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appropriate norms, where the exact exchange-correlation hole is
sufficiently localized (for example, the hydrogen atom), as guidance
across the constraints. Although SCAN uses no bonded information
in its construction, the power of α together with the strong con-
straints and appropriate norms make it accurate for diversely
bonded materials, with genuine non-empirical predictive power.

Due to the semilocal feature in the computation, meta-GGAs are
much more efficient than hybrid GGAs, which are the current
beyond-GGA choice. By mixing GGAs with non-local exact
exchange, hybrid GGAs (for example, the PBE0 hybrid GGA20,
where 25% of the exact exchange energy is mixed with 75% of PBE
GGA exchange) can further improve the description of covalent,
ionic and hydrogen bonds. However, hybrid GGAs still fail to
describe van der Waals interactions. PBE0 is especially hard to
evaluate for metallic systems, although some range-separated versions
(without long-range exact exchange) are easier. The computational
cost of a hybrid functional can be 10 to 100 times21 that of a semilocal
functional in standard plane-wave codes. Another problem with
hybrids is that a universal exact-exchange mixing parameter is not
determined by any exact condition, nor is the range-separation
parameter in a range-separated hybrid.

The SCAN meta-GGA has been shown15 to be superior to the
PBE GGA for some standard molecular test sets and a small collec-
tion of solids. The mean absolute errors for SCAN15 are smaller than
those for PBE by a factor of about 4 for the atomization energies of
the 223 G3 molecules, a factor of 3 for the binding energies of the
S22 set of weakly bound dimers of small molecules, and a factor
of 4 for the LC20 set of lattice constants for solids. SCAN is also
more accurate, by about 30%, in predicting the BH76 energy barriers
to chemical reactions. Future studies will also show that the mean
absolute errors of SCAN for the heats of formation of 94 binary
solids are smaller than those of PBE by about 30%, or a factor
of 3, for compounds with or without transition-metal elements,
respectively. However, this Article shows that SCAN has an unex-
pected and striking performance for diversely bonded systems,
many of which were believed to be out of reach of semilocal
functionals, and is comparable to or even more accurate than a
computationally more expensive hybrid GGA.

Results and discussion
Van der Waals interactions in ice phases and water hexamer
clusters. It was once believed that non-empirical semilocal
functionals and their hybrids were incapable of describing the van
der Waals bonds arising from intermediate-range van der Waals
interactions. Van der Waals interactions are typically weak, but
still important (for example, for the structures of a hydrogen-
bonded network like ice). In the binding energy difference per
H2O between one ice phase and another, the van der Waals
attraction becomes more important compared with the hydrogen-
bonding energies when the density of water molecules increases22.
Figure 1a shows that both the PBE GGA and PBE0 hybrid
significantly destabilize high-pressure phases relative to Ih (the
stable phase of ice at ambient pressure), and the addition of the
Tkatchenko–Scheffler23 van der Waals correction (vdW_TS)
improves the energy differences dramatically compared to the
experimental results or the highly accurate yet expensive diffusion
Monte Carlo (DMC) predictions22,24. Interestingly, and surprisingly,
the SCAN meta-GGA15 yields energy differences between all the
different ice phases studied here with an accuracy comparable to
that of PBE0+vdW_TS and considerably improves upon the
predictions of PBE0+vdW_TS for the energy difference between
ice Ih and the high-density phase VIII. Moreover, SCAN predicts
that ice II is 3 meV per H2O more stable than ice IX, in
agreement with experiments, while this ordering is reversed by
both PBE+vdW_TS and PBE0+vdW_TS. This might be due to
the many-body nature of the van der Waals interaction, which is

missed by the pairwise vdW_TS correction but captured by
SCAN. The lower panel of Fig. 1a also shows that SCAN predicts
the volume changes between ice phases in near-quantitative
agreement with the experimental results and thus with greater
accuracy than all other functionals considered here.

