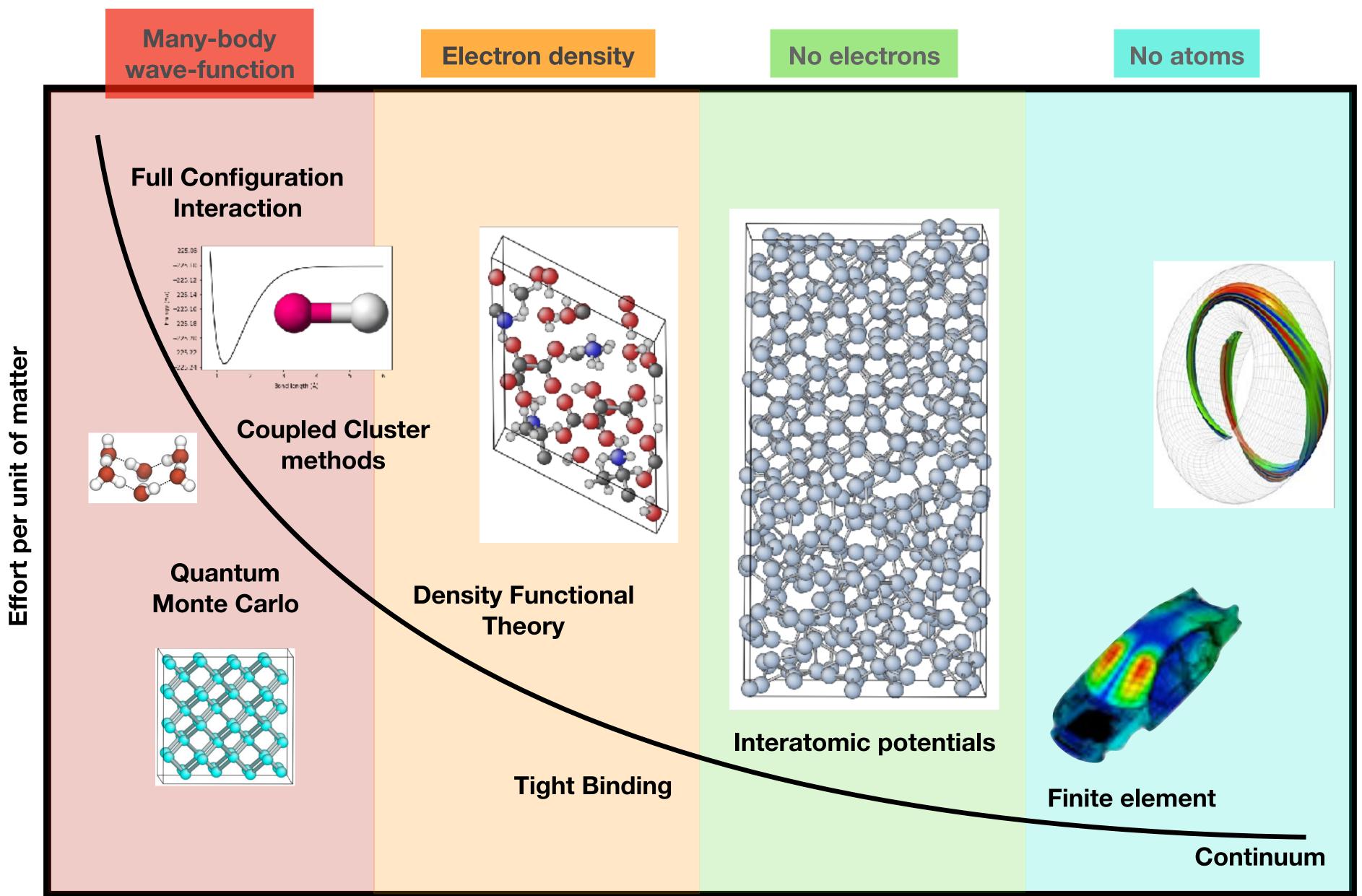
Learning atomic and electronic interactions from microscopic observables

