Quantum transport simulations for understanding the thermoelectric effect in nanocomposites

Samuel Foster1
Dhritiman Chakraborty1, Damiano Archetti1, Mischa Thesberg2, Neophytos Neophytou1

1School of Engineering, University of Warwick, Coventry, U.K.
2Institute for Microelectronics, TU Vienna, Austria
Thermoelectricity - basics

Electrical conductivity
Seebeck coefficient

\[ZT = \frac{\sigma S^2 T}{K_e + K_l} \]

Electronic thermal conductivity
Lattice thermal conductivity

- 15 TW of heat is lost worldwide, but
- State of the art: \(ZT \approx 1.5 \) (need \(ZT \approx 4 \))
- Rare earth, toxic, expensive materials

Abundance issues with good TE materials

http://pubs.usgs.gov/fs/2002/fs087-02/

Abundance issues for Te, toxicity for Pb
What nanomaterials offer to TEs

Sharp peaks in $DOS(E)$

\[S \sim \frac{d}{dE} DOS(E) \]

- Low dimensionality – improves S

\[ZT = \frac{\sigma S^2 T}{k_e + k_l} \]

- Nanostructuring - phonon engineering
- Scatter phonons only

Hicks and Dresselhaus - 1993, Dresselhaus - 2001

Hochbaum, Nature 2008
Recent advancements - How to proceed further?

Case for Si:
Bulk: 140 W/mK, ZT=0.01
NWs: 1-2 W/mK, ZT≈1

- κ_f reduction benefits are reaching their limits (easily)
- we need to look into σS^2

Vineis et al., Adv. Mater. 22, 3790, 2010
Nanostructured thermoelectrics

0D
- nano-dots in lattices
 - ZT ~ 1.8
 - Kanatzidis, Rogl, Bauer

1D
- SL NWs
 - ZT ~ 1
 - Boukai, Hochbaum
- core-shell NWs

2D
- in-plane SLs
 - ZT ~ 2.4
 - Venkatasubramanian
- cross-plane SLs

Most of these originates from κ_l reduction
σS^2 benefits are yet to be observed
Superlattices as a first step for large PFs

Make S and σ really independent – energy filtering for S? How to increase both simultaneously?

Barriers:
- $S \sim \eta_F$
- $\sigma \sim \exp(-\eta_F)$

Wells:
- $S \sim E_F$
- $\sigma \sim \exp(-E_F)$
Nanocomposites with very high PFs

Very high PF:
- 2-phase materials: 15 mW/K²m⁻¹
- 3-phase materials: 22 mW/K²m⁻¹
 (~7x compared to bulk Si)

Nanocomposite multi-phase materials
~30nm grains + 2nm boundaries

Quantum / thermionic transport

Simultaneous improvement in σ and S

Nanocomposites can indeed provide large PF gains

But they are tricky to realize…

Outline

- Introduction – nanomaterials for thermoelectrics
- The method: Non-equilibrium Green’s function
- Quantum transport - NEGF
 - Example 1: Superlattices
 - Example 2: Nanocomposites
- Towards hierarchical geometry simulations
 - Monte Carlo for phonons/electrons
 - Infrastructure development
- Conclusions
Non-Equilibrium Green’s Function (NEGF)

\[G(E) = \left[(E + i0^+)I - H - \Sigma_1 - \Sigma_2 \right]^{-1} \]

- Device Green’s function:

- Transmission:

\[T(E) = \text{Trace}(\Gamma_1 G \Gamma_2 G^\dagger) \]

\[D(E) = \frac{1}{2\pi} \text{Trace}(G \Gamma G^\dagger), \quad \Gamma = i(\Sigma - \Sigma^\dagger) \]

- TE coefficients:

\[I^{(j)} = \int_{-\infty}^{+\infty} \left(\frac{E - E_F}{k_B T} \right)^j T(E) \left(-\frac{\partial f}{\partial E} \right) dE \]

\[G = \left(\frac{2q^2}{h} \right) I^{(0)} \quad [1/\Omega] \]

\[S = \left(-\frac{k_B}{q} \right) \frac{I^{(1)}}{I^{(0)}} \quad [V/K] \]
Electron-Phonon Scattering within NEGF

- Device Green’s function:

\[G(E) = \left[(E + i0^+) I - H - \Sigma_1 - \Sigma_2 - \Sigma_{\text{scatt}} \right]^{-1} \]

- Electron-phonon scattering self-energies (optical here, for acoustic \(h\omega = 0 \))

\[\Sigma_{\text{scatt}}^{\text{in}} (j, j, m, E) = D_0 \left(n_\omega + 1 \right) G^{\text{n}} (j, j, m, E + \hbar \omega) + D_0 n_\omega G^{\text{n}} (j, j, m, E - \hbar \omega) \]

\[\Sigma_{\text{scatt}}^{\text{out}} (j, j, m, E) = D_0 \left(n_\omega + 1 \right) G^{\text{p}} (j, j, m, E - \hbar \omega) + D_0 n_\omega G^{\text{p}} (j, j, m, E + \hbar \omega) \]

phonon emission \quad \text{phonon absorption}

\[G^{\text{n}} (E) = G \left(\Sigma_{\text{scatt}}^{\text{in}} + \Sigma_{\text{scatt}}^{\text{in}} \right) G^{\dagger} \]

\[G^{\text{p}} (E) = G \left(\Sigma_{\text{scatt}}^{\text{out}} + \Sigma_{\text{scatt}}^{\text{out}} \right) G^{\dagger} \]
Ballistic vs phonons results

