Transport in two-dimensional materials

Vassilios Vargiamidis

WCPM, University of Warwick, UK

Outline

Overview of graphene

- Crystal structure, band structure, Dirac cones, etc.
- Density of states

Transport in silicene

- Tuning the charge conductance and transport gap
- Spin-resolved, valley-resolved, and charge conductances
- Near perfect spin and valley polarizations
- Topological phase transitions

Possible applications

Summary

Overview of graphene

Graphene pioneers (Nobel prize 2010)

Andrey Geim

Kostya Novoselov

Philip Kim

New 2D electron system (Manchester 2004)

Nanoscale electron system with *tunable properties;* Field-effect enabled by gating: tunable carrier density

- 1. very high mobilities in its suspended form: $\mu \sim 200.000 \text{ cm}^2/(\text{V.s})$
- 2. ballistic transport over sub-micron distances: $l \sim 1 \mu m$
- 3. high thermal conductivity: $\kappa = 5000 \text{W/(m.K)}$,
- 4. chemically stable, very stiff, ...

Semimetal (zero bandgap): electrons and holes coexist

- Electronic energy dispersion: Dirac points
- Hexagonal BZ: 2 inequivalent points K and K' where carriers mimic relativistic massless Dirac particles
- Linear energy dispersion at K and K': massless Dirac fermion model in 2D

$$E = \sqrt{m^2 c^4 + p^2 c^2}, \qquad m \to 0$$

$$v_F = 10^6 \,\mathrm{m/s} = \frac{c}{300}$$

Slow, but ultrareletivistic Dirac Fermions!

Graphene allotropes

Graphene's honeycomb lattice

1st Brillouin zone

 $\vec{\alpha}_1 = \frac{\alpha}{2} \left(\sqrt{3}, 3 \right)$ $\vec{\alpha}_2 = \frac{\alpha}{2} \left(-\sqrt{3}, 3 \right)$

α=0.142 nm

 $\vec{K}_1 = \frac{2\pi}{3\alpha} \left(\sqrt{3}, 1 \right)$ $\vec{K}_2 = \frac{2\pi}{3\alpha} \left(-\sqrt{3}, 1 \right)$

Inequivalent points \vec{K} and $\vec{K'}$

Unit cell

Tight-binding model for electrons on the honeycomb lattice

Dirac points

The Dirac points are situated at the points \mathbf{k}^{D} where

$$\epsilon^{\rm D}_{\bf k}=0$$

Time-reversal symmetry: $\varepsilon_{-\mathbf{k}} = \varepsilon_{\mathbf{k}}$ Dirac points occur in pairs: twofold valley degeneracy

Low-energy regime of the TB model: 2D Dirac equation

$$\mathbf{H}_{\mathbf{q}}^{\xi} = \xi \hbar \upsilon_{\mathrm{F}} \begin{pmatrix} 0 & q_{\mathrm{x}} - \mathrm{i}q_{\mathrm{y}} \\ q_{\mathrm{x}} + \mathrm{i}q_{\mathrm{y}} & 0 \end{pmatrix} = \xi \hbar \upsilon_{\mathrm{F}} \mathbf{q} \cdot \boldsymbol{\sigma}$$

 $\xi = \pm 1$ Valley pseudospin for K and K' points $\boldsymbol{\sigma} = \sigma_x \hat{\boldsymbol{i}} + \sigma_y \hat{\boldsymbol{j}}$ Pauli matrices of the sublattice pseudospin

$$\varepsilon_{\boldsymbol{q},\xi}^{\lambda} = \lambda \hbar v_F |\boldsymbol{q}|$$

 $v_F = \frac{3|t|a}{2\hbar} \approx 8.7 \times 10^5 \text{m/s}$

Transport in silicene

Crystal structure of silicene

Buckled structure

- A potential difference $\propto 2\ell E_z$ arises between silicon atoms at A sites and B sites when an electric field E_z is applied
- Energy gap 1.55 meV
- Silicene is compatible with silicon-based technology