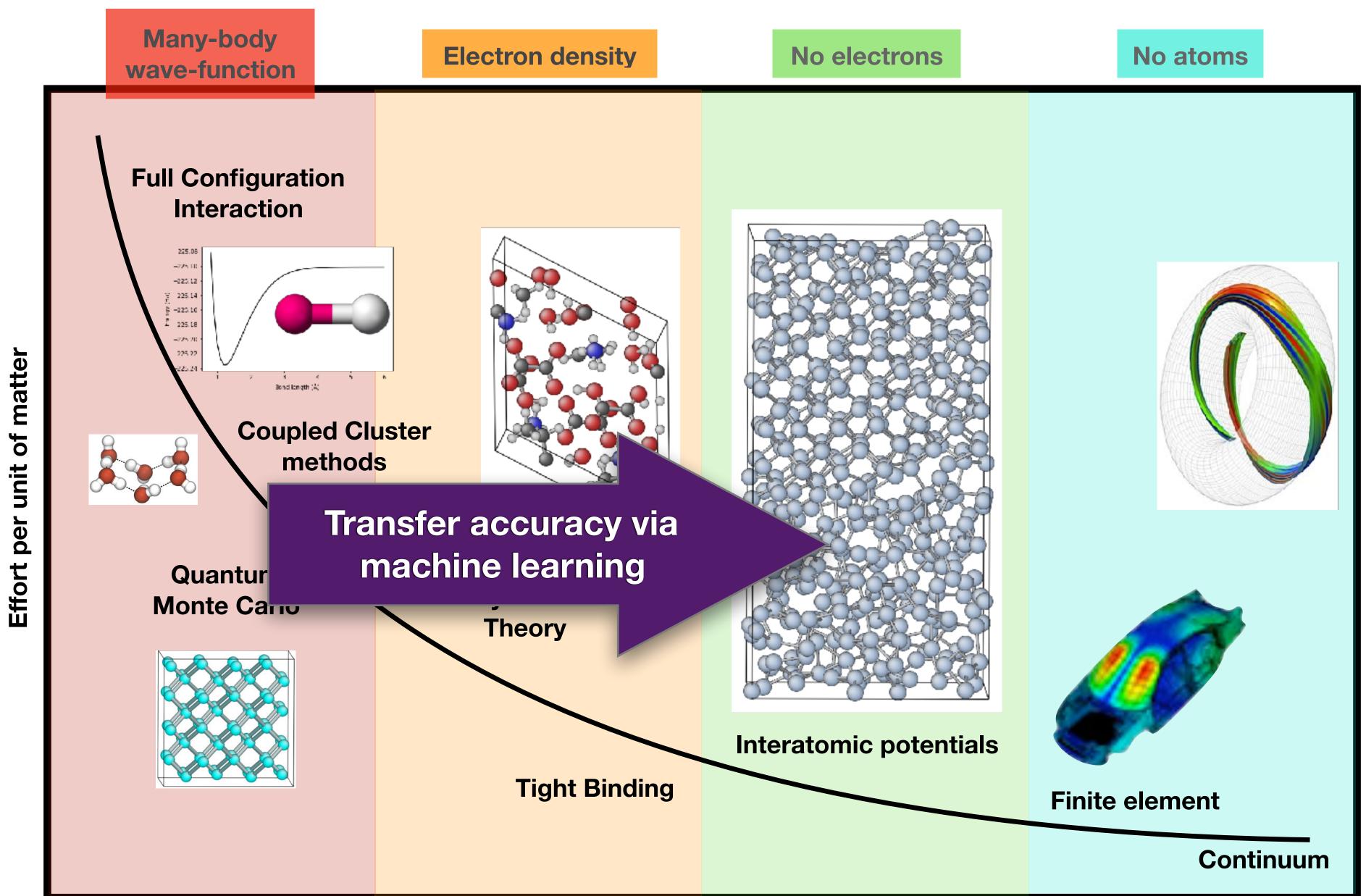
Albert Bartók-Pártay

Department of Physics School of Engineering



Level of coarse graining

WARWICK THE UNIVERSITY OF WARWICK



Level of coarse graining

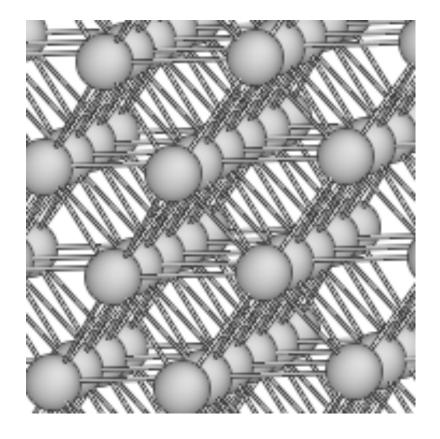
WARWICK THE UNIVERSITY OF WARWICK

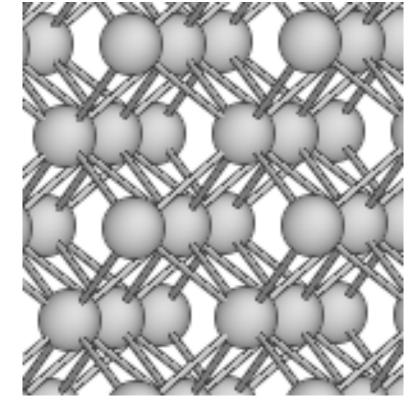
Interatomic potentials

$$\varepsilon_{ij} = 4\epsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^6 \right]$$

$$\varepsilon_i = f\left[\sum_{j} \phi(r_{ij})\right]$$

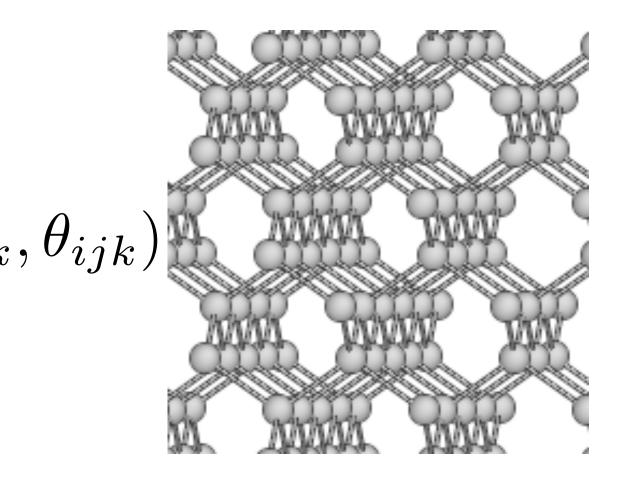
$$\varepsilon_i = \sum_j f_2(r_{ij}) + \sum_{jk} f_3(r_{ij}, r_{jk},$$

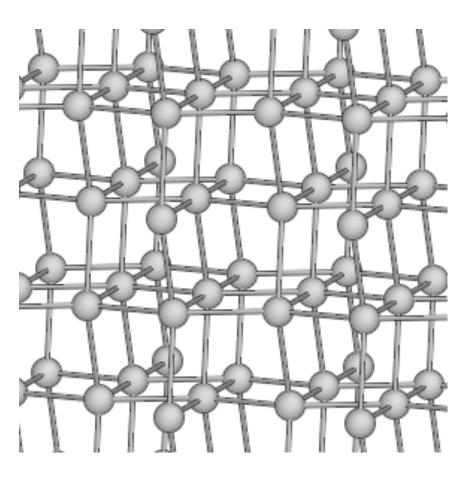




fcc

bcc



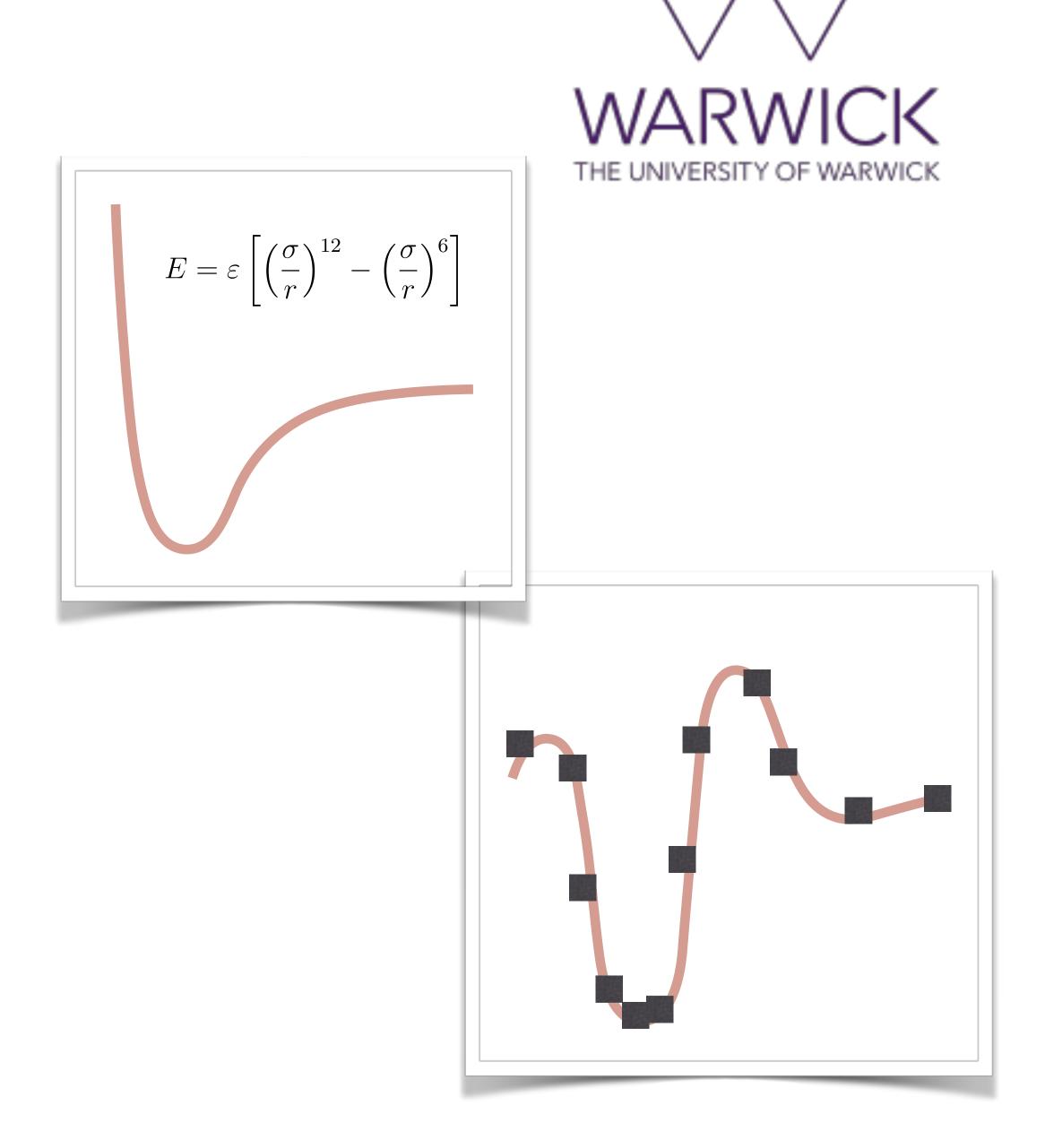


diamond

β-tin

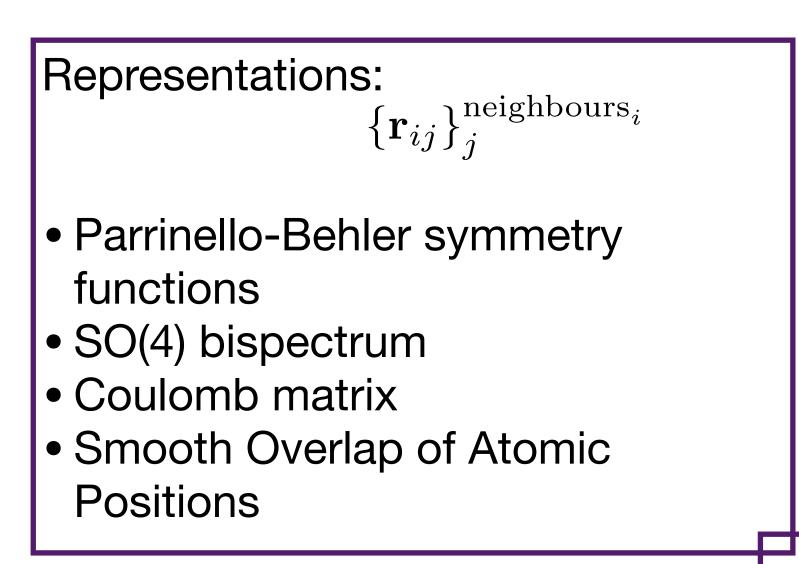
Interatomic potentials

- Analytic potentials
 - fixed functional formula
 - based on physical understanding
 - few fixed parameters
 - fit to experimental and/or computational data
- Machine learning potentials
 - flexible functional form
 - no physical motivation
 - data driven mostly computational