In addition to ice in its different phases, water clusters also
present a challenge for semilocal and hybrid density functionals.
Water hexamer clusters are the most notorious examples25. The
water hexamer has four low-energy configurations: prism, cage,
book and cyclic. High-level wavefunction methods25 (for example,
the coupled cluster singles and doubles with perturbative triples,
CCSD(T)) all predict the prism configuration to be the most
stable, followed by the cage, book and cyclic structures. However,
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Figure 1 | SCAN captures the intermediate-range, many-body van
der Waals interactions necessary for a quantitative description of
various ices and gas-phase water hexamers. a, The relative sublimation
energy ΔE0 and equilibrium volume change ΔV0 per water molecule of
seven hydrogen-ordered ice phases with respect to the ground-state ice Ih
illustrate that SCAN is the only functional tested that predicts the relative
stability of ice phases in quantitative agreement with experimental results.
The sublimation energy (E0) is the energy needed to break an ice into
isolated water molecules. b, The relative binding energy per water molecule
of four low-energy water hexamers similarly illustrates that SCAN is the only
semi-local density functional approximation that predicts the known
energetic ordering of these clusters, evidenced by the agreement between
SCAN and CCSD(T). The zero-point energy effects have been removed from
the experimental results46,47 for ice. Data points (and error bars) computed
by methods other than SCAN are from refs 24 and 25 for the ice phases and
water hexamers, respectively. Lines are guides to the eye.
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at the right-hand side of Fig. 21: That mismatch corre-
sponds to the stable stacking-fault energy. The GAP value
is positive but much too small, indicating that the diamond
structure is indeed the lowest-energy configuration but
underestimating the energy difference. There are four
atoms with a non-diamond-like second neighbor environ-
ment, and the DFT energy difference corresponds to a
contribution of about 10 meV from each roughly in
correspondence with the ∼2.5 meV per atom predicted
error (purple). The elevated predicted error shows that the
GAP’s range and flexibility can distinguish these environ-
ments, and the γsf value could probably be improved by
extending the database. While most potentials tested are
short ranged and give exactly zero energy, ReaxFF has a
similar value to the GAP, while MEAM gives a qualita-
tively incorrect negative γsf . The DFTB model is the only
one that accurately reproduces the DFT value.

D. Grain boundary

Another class of planar defects that is not included in
the fitting database are grain boundaries, which are the
interfaces between identical crystal lattices in different
orientations. As a simple example of these structures, we
choose the ð112ÞΣ3 tilt boundary of the diamond structure,
which can be represented by a relatively small unit cell and
can therefore be efficiently computed with the DFT. We
computed the energy per unit area of this grain boundary
with the various interatomic potentials and the DFTB, as
well as the DFT, using a cell with 48 atoms, which has a
single interface unit cell and is about 27 Å long normal to
the boundary. The resulting fractional errors relative to the
DFT value are shown in Fig. 1, and the GAP force errors for
the DFT-relaxed configuration are shown in Fig. 2. Despite
the fact that the grain boundary structure is not in the fitting
database, the GAP energy is in excellent agreement with
the DFT. The difference between the DFT- and GAP-
relaxed geometries is also small, as indicated by the small
magnitudes of the GAP forces in the DFT-relaxed geometry
(Fig. 2), and the corresponding displacements (not shown)
are nearly imperceptible. The accuracy of the other inter-
atomic potentials varies considerably, with some also in

very good agreement but others with very large energy
errors relative to the DFT reference.

E. Fourfold defect

The point defect with the lowest formation energy in the
diamond structure of silicon is the so-called “fourfold
coordinated defect” [193], which is formed by a bond
rotation followed by reconnecting all broken bonds. The
energy barrier for the reverse process (i.e., annealing out
this defect) is relatively small, and the GAPmodel does not,
in fact, stabilize this defect, as shown in Fig. 23. Indeed, the
database does not contain anything resembling the bond
rotation process or the final defect structure, which is
quantitatively shown by the predicted error. The energies of
the GAP model agree very well with those of the DFT up to
where the predicted error (taken as the maximum over all
atoms) is lower than about 3 meV per atom and strongly
deviate after that. Similarly to the planar defects, the
predicted error gives a good qualitative indication of where
the database is deficient and is in need of extension.

F. Vacancy migration

We compare the migration paths for vacancies in
63-atom diamond structure cells predicted by the various
models, as a test of their ability to describe bond-breaking
processes. The end points are relaxed with preconditioned
the Limited-memory Broyden–Fletcher–Goldfarb–Shanno
(LBFGS) scheme [220] to a maximum force tolerance
of 10−3 eV=Å, and the path is calculated as a linear

TABLE III. Stable stacking-fault energy γsf for each model.

Model γsf (J=m2)

DFT 0.047
GAP 0.002
EDIP 0.000
Tersoff 0.000
TersoffScr 0.001
Purja Pun 0.000
MEAM −0.046
SW 0.000
ReaxFF 0.004
DFTB 0.052

FIG. 23. Relaxation path of the GAP model showing the
instability of the fourfold defect as a function of the angle of
the rotating bond relative to its initial orientation. The left-hand
side of the plot corresponds to the local minimum of the fourfold
defect for the DFT model. The black curve shows the energy of
the configurations of this path evaluated with the DFT (which is
not a DFT minimum energy path but, of course, still shows a
barrier). The thick curve shows the GAP model energies, colored
according to the maximum per-atom predicted error of the GAP
model and is dashed where the predicted error exceeds the scale
maximum of 5 meV per atom.
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appropriate norms, where the exact exchange-correlation hole is
sufficiently localized (for example, the hydrogen atom), as guidance
across the constraints. Although SCAN uses no bonded information
in its construction, the power of α together with the strong con-
straints and appropriate norms make it accurate for diversely
bonded materials, with genuine non-empirical predictive power.

