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Outline
Overview of graphene

• Crystal structure, band structure, Dirac cones, etc.
• Density of states

Transport in silicene

• Tuning the charge conductance and transport gap
• Spin-resolved, valley-resolved, and charge conductances
• Near perfect spin and valley polarizations
• Topological phase transitions

Possible applications

Summary
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Overview of graphene
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Andrey Geim Kostya Novoselov

Philip Kim

Graphene pioneers (Nobel prize 2010)

New 2D electron system (Manchester 2004)

Nanoscale electron system with tunable properties;
Field-effect enabled by gating: tunable carrier density

1. very high mobilities in its suspended form: μ ~ 200.000cm2/(V.s)
2. ballistic transport over sub-micron distances:
3. high thermal conductivity: κ=5000W/(m.K),
4. chemically stable, very stiff, . . .

ml P1~
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Semimetal (zero bandgap): electrons and holes coexist

• Hexagonal BZ: 2 inequivalent points     and      where carriers mimic relativistic
massless Dirac particles

• Linear energy dispersion at      and     : massless Dirac fermion model in 2D.c.

. Slow, but ultrareletivistic
Dirac Fermions!

• Electronic energy dispersion: Dirac points

.
.c

.c.
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Graphene allotropes

3D  Graphite

1D  Carbon Nanotube     (1991)
(rolled-up cylinder of graphene)

0D  Fullerenes (“buckyball”)

2D  Graphene:
presumed not to 
exist in the free 
state

(1985)

(2004)



Graphene’s honeycomb lattice
1st Brillouin zone

Unit cell
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Tight-binding model for electrons on the
honeycomb lattice

Energy bands:
Semi-metal

Dirac points at K and K’
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Dirac points

The Dirac points are situated at the points        
where 

Time-reversal symmetry:

Dirac points occur in pairs:
twofold valley degeneracy
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Low-energy regime of the TB model: 2D Dirac equation

Valley pseudospin for K and K’ points

Pauli matrices of the sublattice pseudospin
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Transport in silicene
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Crystal structure of silicene

46.02  " Ǻ
Buckled structure

• A potential difference               arises between silicon atoms at A sites and B sites
when an electric field      is applied  

zE"2v
zE

• Energy gap 1.55 meV

• Silicene is compatible with silicon-based technology

meVso 9.3|O
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Low-energy Hamiltonian
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1r [ valley index smF /105 5u|X Fermi velocity

iW Pauli matrices of sublattice pseudospin

zE electric field,zz Ee" '

zs electron spin operator normal to silicene plane  (           )1r zs
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Band structure
sozz OG /' soF k OXE /! nmVEzz /17.01  � G
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Density of states
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The DOS reflects the two gaps that open in the
system

Evolution of the gap    with the electric field:G
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The gap closes when 1r  zz s[G

This yields                    withczz EsE [ 
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Spin- and valley-polarized transport across
ferromagnetic (FM) silicene junctions
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Low-energy Hamiltonian
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(gate voltage)

Exchange field
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U, M
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Transmission and conductance through a FM junction
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Fermi wave vectors:
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Spin-resolved conductance

0/,0    Fz EMmG

Resonances for high barrier or deep well with amplitude between 2/3 and 1
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Transport at the Dirac point (DP) is due to evanescent modes

Transport via evanescent modes is suppressed with increasing
and the dip develops to transport gap
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Tuning the conductance

pn � gggc

T222 sinFFx kkk �c c

becomes imaginary when        
becomes imaginary

xk c Fk c
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No analog in graphene

It cannot be made imaginary 
The junction acts as an electric switch
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Band structure     
sozz OG /' soF k OXE /! 

Current is entirely carried by spin-down electrons at the       (     oscillatory)K c
pg

Only evanescent modes contribute to      (monotonically decreasing behavior) ng

0zM
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Conductance and transport gap

0 m

Near the DP      is imaginaryFk c

As      increases the evanescent modes 
are gradually damped out        transport gap
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We aim now to explore possible spin and valley 
polarizations in FM silicene
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Spin-resolved and charge conductances

058.0 m

058.0 m

FEMm / 

Relative sift of      and      in the presence of  Mng pg
Transport gaps for both

is periodic function of U/EFcg
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Valley-resolved and charge conductances
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Splitting of the peaks of gc with m

Splitting of the peaks of       due to the broken
valley symmetry in the presence of m    
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Spin polarization
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22.0 m
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For large δz or m:

• only a single spin band contributes to the current
• the evanescent modes are suppressed
• the change of sign is due to the relative shift of      and     ng pg

Spin polarization can be inverted by changing U

The range of            increases with δz or m1|sp
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Spin and valley polarization
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and      can be inverted by changing the direction of Msp vp

This is directly related to the relative shift of      and     ng pg
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Transition from a topological insulator to band 
insulator regime

Spin-Hall conductivity
becomes zero for high
Ez
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The results for the polarized transport through a FM silicene  junction can be 
used to realize silicene-based, high-efficiency spin- and valley-filter.

Other possible applications:

•In spintronics (due to longer spin-diffusion time and spin-coherence 
length)
•In quantum computing
•Silicene can overcome difficulties associated with potential applications of 
graphene in nanoelectronics (lack of a controllable gap)
•Optoelectronics
•Energy harvesting
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Summary
• The buckled structure of silicene can facilitate the control of its band gap by the

application of an electric field Ez.

• Above a critical Ez the charge conductance gc through a silicene FM junction
changes from an oscillatory to a monotonically decreasing function of the
junction width d. A gap develops near the DP with increasing Ez.

• These features can be used for the realization of electric-field controlled
switching.

• The spin ps and valley pv polarizations near the DP increase with Ez or M,
and become nearly perfect (             ) above certain Ez and M values.%100|

• ps and pv can be inverted by reversing the direction of M or U: near perfect
spin and valley filtering

Most of the results* have no analog in graphene

*APL 105, 223105 (2014),   JAP 117, 094305 (2015)