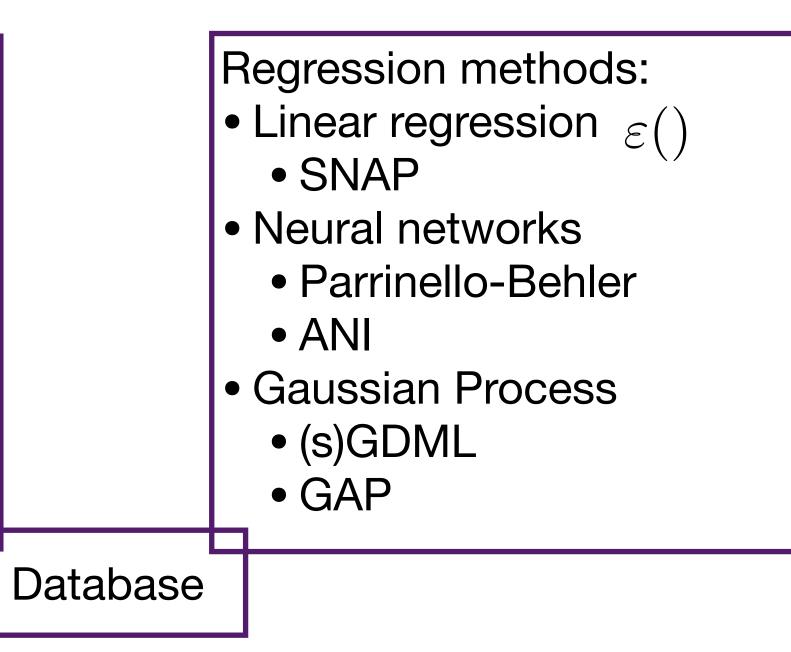


Potential Energy Surface fitting

$$E_{\text{total}} = \sum_{i}^{\text{atoms}} \varepsilon(\text{neighbourhood}_{i}) + \text{long range}$$
$$E_{\text{total}} = \sum_{i}^{\text{atoms}} \varepsilon(\{\mathbf{r}_{ij}\}_{j}^{\text{neighbours}_{i}})$$



Fit to electronic structure data!



Toy example: vacancy formation

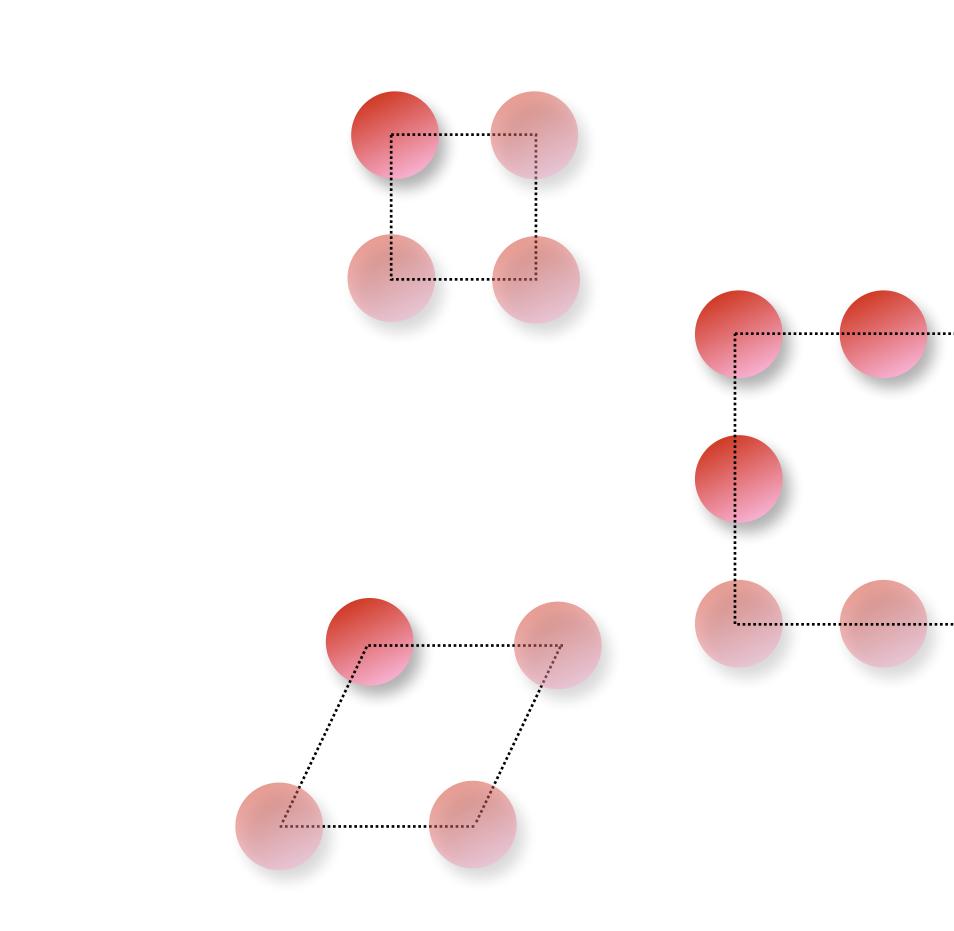
start with bulk

Toy example: vacancy formation

- start with bulk
- remove an atom

Toy example: vacancy formation

- start with bulk
- remove an atom
- relax



- start with bulk
- remove an atom
- relax

Unified, atomic level model of vacancy formation

Gaussian Process Regression

Gaussian Process:

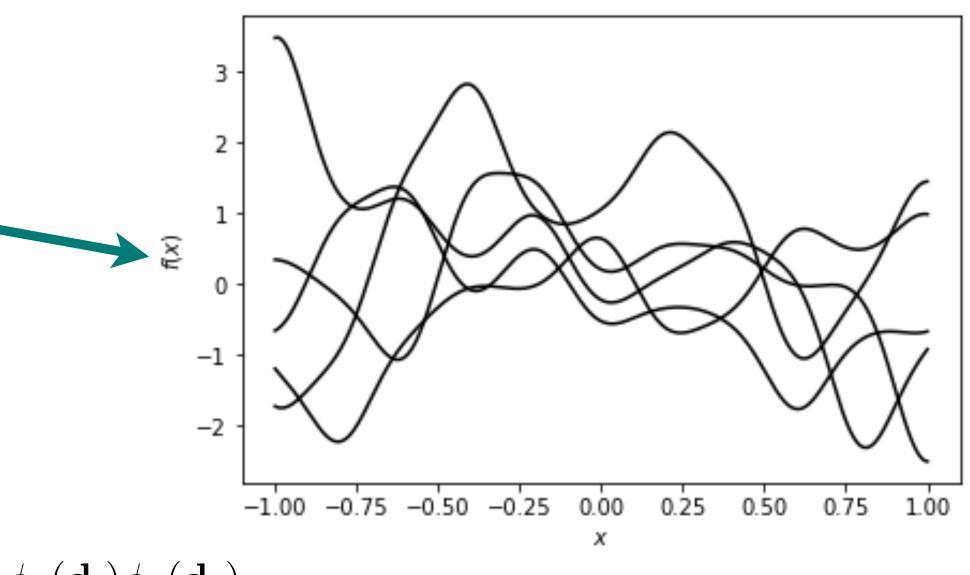
$$f_i = f(\mathbf{d}_i, \mathbf{w}) = \sum_h w_h \phi_h(\mathbf{d}_i)$$
$$P(\mathbf{w}) = \text{Normal}(\mathbf{w}; \mathbf{0}, \sigma_w \mathbf{I})$$