Due to the semilocal feature in the computation, meta-GGAs are
much more efficient than hybrid GGAs, which are the current
beyond-GGA choice. By mixing GGAs with non-local exact
exchange, hybrid GGAs (for example, the PBE0 hybrid GGA20,
where 25% of the exact exchange energy is mixed with 75% of PBE
GGA exchange) can further improve the description of covalent,
ionic and hydrogen bonds. However, hybrid GGAs still fail to
describe van der Waals interactions. PBE0 is especially hard to
evaluate for metallic systems, although some range-separated versions
(without long-range exact exchange) are easier. The computational
cost of a hybrid functional can be 10 to 100 times21 that of a semilocal
functional in standard plane-wave codes. Another problem with
hybrids is that a universal exact-exchange mixing parameter is not
determined by any exact condition, nor is the range-separation
parameter in a range-separated hybrid.

The SCAN meta-GGA has been shown15 to be superior to the
PBE GGA for some standard molecular test sets and a small collec-
tion of solids. The mean absolute errors for SCAN15 are smaller than
those for PBE by a factor of about 4 for the atomization energies of
the 223 G3 molecules, a factor of 3 for the binding energies of the
S22 set of weakly bound dimers of small molecules, and a factor
of 4 for the LC20 set of lattice constants for solids. SCAN is also
more accurate, by about 30%, in predicting the BH76 energy barriers
to chemical reactions. Future studies will also show that the mean
absolute errors of SCAN for the heats of formation of 94 binary
solids are smaller than those of PBE by about 30%, or a factor
of 3, for compounds with or without transition-metal elements,
respectively. However, this Article shows that SCAN has an unex-
pected and striking performance for diversely bonded systems,
many of which were believed to be out of reach of semilocal
functionals, and is comparable to or even more accurate than a
computationally more expensive hybrid GGA.

Results and discussion
Van der Waals interactions in ice phases and water hexamer
clusters. It was once believed that non-empirical semilocal
functionals and their hybrids were incapable of describing the van
der Waals bonds arising from intermediate-range van der Waals
interactions. Van der Waals interactions are typically weak, but
still important (for example, for the structures of a hydrogen-
bonded network like ice). In the binding energy difference per
H2O between one ice phase and another, the van der Waals
attraction becomes more important compared with the hydrogen-
bonding energies when the density of water molecules increases22.
Figure 1a shows that both the PBE GGA and PBE0 hybrid
significantly destabilize high-pressure phases relative to Ih (the
stable phase of ice at ambient pressure), and the addition of the
Tkatchenko–Scheffler23 van der Waals correction (vdW_TS)
improves the energy differences dramatically compared to the
experimental results or the highly accurate yet expensive diffusion
Monte Carlo (DMC) predictions22,24. Interestingly, and surprisingly,
the SCAN meta-GGA15 yields energy differences between all the
different ice phases studied here with an accuracy comparable to
that of PBE0+vdW_TS and considerably improves upon the
predictions of PBE0+vdW_TS for the energy difference between
ice Ih and the high-density phase VIII. Moreover, SCAN predicts
that ice II is 3 meV per H2O more stable than ice IX, in
agreement with experiments, while this ordering is reversed by
both PBE+vdW_TS and PBE0+vdW_TS. This might be due to
the many-body nature of the van der Waals interaction, which is

missed by the pairwise vdW_TS correction but captured by
SCAN. The lower panel of Fig. 1a also shows that SCAN predicts
the volume changes between ice phases in near-quantitative
agreement with the experimental results and thus with greater
accuracy than all other functionals considered here.

In addition to ice in its different phases, water clusters also
present a challenge for semilocal and hybrid density functionals.
Water hexamer clusters are the most notorious examples25. The
water hexamer has four low-energy configurations: prism, cage,
book and cyclic. High-level wavefunction methods25 (for example,
the coupled cluster singles and doubles with perturbative triples,
CCSD(T)) all predict the prism configuration to be the most
stable, followed by the cage, book and cyclic structures. However,
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Figure 1 | SCAN captures the intermediate-range, many-body van
der Waals interactions necessary for a quantitative description of
various ices and gas-phase water hexamers. a, The relative sublimation
energy ΔE0 and equilibrium volume change ΔV0 per water molecule of
seven hydrogen-ordered ice phases with respect to the ground-state ice Ih
illustrate that SCAN is the only functional tested that predicts the relative
stability of ice phases in quantitative agreement with experimental results.
The sublimation energy (E0) is the energy needed to break an ice into
isolated water molecules. b, The relative binding energy per water molecule
of four low-energy water hexamers similarly illustrates that SCAN is the only
semi-local density functional approximation that predicts the known
energetic ordering of these clusters, evidenced by the agreement between
SCAN and CCSD(T). The zero-point energy effects have been removed from
the experimental results46,47 for ice. Data points (and error bars) computed
by methods other than SCAN are from refs 24 and 25 for the ice phases and
water hexamers, respectively. Lines are guides to the eye.
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at the right-hand side of Fig. 21: That mismatch corre-
sponds to the stable stacking-fault energy. The GAP value
is positive but much too small, indicating that the diamond
structure is indeed the lowest-energy configuration but
underestimating the energy difference. There are four
atoms with a non-diamond-like second neighbor environ-
ment, and the DFT energy difference corresponds to a
contribution of about 10 meV from each roughly in
correspondence with the ∼2.5 meV per atom predicted
error (purple). The elevated predicted error shows that the
GAP’s range and flexibility can distinguish these environ-
ments, and the γsf value could probably be improved by
extending the database. While most potentials tested are
short ranged and give exactly zero energy, ReaxFF has a
similar value to the GAP, while MEAM gives a qualita-
tively incorrect negative γsf . The DFTB model is the only
one that accurately reproduces the DFT value.

