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Structural Health Monitoring
The BIG picture

Civil and mechanical engineering; Signal processing;
Machine learning; Electronics; Information theory;
Computer science . . .
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Problem statement
Tasks/Approach/Challenges

Tasks

Measurement system design;

Damage detection;

Structural identification;

Data interpretation;

Approach
Data-driven;
Model-based;

Challenges
Complexity: structure; monitoring; model ! uncertainties;
Decision-makers need to know how good the model
predictions are
Model predictions should be accompanied by quantification
of uncertainty;
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Modular Bayesian approach
Multiple response Gaussian process (mrGp)

Workframe for UQ; Reduced computational effort;
mrGp: Dataset(X,Y ) ! non-parametric probabilistic
model

Simulations Measurements
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Problem statement
Uncertainty quantification

Sources of uncertainty

Experimental: Noise; Residual variations
Prediction: Parametric; Model discrepancy; Interpolations

Bayes’ Theorem

posterior =

likelihood⇥ prior

marginal likelihood

p(✓|D) =

p(D|✓)p(✓)R
p(D|✓)p(✓)d✓

Y e
(X) = Y m

(X,✓⇤
)

specific generic

Multiple parameters: Markov Chain Monte Carlo methods
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Experimental: Noise; Residual variations
Prediction: Parametric; Model discrepancy; Interpolations

Bayes’ Theorem

posterior =

likelihood⇥ prior

marginal likelihood

p(✓|D) =

p(D|✓)p(✓)R
p(D|✓)p(✓)d✓

Y e
(X) = Y m

(X,✓⇤
) + �(X) + "

Measurements Simulations

Model
Discrepancy

Structural
Parameters

Noise

Prior information

Multiple parameters: Markov Chain Monte Carlo methods
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Aluminium bridge
Setup

Experiment
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Aluminium bridge
Results
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Tamar bridge
Setup

Experiment

Model

Measurements during a one year span
X – Temperature; traffic
Y – Natural frequencies; Mid-span
displacement;

Main Cable

SALTASH PLYMOUTH

Side Cables

Expansion gap

"i
Prestressk
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Tamar bridge
Results

Forces (kN)
Year Main cable Side cable Method
1961 20296 20597 iterative shape finding
2001 20296 20597 iterative shape finding
2009 23564 25985 modular Bayesian approach

A 13% increase in the cables forces was identified
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Lessons learned

Credibility of modelling should always be assessed by
uncertainty quantification (UQ);
Sufficiently informative responses improve UQ of the
Modular Bayesian approach;
Methodology was applied in reduced and full-scale
examples of Structural Health Monitoring, allowing
identification of critical parameters;
Enhancement of the methodology for multiple parameter
identification;
Acknowledgementes: EPSRC funding; supervisors &
colleagues; Exeter research group;
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Thank you for your attention.

Questions?

André Jesus
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Modular Bayesian approach
Workflow

1 Fit model with mrGp

Y m
(Xm,⇥m

) ⇡ mrGp

m

2 Fit discrepancy function with mrGp

Y e
(Xe

)�
Z

mrGp

m
(Xe, ✓)p(✓)d✓ ⇡ mrGp

�

3 Bayes’ theorem

p(✓|D) =

p(D|✓)p(✓)R
p(D|✓)p(✓)d✓

4 Predictions with updated metamodel

Y e ⇡ mrGp

m
+mrGp

�
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