Covariance of Gaussian
Processes at *i* and *j*

$$\langle f_i f_j \rangle = \left\langle \sum_{hh'} w_h w_{h'} \phi_h(\mathbf{d}_i) \phi_{h'}(\mathbf{d}_j) \right\rangle = \sigma_w^2 \sum_h \sigma_w^2 \sum_h \sigma_w^2 \sum_h \sigma_w^2 \sum_h \sigma_w^2 \sigma_w^2 \sum_h \sigma_w^2 \sum_h \sigma_w^2 \sigma_w^2 \sum_h \sigma_w^2 \sum_$$

$$C(\mathbf{d}, \mathbf{d}') \equiv \sigma_w^2 \sum_h \phi_h(\mathbf{d}) \phi_h(\mathbf{d}')$$

Samples from a Gaussian Process:



 $\int \phi_h(\mathbf{d}_i) \phi_h(\mathbf{d}_j)$

We don't need the basis functions any more!

Gaussian Process Regression

Gaussian Process with noisy observations:

$$f_{i} = f(\mathbf{d}_{i}, \mathbf{w}) + \varepsilon_{i} = \sum_{h} w_{h} \phi_{h}(\mathbf{d}_{i}) + \varepsilon_{i}$$
$$P(\boldsymbol{\varepsilon}) = \text{Normal}(\boldsymbol{\varepsilon}; \mathbf{0}, \lambda^{2}\mathbf{I})$$
for *N* observations

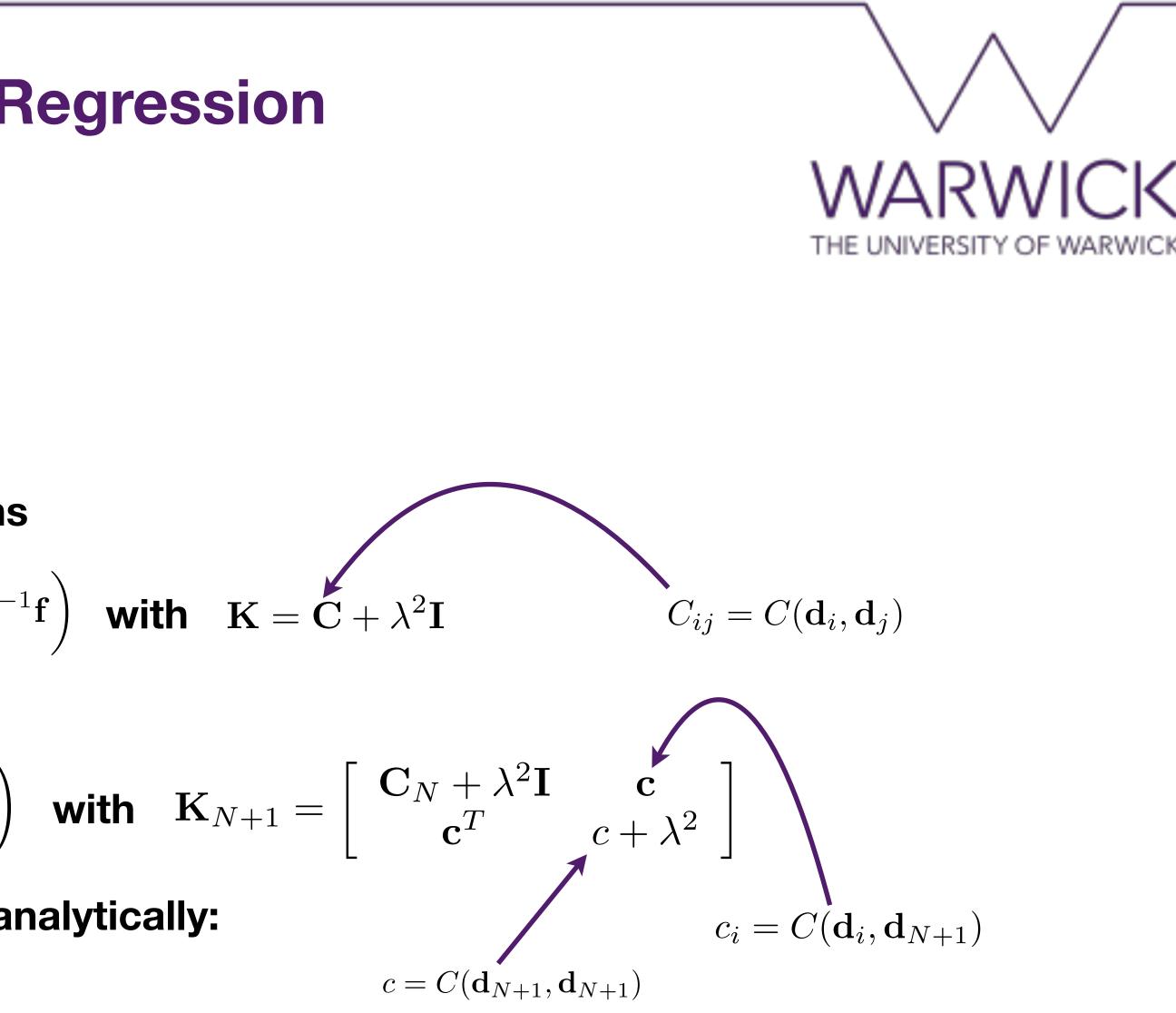
$$P(\mathbf{f}) = \text{Normal}(\mathbf{f}; \mathbf{0}, \mathbf{C} + \lambda^2 \mathbf{I}) \propto \exp\left(-\frac{1}{2}\mathbf{f}^T \mathbf{K}^{-1} \mathbf{f}\right)$$

How to use this for regression?

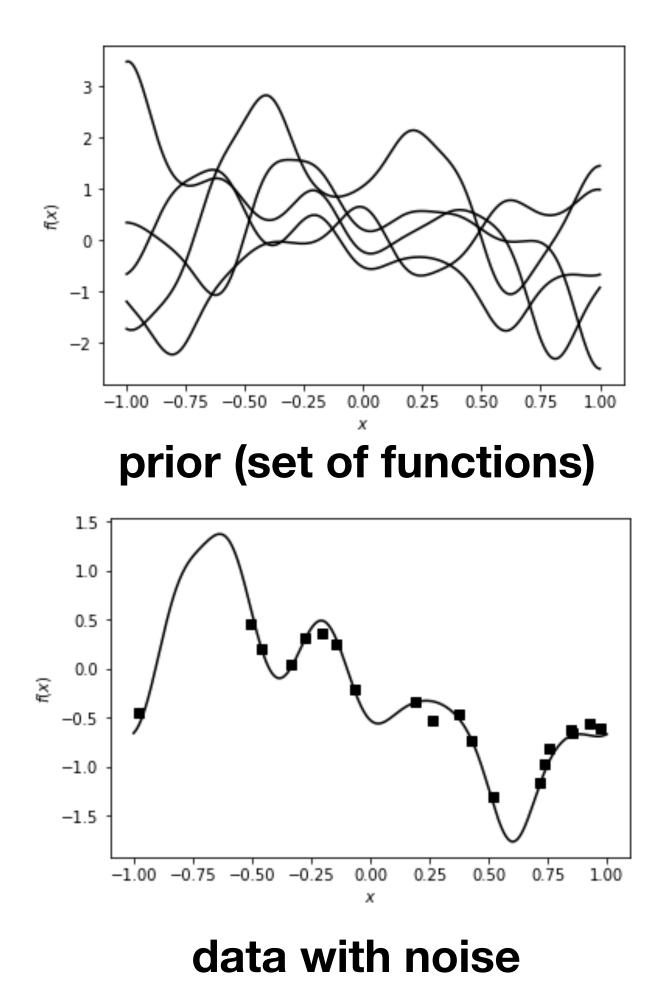
$$P(f|\mathbf{f}) \propto \exp\left(-\frac{1}{2}\mathbf{f}_{N+1}^T \mathbf{K}_{N+1}^{-1} \mathbf{f}_{N+1}\right)$$