D. Grain boundary

Another class of planar defects that is not included in
the fitting database are grain boundaries, which are the
interfaces between identical crystal lattices in different
orientations. As a simple example of these structures, we
choose the ð112ÞΣ3 tilt boundary of the diamond structure,
which can be represented by a relatively small unit cell and
can therefore be efficiently computed with the DFT. We
computed the energy per unit area of this grain boundary
with the various interatomic potentials and the DFTB, as
well as the DFT, using a cell with 48 atoms, which has a
single interface unit cell and is about 27 Å long normal to
the boundary. The resulting fractional errors relative to the
DFT value are shown in Fig. 1, and the GAP force errors for
the DFT-relaxed configuration are shown in Fig. 2. Despite
the fact that the grain boundary structure is not in the fitting
database, the GAP energy is in excellent agreement with
the DFT. The difference between the DFT- and GAP-
relaxed geometries is also small, as indicated by the small
magnitudes of the GAP forces in the DFT-relaxed geometry
(Fig. 2), and the corresponding displacements (not shown)
are nearly imperceptible. The accuracy of the other inter-
atomic potentials varies considerably, with some also in

very good agreement but others with very large energy
errors relative to the DFT reference.

E. Fourfold defect

The point defect with the lowest formation energy in the
diamond structure of silicon is the so-called “fourfold
coordinated defect” [193], which is formed by a bond
rotation followed by reconnecting all broken bonds. The
energy barrier for the reverse process (i.e., annealing out
this defect) is relatively small, and the GAPmodel does not,
in fact, stabilize this defect, as shown in Fig. 23. Indeed, the
database does not contain anything resembling the bond
rotation process or the final defect structure, which is
quantitatively shown by the predicted error. The energies of
the GAP model agree very well with those of the DFT up to
where the predicted error (taken as the maximum over all
atoms) is lower than about 3 meV per atom and strongly
deviate after that. Similarly to the planar defects, the
predicted error gives a good qualitative indication of where
the database is deficient and is in need of extension.

F. Vacancy migration

We compare the migration paths for vacancies in
63-atom diamond structure cells predicted by the various
models, as a test of their ability to describe bond-breaking
processes. The end points are relaxed with preconditioned
the Limited-memory Broyden–Fletcher–Goldfarb–Shanno
(LBFGS) scheme [220] to a maximum force tolerance
of 10−3 eV=Å, and the path is calculated as a linear

TABLE III. Stable stacking-fault energy γsf for each model.

Model γsf (J=m2)

DFT 0.047
GAP 0.002
EDIP 0.000
Tersoff 0.000
TersoffScr 0.001
Purja Pun 0.000
MEAM −0.046
SW 0.000
ReaxFF 0.004
DFTB 0.052

FIG. 23. Relaxation path of the GAP model showing the
instability of the fourfold defect as a function of the angle of
the rotating bond relative to its initial orientation. The left-hand
side of the plot corresponds to the local minimum of the fourfold
defect for the DFT model. The black curve shows the energy of
the configurations of this path evaluated with the DFT (which is
not a DFT minimum energy path but, of course, still shows a
barrier). The thick curve shows the GAP model energies, colored
according to the maximum per-atom predicted error of the GAP
model and is dashed where the predicted error exceeds the scale
maximum of 5 meV per atom.
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electrons it must be complemented by electrostatic and dispersion interactions. These long

range terms can either remain completely empirical, but may also include parameters that

are fitted to data using approaches similar to what are used for the local term.

Gaussian Process Regression

We first consider the case of a single type of local energy functional. Using a set of arbitrary

basis functions {�h}Hh=1 that take as their arguments any descriptor di of the neighbour

environment of atom i, we write the atomic energy "i as
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where w is a vector of weights wh corresponding to the basis functions, to be determined

by the fit. If the prior probability distribution of the weights is chosen to be Gaussian with
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Kernel functions in this application are to be understood as similarity measures between

two atomic neighbour environments. Every basis set induces a corresponding kernel, and as

seen below, only the kernel is required for regression, we never need to construct a basis set

in the space of descriptors explicitly. General requirements on kernel functions are in the

literature7,9.
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be the local atomic energies or the total energies of all atoms in a set of configurations—
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Gaussian Process Regression
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electrons it must be complemented by electrostatic and dispersion interactions. These long

range terms can either remain completely empirical, but may also include parameters that

are fitted to data using approaches similar to what are used for the local term.