Coherent transport:
- Usually NOT appropriate – can lead to `unphysical` localization
- PF is limited by the G of the barrier region

Incoherent transport:
- Smoothened resonances
- The different regions can be decoupled
Outline

- Introduction – nanomaterials for thermoelectrics
- The method: Non-equilibrium Green’s function
 - Quantum transport - NEGF
 - Example 1: Superlattices
 - Example 2: Nanocomposites
- Towards hierarchical geometry simulations
 - Monte Carlo for phonons/electrons
 - Infrastructure development
- Conclusions
Example 1: 1D superlattice - all features captured

\[S = -\frac{k_B}{q} \frac{E - E_F}{k_B T} = -\frac{E - E_F}{qT} \]

Current flow variations and \(\lambda_E \)

Tunneling is detrimental to PF

Variation in \(V_B \) reduces PF

(Perhaps explains why filtering improvements have not been realized experimentally?)

Features for PF improvement

How to design such structures?

- E_F should be high into the bands to improve σ_w
- L_B should be large enough to prevent tunneling
- Barrier height V_B should be 1-2kT above E_F
- L_W should be similar to λ_E (somewhat larger)
- Good to have large current energy variations in barriers and wells

No flexibility

Some flexibility here
Outline

- Introduction – nanomaterials for thermoelectrics
- The method: Non-equilibrium Green’s function
 - Quantum transport - NEGF
 - Example 1: Superlattices
 - Example 2: Nanocomposites
- Towards hierarchical geometry simulations
 - Monte Carlo for phonons/electrons
 - Infrastructure development
- Conclusions
Seebeck has very week dependence on V_B: limited possibilities for filtering

Mostly nano-inclusions reduce the PF (from an optimal case), unlike in SLs

For large V_B, the influence of both V_B and E_F on the PF is reduced
Explaining the Seebeck behavior

- Seebeck proportional to the average energy of the current

\[S = \frac{\langle E \rangle - E_F}{qT} \]
Increasing porosity

- For small V_B:
 Porosity has a weak effect on the PF

- Porosity has a stronger effect at higher V_B

- Characteristics saturate for barriers beyond $E_F + k_B T$
Influence of diameter

- Larger diameter has greater effect on G
- Negligible change in S for the smaller diameter – no power factor peak
- Quantum tunnelling renders the smaller nanoinclusions semi-transparent and the energy filtering effect disappears
Outline

- Introduction – nanomaterials for thermoelectrics
- The method: Non-equilibrium Green’s function
- Quantum transport - NEGF
 - Example 1: Superlattices
 - Example 2: Nanocomposites
- Towards hierarchical geometry simulations
 - Monte Carlo for phonons/electrons
 - Infrastructure development
- Conclusions
Numerical issues in NEGF

- Single simulation of 60x30 nm channel ~ 10 hrs
- Length dimension scales linearly, but...
- Width scales ~ W^3
- Geometries of microns by microns simply not possible
Simulations of superlattices in Monte Carlo

Superlattice

➢ Include all relevant scattering parameters (next Ionised Impurities)
Include additional effects

ELECTROSTATICS

- Given $n \rightarrow U_{scf}$
- Poisson
- Iterate until convergence
- Given $U_{scf} \rightarrow n$

TRANSPORT

Self-consistent electrostatics

Quantum tunneling
Thermal conductivity – nanocomposites/nanomeshes

Need something more multi-physics based!

- **Geometry:** boundaries, nanoinclusions, voids,…
- **Physics:** particle + wave effects
- Scale to realistic micron sizes
- Couple phonon and electronic systems

Boundary scattering

boundary specularity \(\frac{1-p}{1+p} \)

\[p(q) = \exp(-q^2 \Delta_{rms}^2) \]

Grain boundary scattering

\[p_{GB} = \exp\left(-4q^2 \Delta_{rms}^2 \sin^2 \theta_{in}\right) \]

- Transmission probability \(p_{GB} \)
- Reflected diffusively with \((1-p_{GB}) \)
Outline

- Introduction – nanomaterials for thermoelectrics
- The method: Non-equilibrium Green’s function
- Quantum transport - NEGF
 - Example 1: Superlattices
 - Example 2: Nanocomposites
- Towards hierarchical geometry simulations
 - Monte Carlo for phonons/electrons
 - Infrastructure development
- Conclusions
Conclusions

- Electronic transport in low-D and nanocomposite TE materials
- NEGF quantum transport for nanocomposites
- Extend to large geometries
- Perform realistic simulations
- Incorporate all important transport effects
- Improve thermoelectric power factor in nanomaterials

Acknowledgements:

Mischa Thesberg, Hans Kosina (TU Vienna group), Dario Narducci (Univ. Milan-Bicocca), Giovanni Pennelli (Pisa), Marisol Gonzalez (Madrid), Nick Bennett (Edinburgh)