Low-energy Hamiltonian

$$H_{\xi} = \hbar \upsilon_F \left(\tau_x k_x - \xi \tau_y k_y \right) - \xi s_z \lambda_{so} \tau_z + \Delta_z \tau_z$$

 $\xi = \pm 1$ valley index $\upsilon_F \approx 5 \times 10^5 \, m/s$ Fermi velocity

 τ_i Pauli matrices of sublattice pseudospin

 $\Delta_z = e\ell E_z, \quad E_z$ electric field

 S_z electron spin operator normal to silicene plane ($s_z = \pm 1$)

 $\lambda_{so} \approx 3.9 meV$ spin-orbit interaction

Eigenfunctions

$$\Psi_{\lambda,\bar{k},\xi,s_z}(\bar{r}) = \frac{1}{\sqrt{2S}} \begin{pmatrix} \sqrt{1+\lambda\cos\theta} \\ \lambda\sqrt{1-\lambda\cos\theta} e^{i\xi\phi_k} \end{pmatrix} e^{i\bar{k}\cdot\bar{r}}$$

Eigenvalues

$$E_{\lambda,k,\xi,s_z} = \lambda \sqrt{\hbar^2 \upsilon_F^2 k^2 + (\Delta_z - \xi s_z \lambda_{so})^2}$$

 $\lambda = +1(-1)$ electron (hole) states 13

Band structure

Density of states

$$D(E) = \frac{|E|}{\pi \hbar^2 \upsilon_F^2} \Big[\Theta \Big(|E| - |\Delta_z - \lambda_{so}| \Big) + \Theta \Big(|E| - |\Delta_z + \lambda_{so}| \Big) \Big]$$

The DOS reflects the two gaps that open in the system

Evolution of the gap δ with the electric field:

$$\delta = 2\lambda_{so} \left| \delta_z - \xi s_z \right|$$

The gap closes when $\delta_z = \xi s_z = \pm 1$ This yields $E_z = \xi s_z E_c$ with

$$E_c = \lambda_{so} / \ell = 17 \text{ meV/Å}$$
 15

Spin- and valley-polarized transport across ferromagnetic (FM) silicene junctions

Low-energy Hamiltonian

Transmission and conductance through a FM junction

Incidence at an angle θ :

$$T_{\xi s_z}(\theta) = \frac{\cos^2 \theta \cos^2 \phi}{\cos^2 (k'_x d) \cos^2 \theta \cos^2 \phi + \sin^2 (k'_x d) (\alpha + \alpha^{-1} - 2\sin \theta \sin \phi)^2 / 4}$$

with
$$\alpha = \varepsilon_F k_F / E_N k_F'$$
 and $k_x' = \sqrt{k_F'^2 - k_F^2 \sin^2 \theta}$

Fermi wave vectors:

$$k_F = \frac{\sqrt{E_F^2 - \lambda_{so}^2}}{\hbar \upsilon_F} \qquad \qquad k'_F = \frac{\sqrt{(E_F - U + s_z M)^2 - \Delta_{\xi s_z}^2}}{\hbar \upsilon_F}$$

 $T_{\xi s_z}(\theta) = 1$ for $k'_x d = n\pi$ as in graphene

Normal incidence $\theta = 0$:

$$T_{\xi s_z}(0) = \frac{1}{1 + \sin^2 (k'_x d) (\alpha - \alpha^{-1})^2 / 4}$$

(in contrast to graphene it depends on barrier height)

Conductance:
$$G_{\xi s_z} = G_0 \int_{-\pi/2}^{\pi/2} T_{\xi s_z}(\theta) \cos \theta \, d\theta = G_0 g_{\xi s_z}, \quad G_0 = e^2 k_F W / 2\pi h$$
$$W \text{ sample width}$$