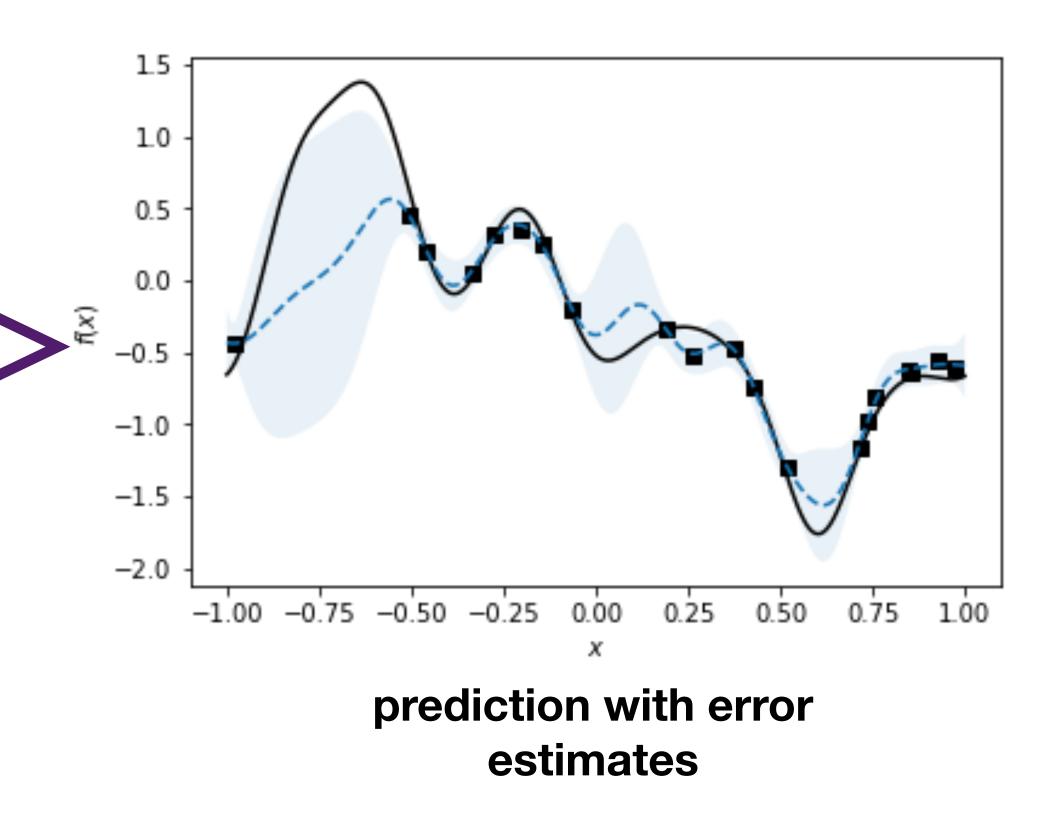
Mean and variance of *f* calculated analytically:

$$\hat{f} = \mathbf{c}^T \mathbf{K}^{-1} \mathbf{f}$$
$$\operatorname{var}(f) = c + \lambda^2 - \mathbf{c}^T \mathbf{K}^{-1} \mathbf{c}$$



Gaussian Process Regression

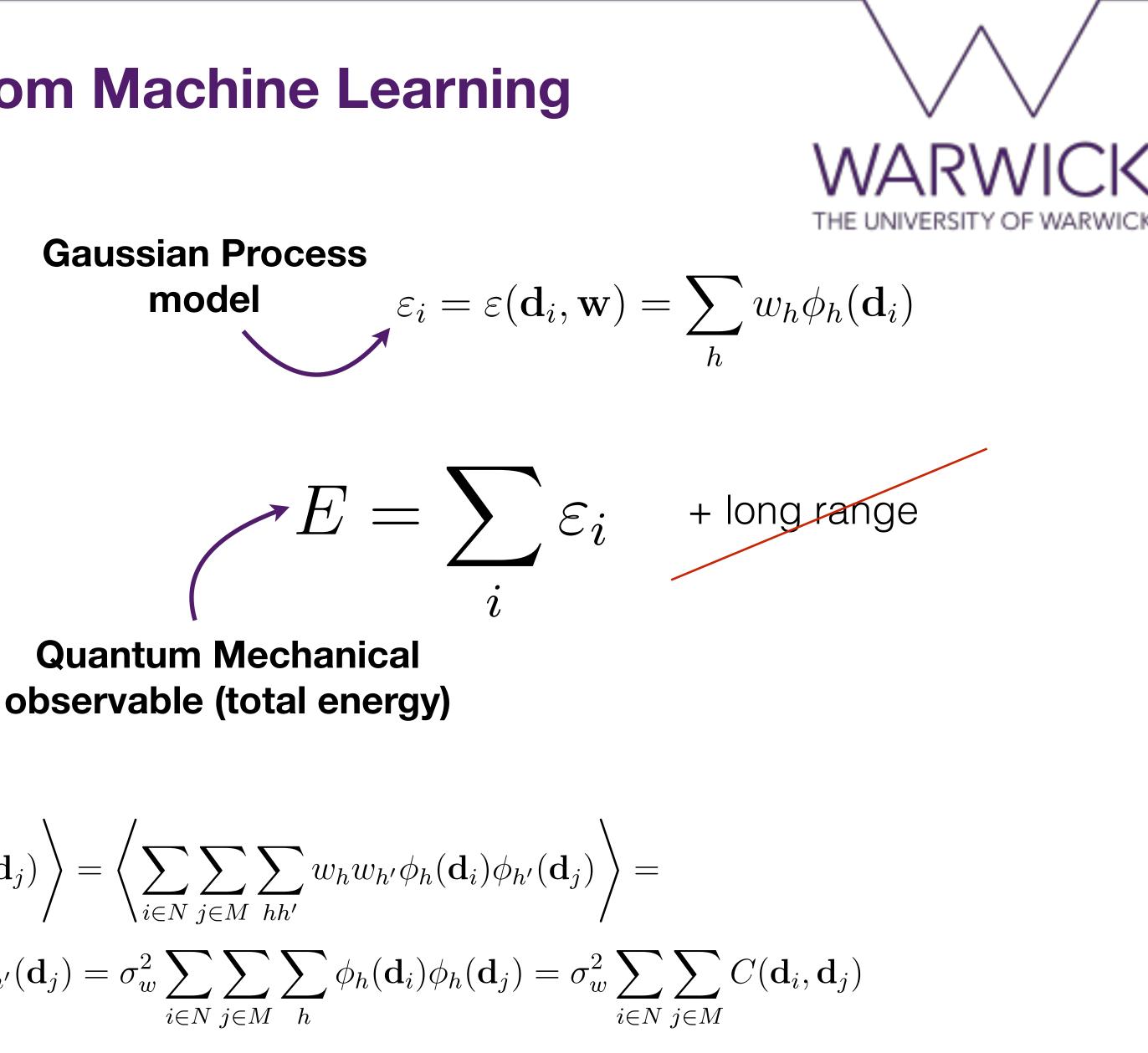




Interatomic Potentials from Machine Learning

- model: total energy is a sum of atomic many-body energies
- result: covariance of total energies is sum up atomic covariance functions
- we have just defined a covariance function for total energies!

$$\checkmark \langle E_N E_M \rangle = \left\langle \sum_{i \in N} \varepsilon(\mathbf{d}_i) \sum_{j \in M} \varepsilon(\mathbf{d}_j) \right\rangle = \left\langle \sum_{i \in N} \sum_{j \in M} \sum_{hh'} \langle w_h w_{h'} \rangle \phi_h(\mathbf{d}_i) \phi_{h'}(\mathbf{d}_j) = \phi_{hh'} \langle w_h w_{h'} \rangle \langle w_h w$$



Interatomic Potentials from Machine Learning

- compute the covariance between energies and forces/ virials
- or compute the covariances between forces/virals
- new covariance functions of the same total energy model!