Gaussian Process Regression
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Total energies

Atomic energies are unavailable in quantum mechanical calculations, which only provide the

total energy and its derivatives. From these, we have to predict the local energies. It is

straightforward to modify equation (3) to express the covariance of the total energies of two

set of atoms, N and M,
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Derivatives

The total quantum mechanical energy of a configuration depends on the relative positions of

the atoms and, in case of condensed systems, also the lattice parameters. Denoting a general

coordinate by ⇠, the partial derivative of the total energy is related to the force as
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or to the viral stress as
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where rk↵ is the ↵-th component of the Cartesian coordinates of atom k and h↵� is an

element of the deformation matrix H of the lattice vectors. Di↵erentiating equation (12)

with respect to an arbitrary coordinate ⇠k of configuration N results in
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If ⇠k is the x, y, or z component of the position of atom k, @di
@⇠k

becomes exactly zero if

the pair distance |ri � rk| is beyond the cuto↵ of the environment, so the first sum need

not be done over all atoms in the configuration. Similarly, the covariance of two derivative

quantities may be written as
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6

+ long range

• model: total energy is a sum 
of atomic many-body 
energies 

• result: covariance of total 
energies is sum up atomic 
covariance functions 

• we have just defined a 
covariance function for total 
energies!

Gaussian Process 
model

Quantum Mechanical 
observable (total energy)

Interatomic Potentials from Machine Learning
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E Solak et al, NIPS 15, 529 (2003)

• compute the covariance 
between energies and forces/
virials 

• or compute the covariances 
between forces/virals 

• new covariance functions of 
the same total energy model!

Cartesian coordinate 
or cell deformationFurther quantum mechanical 

observables: forces, stresses

Interatomic Potentials from Machine Learning



• Generate database of relevant configurations 
• Compute QM observables  

(energy, force, stress) 
• forces provide rich information on PES 
• energies set scale and connect minima correctly 
• viral stresses capture the really soft response to 

deformation

force errors than any other potential tested, with a median
of about 0.025 eV=Å, an order of magnitude smaller than
for the analytical potentials. The testing database, which
consists of a grain boundary, six di-interstitials, the unre-
laxed and relaxed shuffle and glide generalized stacking-

fault paths, and an amorphous configuration, shows a very
similar distribution of the force error, although the actual
errors are strongly dependent on the type of geometry, so
changing the proportions of each could change the resulting
distribution somewhat.

TABLE I. Summary of the database for the silicon model. The first column shows the number of atoms in the periodic unit cells, and
the second column shows the number of such unit cells in the database, while the third column is the product of the first two and, thus,
shows the number of atoms (and, therefore, atomic environments) in the database for each structure type. The fourth column shows the
number of representative atoms picked automatically from each structure type by the CUR algorithm (see the text). The last three
columns show the regularization we use in the linear system (empty rows correspond to using the defaults, given at the top).

σenergy σforce σvirial

default values:

Structure type No. atoms No. structures No. environments No. representative atoms 0.001 0.1 0.05

Isolated atom 1 1 1 1
Diamond 2 104 208 6

16 220 3520 53
54 110 5940 58

128 55 7040 92
β-Sn 2 60 120 32

16 220 3520 51
54 110 5940 66

128 55 7040 157
Simple hexagonal 1 110 110 13

8 30 240 15
27 30 810 42
64 53 3392 89

Hexagonal diamond 4 49 196 7
bcc 2 49 98 40
bc8 8 49 392 66
fcc 4 49 196 46
hcp 2 49 98 28
st12 12 49 588 94
Liquid 64 69 4416 1114 0.003 0.15 0.2

128 7 896 323
Amorphous 64 31 1984 231 0.01 0.2 0.4

216 128 27 648 1719
Diamond surface (001) 144 29 4176 514

Decohesion 32 11 352 28
Diamond surface (110) 108 26 2808 338

Decohesion 16 11 176 8
Diamond surface (111)

Decohesion 24 11 264 10
Unreconstructed 96 47 4512 573
Adatom 146 11 1606 62
Pandey reconstruction 96 50 4800 632
DAS 3 × 3 unrelaxed 52 1 52 6

Diamond vacancy 63 100 6300 168
215 111 23 865 405

Diamond divacancy 214 78 16 692 416
Diamond interstitial 217 115 24 955 605
Small (110) crack tip 200 7 1400 130
Small (111) crack tip 192 10 1920 185
Screw dislocation core 144 19 2736 124
sp2 bonded 8 51 408 61
sp bonded 4 100 400 392 0.01 0.2 0.4

Total 2475 171 815 9000

MACHINE LEARNING A GENERAL-PURPOSE … PHYS. REV. X 8, 041048 (2018)

041048-9

AP Bartók et al, PRX 8, 041048 (2018)
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Represent a local neighbourhood configuration: 
“descriptor”, “fingerprint”, “feature vector”, “symmetry 
function” 