18

Spin-resolved conductance

$$\delta_z = 0$$
, $m = M / E_F = 0$
 $g_{\uparrow(\downarrow)} = \frac{g_{K\uparrow(\downarrow)} + g_{K'\uparrow(\downarrow)}}{2}$

$$E_F = 40 \, meV, \ d = 110 \, nm$$

Resonances for high barrier or deep well with amplitude between 2/3 and 1

Transport at the Dirac point (DP) is due to evanescent modes

Transport via evanescent modes is suppressed with increasing $\frac{\delta_z}{\delta_z}$ and the dip develops to transport gap

Tuning the conductance

In graphene
$$\Delta_{\xi s_z} = 0$$

 $\Rightarrow k'_F = |E_F - U| / \hbar \upsilon_F$

It cannot be made imaginary

$$g_c = g_{\uparrow} + g_{\downarrow}$$

$$U/E_{F} = 2, M = 2.5meV$$

$$k'_x = \sqrt{k'_F^2 - k_F^2 \sin^2 \theta}$$

 k'_x becomes imaginary when k'_F becomes imaginary

$$\Delta_z^c = \xi s_z \lambda_{so} \pm \left| E_F - U + s_z M \right|$$

For $\Delta_z > \Delta_z^c$ the Fermi level lies in the gap

The junction acts as an electric switch 20

Band structure $M \neq 0$

Current is entirely carried by **spin-down electrons** at the K' (g_{\downarrow} oscillatory) Only **evanescent modes** contribute to g_{\uparrow} (monotonically decreasing behavior)²¹

Conductance and transport gap

Near the DP k'_F is imaginary

 $\varepsilon_s^{(1,2)} = E_F^{c(1,2)} / \lambda_{so}$

As δ_z increases the evanescent modes are gradually damped out \Rightarrow transport gap Transport gap when $E_F < E_F^c$

$$E_F^c = \Delta_z - \lambda_{so}$$

We aim now to explore possible spin and valley polarizations in FM silicene

Spin-resolved and charge conductances

Valley-resolved and charge conductances

Splitting of the peaks of g_c with m

 $g_{K(K')} = \frac{g_{K(K')\uparrow} + g_{K(K')\downarrow}}{2}$

Splitting of the peaks of $\mathcal{G}_{K'}$ due to the broken valley symmetry in the presence of m ²⁵

Spin polarization

 $p_{s} = \frac{g_{\uparrow} - g_{\downarrow}}{g_{\uparrow} + g_{\downarrow}}$

The range of $p_s \approx 1$ increases with δ_z or m

For large δ_z or m:

- only a single spin band contributes to the current
- the evanescent modes are suppressed
- the change of sign is due to the relative shift of g_{\uparrow} and g_{\downarrow}

Spin polarization can be inverted by changing U

Spin and valley polarization

Transition from a topological insulator to band insulator regime

Spin-Hall conductivity becomes zero for high E_z

The results for the polarized transport through a FM silicene junction can be used to realize silicene-based, high-efficiency spin- and valley-filter.

Other possible applications:

•In spintronics (due to longer spin-diffusion time and spin-coherence length)

•In quantum computing

•Silicene can overcome difficulties associated with potential applications of graphene in nanoelectronics (lack of a controllable gap)

•Optoelectronics

•Energy harvesting

Summary

- The buckled structure of silicene can facilitate *the control of its band gap* by the application of an electric field E_z .
- Above a critical E_z the charge conductance g_c through a silicene FM junction changes from an *oscillatory to a monotonically decreasing function* of the junction width d. A gap develops near the DP with increasing E_z .
- These features can be used for the realization of **electric-field controlled switching.**
- The spin p_s and valley p_v polarizations near the DP increase with E_z or M, and become **nearly perfect** ($\approx 100\%$) above certain E_z and M values.
- p_s and p_v can be inverted by reversing the direction of M or U: near perfect spin and valley filtering

Most of the results have no analog in graphene* *APL **105**, 223105 (2014), JAP **117**, 094305 (2015)

30