 \sim 5 κ \sim $\Lambda \iota$

Further quantum mechanical observables: forces, stresses

$$\left\langle \frac{\partial E_N}{\partial \xi_k} \frac{\partial E_M}{\partial \chi_l} \right\rangle$$

E Solak *et al*, NIPS **15**, 529 (2003)

$\left\langle \frac{\partial E_N}{\partial \xi_k} E_M \right\rangle = \frac{\partial \langle E_N E_M \rangle}{\partial \xi_k} = \sigma_w^2 \sum_{i \in N} \sum_{j \in M} \nabla_{\mathbf{d}_i} C(\mathbf{d}_i, \mathbf{d}_j) \cdot \frac{\partial \mathbf{d}_i}{\partial \xi_k}$ **Cartesian coordinate** or cell deformation

$$= \sigma_w^2 \sum_{i \in N} \sum_{j \in M} \frac{\partial \mathbf{d}_i^\top}{\partial \xi_k} (\nabla_{\mathbf{d}_i} C(\mathbf{d}_i, \mathbf{d}_j) \nabla_{\mathbf{d}_j}^\top) \frac{\partial \mathbf{d}_j}{\partial \chi_l}$$

Interatomic Potentials from Machine Learning

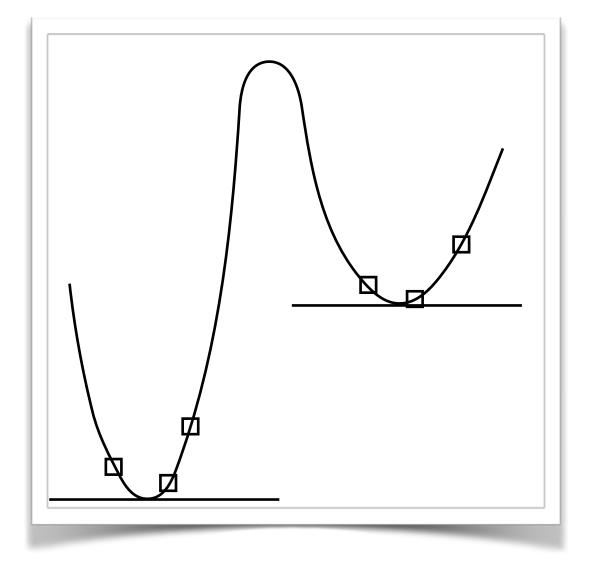
- Generate database of relevant configurations
- Compute QM observables (energy, force, stress)
- forces provide rich information on PES
- energies set scale and connect minima correctly
- viral stresses capture the really soft response to deformation

Structure type	No. atoms	No. structures	No. environments	No.
Isolated atom	1	1	1	
Diamond	2	104	208	
	16	220	3520	
	54	110	5940	
	128	55	7040	
β-Sn	2	60	120	
	16	220	3520	
	54	110	5940	
	128	55	7040	
Simple hexagonal	1	110	110	
1 0	8	30	240	
	27	30	810	
	64	53	3392	
Hexagonal diamond	4	49	196	
bcc	2	49	98	
bc8	8	49	392	
fcc	4	49	196	
hcp	2	49	98	
st12	12	49	588	
Liquid	64	69	4416	
	128	7	896	

AP Bartók *et al*, PRX **8**, 041048 (2018)

o. representative atoms

1	
6	
53	
58	
92	
32	
51	
66	
157	
13	
15	
42	
89	
7	
40	
66	
46	
28	
94	
1114	
323	

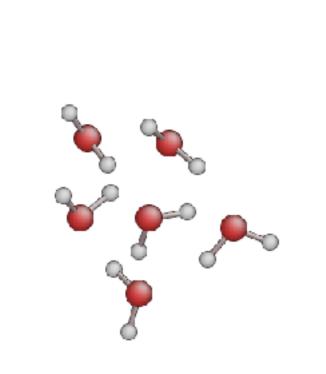


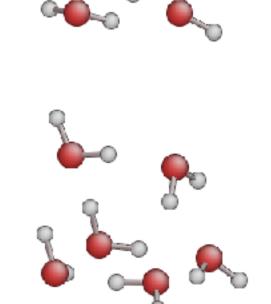
Representing atomic environments

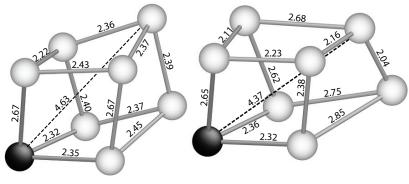
$$\{\mathbf{r}_{ij}\}_{j}^{\text{neighbours}_{i}} \longrightarrow (d_1, d_2, \dots, d_k)$$

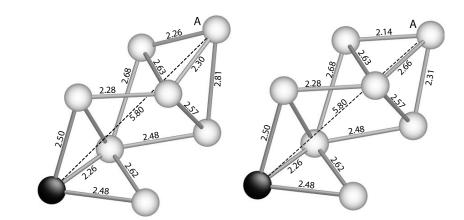
Represent a local neighbourhood configuration: "descriptor", "fingerprint", "feature vector", "symmetry function"

- Rotational, reflectional, translational and permutational invariance
- Faithfulness no two different configuration give the same representation
- Continuous, differentiable and smooth