• Rotational, reflectional, translational and 
permutational invariance 

• Faithfulness - no two different configuration give the 
same representation 

• Continuous, differentiable and smooth

ALBERT P. BARTÓK, RISI KONDOR, AND GÁBOR CSÁNYI PHYSICAL REVIEW B 87, 184115 (2013)

Given N neighbors, the number of independent degrees of
freedom in the neighborhood configuration is 3N − 3, so we
need at most this many algebraically independent descriptor
elements. But, because the algebraic dependency relationships
between the descriptor elements are in general complicated, it
is unclear how many descriptor elements are actually needed
in order to make the descriptor complete and thus able to
uniquely specify an atomic environment of the N neighbors.
However, it is possible to conduct numerical experiments in
which we compare the descriptors of a fixed target with that of
a candidate structure and minimize the difference with respect
to the atomic coordinates of the candidate. In this way, we
determine if a representation is likely to be complete or not, and
in the latter case to characterize the degree of its faithfulness.

1. Descriptor matching procedure

The global minimum of the descriptor difference between
the target and the candidate is zero and is always attained on a
manifold due to the symmetries built into the descriptors, but
for an incomplete descriptor, many inequivalent structures will
also appear equivalent, thus enlarging the dimensionality of the
global minimum manifold. Furthermore, it can be expected
that the descriptor difference function has a number of local
minima.

In our experiments, we tried to recover a given target
structure after randomizing its atomic coordinates. For each
n (4 ! n ! 19) we used 10 different Sin clusters as targets,
obtained from a tight-binding59 molecular dynamics trajectory
run at a temperature of 2000 K. For each target cluster, we
selected one atom as the origin, randomized the positions of
its neighbors by some amount, and then tried to reconstruct
the original structure by minimizing the magnitude of the
difference between the descriptors of the fixed target and
the candidate as the atomic positions of the latter were
varied.

In contrast to a general global minimum search problem,
we have the advantage of knowing the target value of the
objective function at the global minimum. Also, the motivation
of our experiments is to find at least one configuration,
if it exists, that is genuinely different from the target, but
where the descriptors match within a predefined numerical
tolerance. Thus, it is sufficient to perform local, gradient-based
optimizations starting from random configurations, and reject
all local minima (by noting the small gradient of the objective
function while the value of the objective function is not small)
until we find one where the objective function (the difference
in the descriptors) is less than than the specified tolerance. If
the configuration thus obtained is genuinely different from the
target, the descriptor is shown to be incomplete.

In order to assess the success of the reconstruction pro-
cedure (i.e., whether the target and candidate configurations
are genuinely different or not) we employed the reference
measures defined in Eqs. (7) and (8). However, in some cases
it was difficult or impossible to find the right rotation R̂ in (8),
whereas dref in (7) proved reliable. For each dref , an initial
P was generated by ordering the atoms according to their
distances from the central atom, then the optimal permutation
was found using a simple random search in the space of
permutations.
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FIG. 8. Two Si8 clusters that differ by dref = 4.1 Å
2
. The black

atoms are taken as the origin in each environment, i.e., the centers
of rotations. In terms of Parrinello-Behler–type descriptors, the
difference

∑
α(Gα − G′

α)2 between the two atomic environments is
6 × 10−7. The bond lengths are shown in Ångströms.

We minimized the difference between the target and
candidate descriptors in the space of atomic coordinates of
the latter using the conjugate gradients algorithm, stopping the
minimization when either the gradient or the reference distance
dref became smaller than 10−8 Å2 and 10−2 Å2, respectively.
In order to ensure that structures deemed nonequivalent by
dref > 10−2 Å2 were genuinely different, we cross checked
them by noting the value of " from Eq. (8) and also employing
the atomic fingerprints suggested by Oganov and Valle.42 To
give a sense of the typical magnitude of the dref measure, the
actual difference in terms of atomic distances between two
example structures is shown in Fig. 8.

In the first set of reconstruction experiments, in order to
provide a fair comparison, the truncation of the formally
infinite set of descriptors was chosen in such a way that the
finite descriptors had roughly equal numbers of components:
51 in total for the SO(3) bispectrum and PB descriptors and 50
for the AFS and SO(3) power spectrum. This corresponds to a
truncation of the SO(4) bispectrum with 2jmax = 5 (the factor
of 2 on account of the half-integer nature of j ), the SO(3)
bispectrum with lmax = 4 and nmax = 3, the PB descriptor
with its published parameters,57 and the AFS and SO(3) power
spectrum using lmax = 9 and nmax = 5. We note that in the case
of the PB descriptor, the band limit of the angular descriptors
(corresponding to our lmax or jmax) was ζmax = 16 and only the
values ζ = 1,2,4,16 are used.

