better model would track the sizes distribution of the clusters:

$$A_{m_1}+A_{m_2}\to A_{m_1+m_2}.$$

- Probability rate of particles sticking should be a function,  $K(m_1, m_2)$ , of the particle sizes (bigger particles typically have a bigger collision cross-section).
- Micro-physics of different applications is encoded in K(m<sub>1</sub>, m<sub>2</sub>)
- Given the kernel, objective is to determine the cluster size distribution, N<sub>m</sub>(t), which describes the average number of clusters of size m as a function of time.

## Mean-field theory of irreversible coagulation

Assume the system is statistically homogeneous and well-mixed so that there are no spatial correlations. Particle size distribution,  $N_m(t)$ , satisfies the kinetic equation :

Smoluchowski equation :

$$\partial_t N_m(t) = \frac{1}{2} \int_0^m dm_1 K(m_1, m - m_1) N_{m_1}(t) N_{m - m_1}(t) \\ - N_m(t) \int_0^M dm_1 K(m, m_1) N_{m_1}(t) \\ + J \delta(m - m_0)$$

Microphysics is encoded in the coagulation kernel,  $K(m_1, m_2)$ .

- Source: particles of size *m*<sub>0</sub> are continuously added to the system at rate *J*.
- Sink: particles larger than cut-off, *M*, are removed from the the system.

### Scale-invariant coagulation kernels

Notation: In many applications kernel is homogeneous:

$$K(am_1, am_2) = a^{\lambda} K(m_1, m_2)$$
  
 $K(m_1, m_2) \sim m_1^{\mu} m_2^{\nu} m_1 \ll m_2.$ 

Clearly  $\lambda = \mu + \nu$ . Examples:

Brownian coagulation of spherical droplets ( $\nu = \frac{1}{3}, \mu = -\frac{1}{3}$ ):

$$K(m_1, m_2) = \left(\frac{m_1}{m_2}\right)^{\frac{1}{3}} + \left(\frac{m_2}{m_1}\right)^{\frac{1}{3}} + 2$$

Gravitational settling of spherical droplets in laminar flow ( $\nu=\frac{4}{3},\,\mu=$  0) :

$$K(m_1, m_2) = \left(m_1^{\frac{1}{3}} + m_2^{\frac{1}{3}}\right)^2 \left|m_1^{\frac{2}{3}} - m_2^{\frac{2}{3}}\right|$$

WARWICK

イロト イポト イヨト イヨト 三日

### Self-similar solutions of Smoluchowski equation



For homogeneous kernels, cluster size distribution often selfsimilar. Without source:

$$N_m(t) \sim s(t)^{-2} F(z) \quad z = rac{m}{s(t)}$$

s(t) is the typical cluster size. The scaling function, F(z), determining the shape of the cluster size distribution, satisfies:

$$-2F(z) + z \frac{dF(z)}{dz} = \frac{1}{2} \int_0^z dz_1 K(z_1, z - z_1) F(z_1) F(z - z_1)$$
  
-  $F(z) \int_0^\infty dz_1 K(z, z_1) F(z_1).$ 

# Stationary solutions of the Smoluchowski equation with a source and sink



- Add monomers at rate, *J*. Remove those with *m* > *M*.
- Stationary state is obtained for large *t* which balances injection and removal.
- Constant mass flux in range [*m*<sub>0</sub>, *M*]
- Model kernel:

$$K(m_1, m_2) = \frac{1}{2}(m_1^{\mu}m_2^{\nu} + m_1^{\nu}m_2^{\mu})$$

Stationary state for  $t \to \infty$ ,  $m_0 \ll m \ll M$  (Hayakawa 1987):

$$N_m = \sqrt{\frac{J(1 - (\nu - \mu)^2)\cos((\nu - \mu)\pi/2)}{2\pi}} m^{-\frac{\nu + \mu + 3}{2}}.$$
Require mass flux to be *local*:  $|\mu - \nu| < 1$ . But what if it is  $12^{12}$ .

### Asymptotic solution of the nonlocal case

Nonlocal stationary state is not like the Hayakawa solution:



Stationary state (theory vs numerics).

 Stationary state has the asymptotic form for *M* ≫ 1:

$$N_m = \frac{\sqrt{2J\gamma \log M}}{M} M^{m^{-\gamma}} m^{-\nu}.$$

$$\gamma = \nu - \mu - \mathbf{1}.$$

- Stretched exponential for small *m*, power law for large *m*.
- Agrees well with numerics without any adjustable parameters.

Note: the stationary state **vanishes** as  $M \to \infty$ . What happens version of the mass flux?

## Hopf bifurcation of stationary state as M increased



Linear stability analysis

- We did a (semi-analytic) linear stability analysis of the exact stationary state.
- Concluded that the nonlocal stationary state is linearly unstable for large enough *M*.
- Constant mass flux is replaced by time-periodic pulses.
- Oscillatory behaviour due to an attracting limit cycle embedded in this very high-dimensional dynamical system.