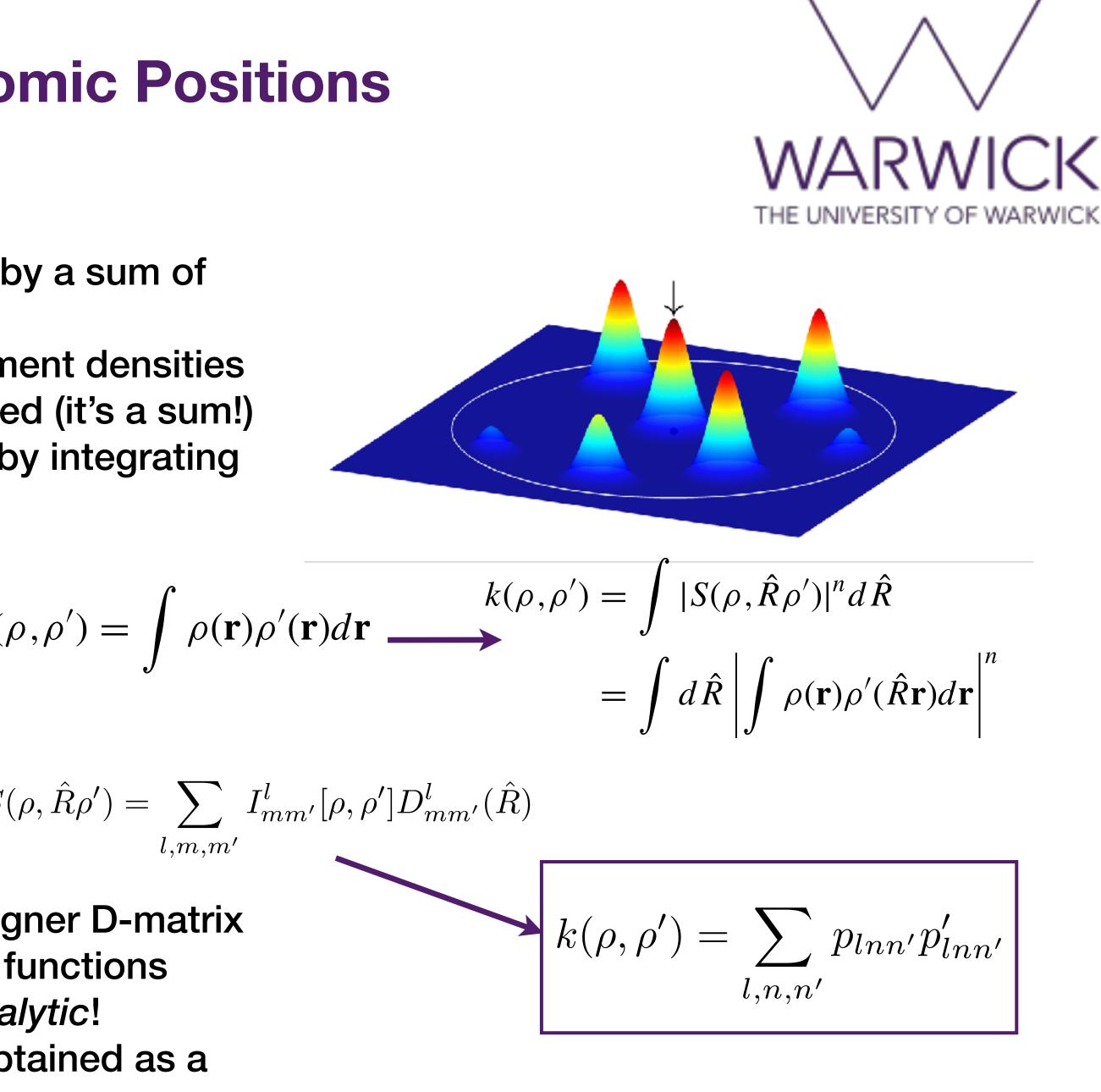




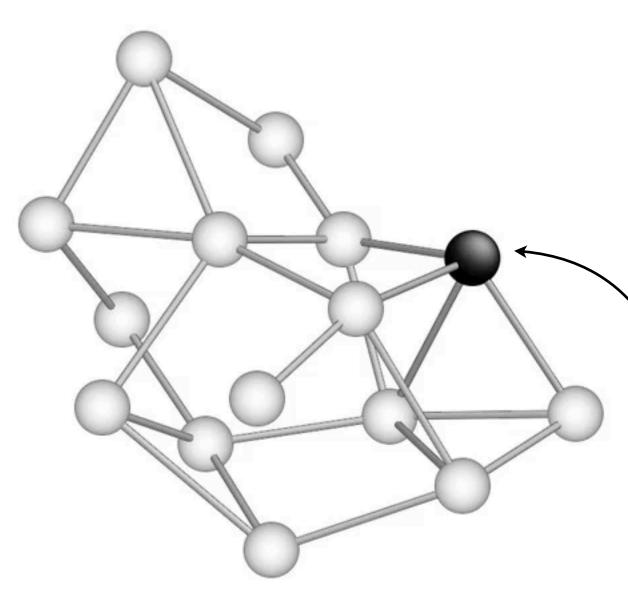
Smooth Overlap of Atomic Positions

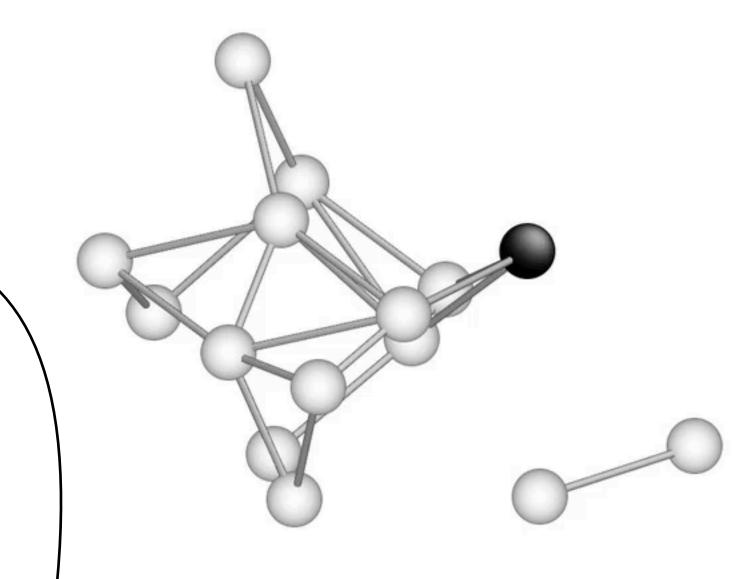
- represent atomic environment by a sum of Gaussians
- similarity is overlap of environment densities
- permutaional invariance satisfied (it's a sum!)
- rotational invariance obtained by integrating over all rotations

- basis set expansion
- overlap transforms with the Wigner D-matrix
- Wigner D-matrices orthogonal functions
- rotational integral becomes *analytic*!
- rotational invariant similarity obtained as a dot-product



