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Problem statement

Tasks/Approach/Challenges

m Tasks

m Measurement system design;

m Damage detection;

m Structural identification;
m Data interpretation; ‘
m Approach
m Data-driven;
m Model-based;
m Challenges

m Complexity: structure; monitoring; model — uncertainties;

m Decision-makers need to know how good the model
predictions are

m Model predictions should be accompanied by quantification
of uncertainty;
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Bayes’ Theorem

oo — likelihood x prior p(0|D) =
® or = marginal likelihood
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specific generic
\
Ye(X) =Y™(X, 0%)
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Problem statement

Uncertainty quantification

Sources of uncertainty

Experimental: Noise; Residual variations

Prediction: Parametric; Model discrepancy; Interpolations
Bayes’ Theorem

likelihood x prior

posterior = p(0|D) =

marginal likelihood

Measurements Simulations Prior information
Ye(X)=Y"(X,0") + Q{(X) —i—_e\
Structural Model Noise
Parameters Discrepancy

Multiple parameters: Markov Chain Monte Carlo methods
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Forces (kN)

Year Main cable Side cable Method

1961 20296 20597 iterative shape finding
2001 20296 20597 iterative shape finding
2009 23564 25985 modular Bayesian approach

%&@g‘x A 13% increase in the cables forces was identified

WCPM
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Lessons learned

m Credibility of modelling should always be assessed by
uncertainty quantification (UQ);

m Sufficiently informative responses improve UQ of the
Modular Bayesian approach;

m Methodology was applied in reduced and full-scale
examples of Structural Health Monitoring, allowing
identification of critical parameters;

m Enhancement of the methodology for multiple parameter
identification;

m Acknowledgementes: EPSRC funding; supervisors &
colleagues; Exeter research group;
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Pioneering research
and skills
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Problem m m m
P Y™™, 0™) ~ mrGp™
Modular . . . .

Bayesian Fit discrepancy function with mrGp
approach

Ye(X°) — /erpm(Xe, 0)p(#)do ~ mrGp®

Case-studies

Aluminium bridge

Bayes’ theorem

loarned __p(D|6)p(6)
POID) = T Dl6)6)a0

Predictions with updated metamodel

\ Y ~ mrGp™ + mrGp°
WCPM
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