Figure 9 shows the quality of reconstruction for different
cluster sizes, based on the PB, AFS, SO(3) power spectrum,
SO(3) bispectrum, and SO(4) bispectrum as given by the ref-
erence distance dref achieved, averaged over 10 reconstruction
trials for each cluster size n. The general trend is the same
for all descriptors: as the number of neighbors increases,
the average dref increases, and thus the faithfulness of the
reconstruction decreases. Noting that the stopping criterion
for the reconstruction process was dref < 10−2 Å2, larger
randomization of the initial atomic coordinates (bottom panel)
reveals the poor representation power for all descriptors using
this parameter set for n > 10, and the neighbor configuration
becomes impossible to determine from the descriptor.

The poor quality of representation is partly attributable
to the decrease in sensitivity to the positions of atoms near
the cutoff. For example, Fig. 10 shows two Si8 clusters for
which none of the descriptors lead to perfect reconstructions
(resulting in the observed peak on Fig. 9). The atom marked
A in the figure is within the 6-Å cutoff, but close to it. In
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FIG. 9. Difference between the target and reconstructed struc-
tures after randomization and minimization for randomizations of
0.2 Å (top) and 1.6 Å (bottom) as a function of the number of
atoms in the cluster n averaged over 10 targets for each cluster size.
The radial cutoff was 6 Å. Different lines correspond to different
descriptors: Parrinello-Behler (PS), angular Fourier series (AFS),
bispectrum (BS), and power spectrum (PS). The two versions of the
bispectrum differ in the handling of the radial degrees of freedom.
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FIG. 10. Two Si8 clusters that differ by dref = 0.7 Å
2
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reference atom, i.e., the center of the rotation, is colored black. The
only difference between the two clusters is the relative position of
the furthest atom A.
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FIG. 11. Difference between the target and reconstructed struc-
tures after randomization by 1.6 Å and minimization, as a function
of the number of atoms in the cluster n averaged over 10 targets for
each cluster size. The cutoff was 9 Å. The line types corresponding
to the different descriptors are the same as in Fig. 9.

order to separate out this effect, we repeated the reconstruction
experiments with a radial cutoff of 9 Å (omitting the PB
descriptor now since there is no published parameter set for
this cutoff). The results are shown in Fig. 11 for the larger
initial randomization. The peak near n = 8 is now absent, and
the transition from faithful reconstruction [for n ! 9 for the
SO(3) power spectrum and AFS, and for n ! 12 for the SO(4)
bispectrum] to failure for larger n is much clearer.

Since all the descriptors are likely to be overcomplete
when the infinite series of the basis set expansion is not
truncated, the reconstruction quality is expected to increase
with increasing descriptor length. To verify this, Fig. 12
shows the reconstruction quality of the AFS descriptor for
varying truncations of the angular part of the basis set.
The representation becomes monotonically better for higher
angular resolutions. However, this comes at the price of
introducing ever more highly oscillating basis functions, which
might be less and less suitable for fitting generally smooth
potential energy surfaces.

Figure 12 also shows the achieved reference values when
using the SOAP similarity measure. In this case, rather than
minimizing the difference between descriptors, we optimized
the candidate structure until its normalized similarity to the
target as given by Eq. (36) was as close to unity as possible. In
contrast to the other descriptors, SOAP with the modest band
limit of lmax = 6 performs perfectly for all structures, without
showing any degradation for larger numbers of neighbors.

To verify that the above results are not affected by artifacts
of the minimization procedure, e.g., getting stuck, Fig. 13
shows the convergence of the reference measure dref during
a minimization as well as the corresponding convergence
of the target function (the difference between the target and
candidate descriptors). There was no difficulty in converging
the target function to zero (the global minimum) for any of
the complete (or overcomplete) descriptors or SOAP, while
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• represent atomic environment by a sum of 
Gaussians 

• similarity is overlap of environment densities 
• permuational invariance satisfied (it’s a sum!) 
• rotational invariance obtained by integrating 

over all rotations 

• basis set expansion 
• overlap transforms with the Wigner D-matrix 
• Wigner D-matrices orthogonal functions 
• rotational integral becomes analytic! 
• rotational invariant similarity obtained as a 
dot-product

between the constituent atoms, 15 in total. However, this descriptor in this form is not

invariant to permuting atoms of the same element. If exchange of hydrogen atoms between

di↵erent molecules is not permitted, the following permutations P̂ that operate on the order

of atoms must be taken in account:

(i) swaps of water molecules in the dimer (2)

(ii) exchange of hydrogen atoms within each molecule (2⇥ 2),

so 8 in total. Instead of modifying the descriptor, we enforced permutation symmetry at

the level of the kernel function. If we take an arbitrary kernel function, C(d,d0), that takes

vector arguments, we can generate a permutational invariant kernel as

C 0(d,d0) =
X

P̂

C(d, P̂d
0), (34)

which must be normalised9:

C 00(d,d0) =
C 0(d,d0)p

C 0(d,d)
p
C 0(d0,d0)

. (35)

We used the squared exponential as our starting kernel in the case of water molecules.

SOAP

We note that our previously introduced12 kernel based on “Smooth Overlap of Atomic Posi-

tions” may be interpreted from the function-space view we used throughout this manuscript.