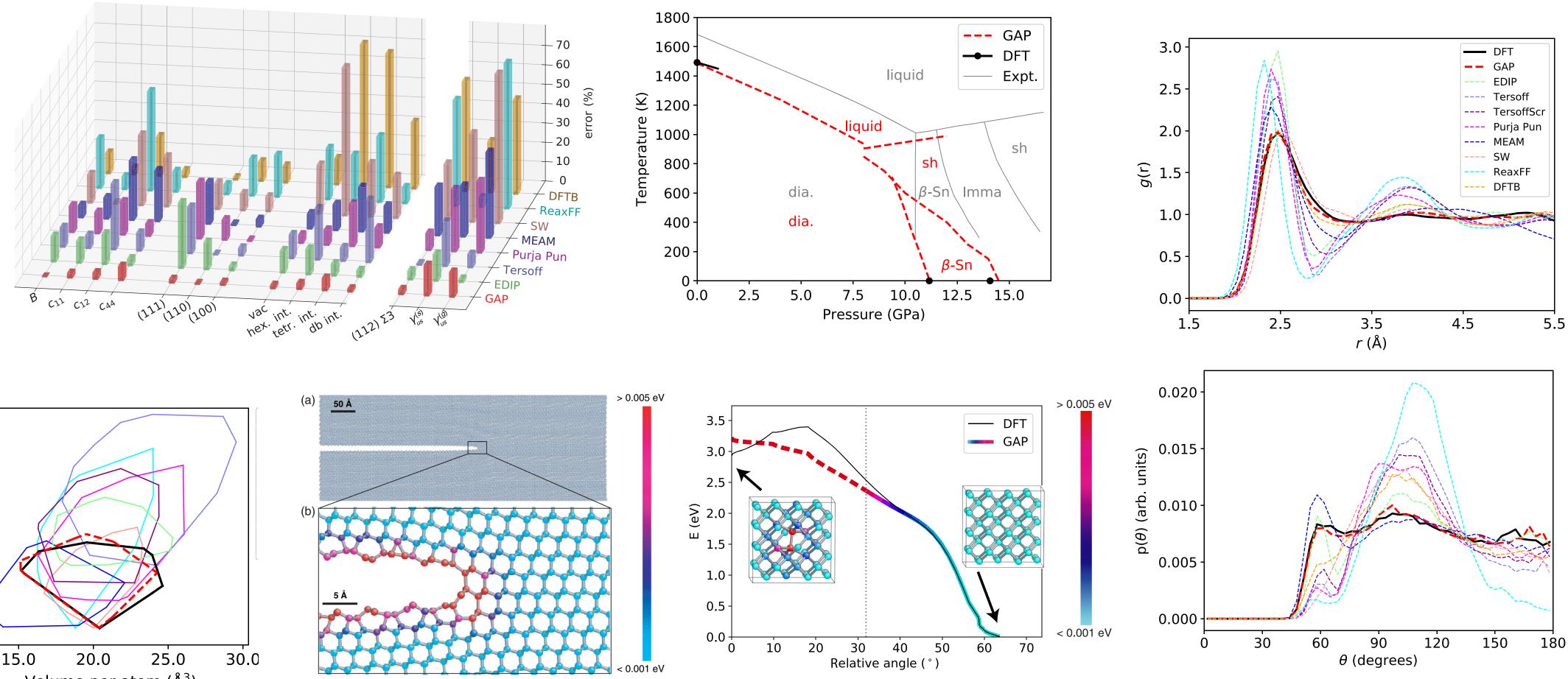
Smooth Overlap of Atomic Positions

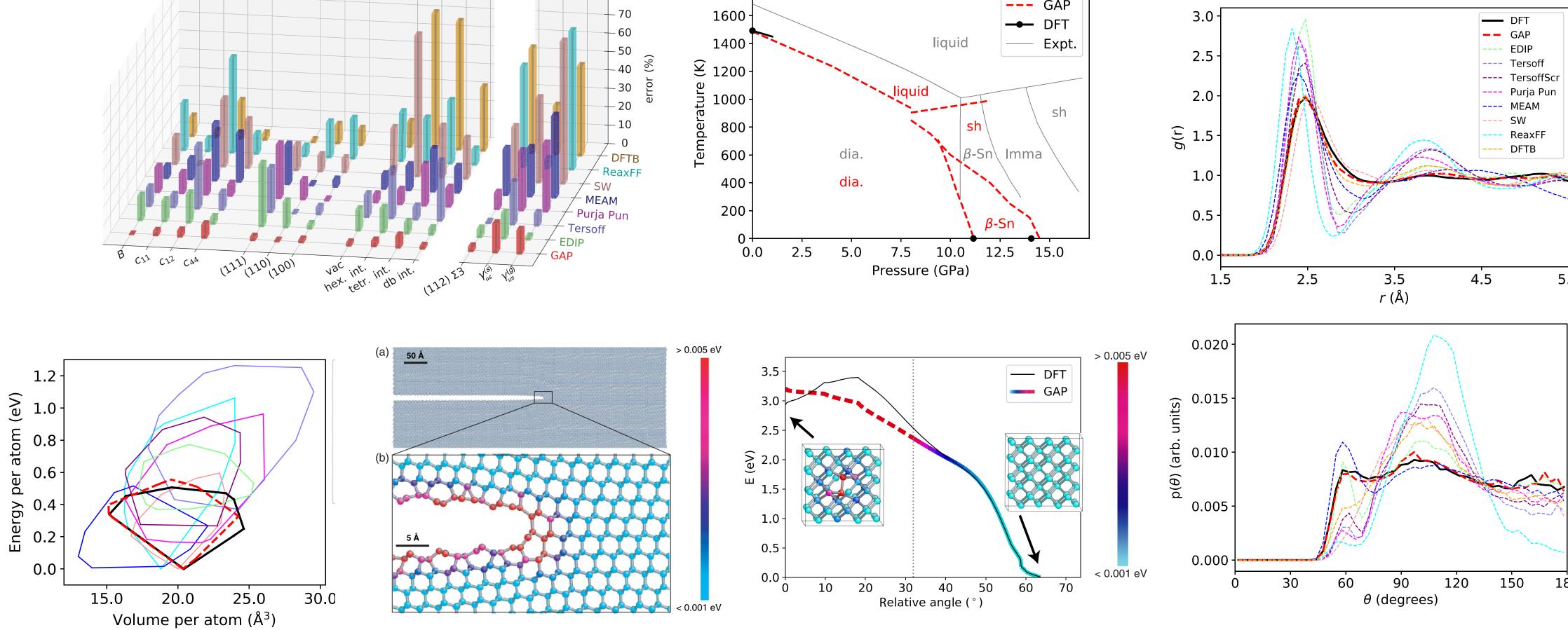




"central atom"

Gaussian Approximation Potentials: Silicon

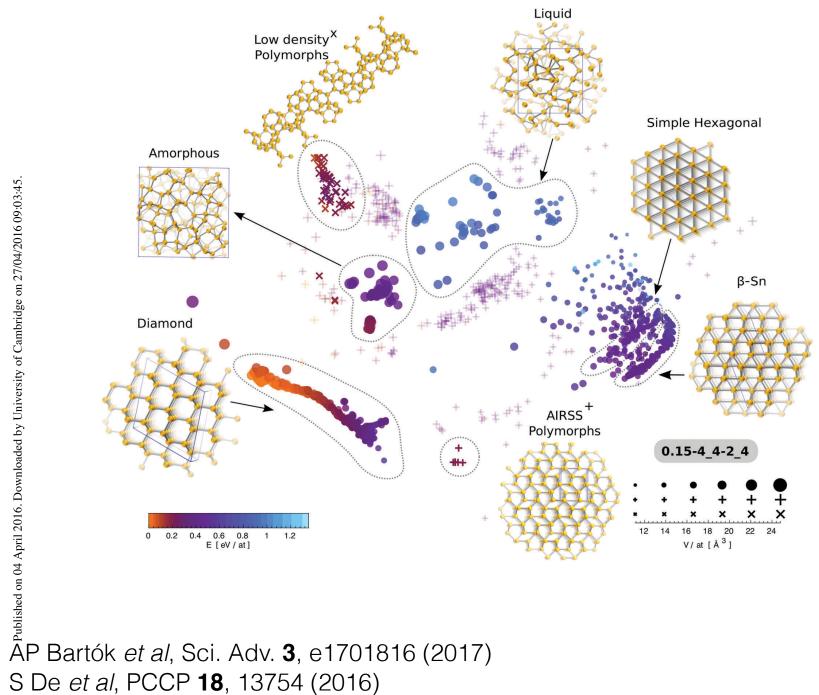


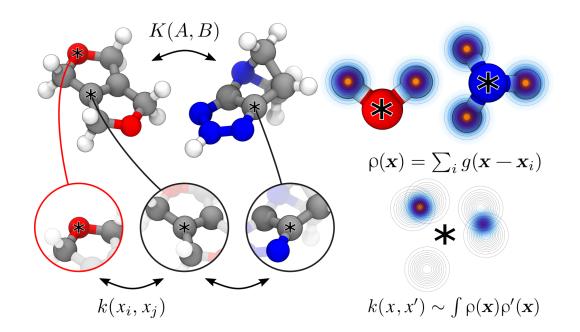


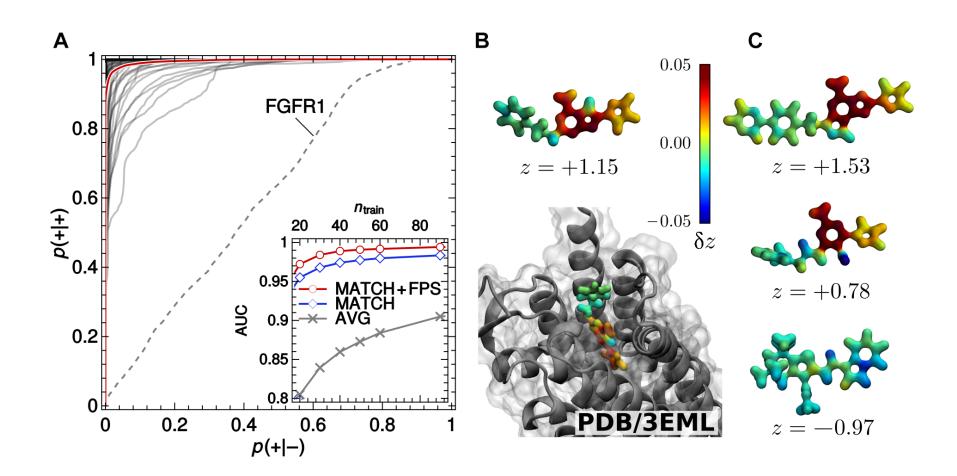
AP Bartók *et al*, PRX **8**, 041048 (2018)

Similarity of atomic structures

- in collaboration with Michele Ceriotti
- SOAP: atomic similarity
- match atomic environments across molecules or structures
- compare complete structures







Conclusions

- Inform models based on higher level theory
- Interatomic potentials based on QM data
- Machine learning glues it together

gher level theory ed on QM data ogether