### Scaling of period and amplitude of oscillation with M



 Oscillations are a sequence of "resets" of self-similar pulses:

 $N_m(t) = s(t)^a F(\xi)$  with  $\xi = \frac{m}{s(t)}$ ,

where

$$a = -rac{\nu + \mu + 3}{2}$$
  $s(t) \sim t^{rac{2}{1 - \nu - \mu}}.$ 

Period estimated as the time, *τ<sub>M</sub>*, required for *s*(*τ<sub>M</sub>*) ≈ *M*. Amplitude, *A<sub>M</sub>*, estimated as the mass supplied in time *τ<sub>M</sub>*:

$$au_M \sim M^{rac{1-
u-\mu}{2}}$$

 $A_M \sim J_{\text{THE UNIVERSITY OF}} M_M \sim M_{\text{THE UNIVERSITY OF}} M_{\text{WARWICK}}$ 

http://www.slideshare.net/connaughtonc

PRL 109, 168304 (2012); EPL 117(1):10002 (2017)

## Other examples: collisional evaporation / fragmentation models

- With probability  $\lambda \ll 1$ , collisions result in:
  - evaporation (both particles removed) with *J* fixed.
  - complete fragmentation (both particles converted to monomers) with J = 0
- Rate equations are almost the same (except for equation for monomer density in fragmentation case):

$$\frac{\partial N_m(t)}{\partial t} = \frac{1}{2} \sum_{m_1=1}^m K_{m-m_1,m_1} N_{m-m_1} N_{m_1} - (1+\lambda) N_m \sum_{m_1=1}^\infty K_{m,m_1} N_{m_1} + J \,\delta_{m,1}$$

Keep the model kernel  $K(m_1, m_2) = \frac{1}{2}(m_1^{\mu}m_2^{\nu} + m_1^{\nu}m_2^{\mu}).$ 

C. Connaughton, A. Dutta, R. Rajesh, and O. Zaboronski. Universality properties of steady driven coagulation with WICK collisional evaporation. EPL Europhys. Lett., 117(1):10002, 2017

# Oscillatory kinetics for collisional evaporation / fragmentation model

Oscillatory regime observed for both models when  $\lambda \ll 1$  (for certain kernels).



Oscillations in collisional evaporation / fragmentation models

Oscillations are not a result of "hard" cut-off.



http://www.slideshare.net/connaughtonc PRL 109, 168304 (2012); EPL 117(1):10002 (2017)

Summary:

- Stationary solution of Smoluchowski equation with source investigated in regime |ν – μ| > 1.
- Size distribution can be calculated asymptotically and has a novel functional form.
- Amplitude of state vanishes as the dissipation scale grows.
- Stationary state can become unstable so the long-time behaviour of the cascade dynamics is oscillatory.

Questions:

- Do any physical systems really behave like this?
- What happens in spatially extended systems?
- Other examples of oscillatory kinetics? Eg in wave turbulence?

< 回 > < 回 > < 回

### Violation of mass conservation: the gelation transition

Microscopic dynamics conserve mass:  $A_{m_1} + A_{m_2} \rightarrow A_{m_1+m_2}$ .



 Smoluchowski equation formally conserves the total mass,

$$M_1(t) = \int_0^\infty m N(m, t) \, dm.$$

• However for  $\lambda > 1$ :

$$M_1(t) < \int_0^\infty m N(m,0) \, dm \, t > t^*.$$

(Lushnikov [1977], Ziff [1980])

 Mean field theory violates mass conservation!!!

Best studied by introducing cut-off, *M*, and studying limit  $M \rightarrow \infty$ . (Laurencot [2004]) Physical interpretation? Intermediate asymptotics... Asymptotic behaviour of the kernel controls the aggregation of small clusters and large:

$$K(m_1,m_2) \sim m_1^{\mu}m_2^{\nu} m_1 \ll m_2.$$

 $\mu + \nu = \lambda$  so that gelation always occurs if  $\nu$  is big enough.

#### Instantaneous Gelation

- If  $\nu > 1$  then  $t^* = 0$ . (Van Dongen & Ernst [1987])
- Worse: gelation is *complete*:  $M_1(t) = 0$  for t > 0.

Instantaneously gelling kernels cannot describe even the intermediate asymptotics of any physical problem. Mathematically pathological?

イロト イポト イヨト イヨト

## Droplet coagulation by gravitational settling: a puzzle



- The process of gravitational settling is important in the evolution of the droplet size distribution in clouds and the onset of precipitation.
- Droplets are in the Stokes regime → larger droplets fall faster merging with slower droplets below them.

Some elementary calculations give the collision kernel

$$K(m_1, m_2) \propto (m_1^{\frac{1}{3}} + m_2^{\frac{1}{3}})^2 \left| m_1^{\frac{2}{3}} - m_2^{\frac{2}{3}} \right|$$

 $\nu = 4/3$  suggesting instantaneous gelation but model seems reasonable in practice. How is this possible?

## Instantaneous gelation in the presence of a cut-off



- With cut-off, M, regularized gelation time,  $t_M^*$ , is clearly identifiable.
- $t_M^*$  decreases as M increases.
- Van Dongen & Ernst recovered in limit *M* → ∞.
- Decrease of  $t_M^*$  as *M* is very slow. Numerics and heuristics suggest:

$$t^*_M \sim rac{1}{\sqrt{\log M}}.$$

This suggests such models are physically reasonable.

 Consistent with related results of Krapivsky and Ben-Naim and Krapivsky [2003] on exchange-driven growth.