We represent the atomic neighbourhood of atom i by the neighbourhood density function

(for illustration, see Figure 1)
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✓
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◆
, (36)

and "i, the atomic energy of atom i can then be regarded as a functional of ⇢i

"i = "[⇢i] =

Z
w(r)⇢i(r)dr (37)

where the prior distribution of the weights is Gaussian, so

hw(r)w(r0)i = �(r� r
0)�2

w
, (38)
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angular band limit, the radial basis and also which subset of
the basis elements are actually used. As we have shown in
Sec. II, the key to PES fitting is not the descriptors per se, but
the similarity measure K(q,q′) that is constructed from the
descriptors. This suggests an alternative approach, in which
descriptors are bypassed altogether, and a similarity measure
between atomic neighborhoods is constructed directly. The
criteria for a good similarity measure is not only that it
be invariant to symmetry operations of the atoms of each
environment and have a well-defined limit when comparing
two identical or two very different environments, but also that
it change smoothly with the Cartesian atomic coordinates.

We define the similarity of two atomic environments
directly as the inner product of two atomic neighbor densities
ρ and ρ ′ [defined in Eq. (9)],

S(ρ,ρ ′) =
∫

ρ(r)ρ ′(r)dr. (29)

This clearly satisfies the permutational invariance criterion.
Integrating Eq. (29) over all possible rotations of one of the
environments leads to a rotationally invariant similarity kernel

k(ρ,ρ ′) =
∫

|S(ρ,R̂ρ ′)|ndR̂

=
∫

dR̂

∣∣∣∣

∫
ρ(r)ρ ′(R̂r)dr

∣∣∣∣
n

. (30)

It is easy to see that for n = 1, all angular information
(the relative orientation of individual atoms) is lost because
the order of the two integrations can be exchanged, but
for n ! 2 the kernel retains the angular information of the
original environments. The obvious practical difficulty with
this construction is the evaluation of the angular integral, which
is addressed next.

A. Analytic evaluation a smooth similarity kernel

Retaining the Dirac-delta functions in the definition of
the atomic neighbor density would lead to a discontinuous
similarity kernel in that the dissimilarity between two envi-
ronments with very close but not identical atomic positions
would be large. Therefore, instead of the Dirac-delta functions,
we construct the atomic neighbor density using Gaussians,
expanded in terms of spherical harmonic functions as58

exp(−α|r − ri |2)

= 4π exp
[
−α

(
r2 + r2

i

)] ∑

lm

ιl(2αrri) Ylm(r̂) Y ∗
lm(r̂i),

(31)

where ιl are the modified spherical Bessel functions of the first
kind. The atomic neighbor density function is then defined as
a sum of Gaussians with one centered on each neighbor,

ρ(r) =
∑

i

exp(−α|r − ri |2) =
∑

i

∑

lm

ci
lm(r)Ylm(r̂), (32)

where

ci
lm(r) ≡ 4π exp

[
−α

(
r2 + r2

i

)]
ιl(2αrri)Y ∗

lm(r̂i).

The overlap between an atomic environment (unprimed)
and a rotated environment (primed) is

S(R̂) ≡ S(ρ,R̂ρ ′) =
∫

dr ρ(r)ρ ′(R̂r)

=
∑

i,i ′

∑

l,m
l′,m′,m′′

Dl′

m′m′′ (R̂)
∫

dr ci∗
lm(r)ci ′

l′m′(r)
∫

d r̂ Y ∗
lm(r̂)Yl′m′′ (r̂)

=
∑

i,i ′

∑

l,m,m′

Ĩ l
mm′ (α,ri,ri ′)Dl

mm′(R̂) =
∑

l,m,m′

I l
mm′D

l
mm′(R̂),

where the integral of the coefficients is

Ĩ l
mm′(α,ri,ri ′)

= 4π exp
[
−α

(
r2
i + r2

i ′
)/

2
]
ιl (αriri ′) Ylm(r̂i)Y ∗

lm(r̂i ′)

and

I l
mm′ ≡

∑

i,i ′

Ĩ l
mm′ (α,ri,ri ′ ). (33)

The rotationally invariant kernel with n = 2 then becomes

k(ρ,ρ ′) =
∫

dR̂ S∗(R̂)S(R̂)

=
∑

l,m,m′λ,µ,µ′

(
I l
mm′

)∗
I λ
µµ′

∫
dR̂ D∗(R̂)lmm′D(R̂)λµµ′

=
∑

l,m,m′

(
I l
mm′

)∗
I l
mm′ , (34)

where we used the orthogonality of the Wigner matrices.
Although in practice we always use n = 2, it is easy to derive
the kernel for any arbitrary order n using the Clebsch-Gordan
series in Eq. (18). For n = 3, using the fact that S as defined
in Eq. (29) is real and positive,

k(ρ,ρ ′) =
∫

dR̂ S(R̂)3,

which can be shown to be

k(ρ,ρ ′) =
∑

I l1
m1m

′
1
I l2
m2m

′
2
I l
mm′C

lm
l1m1l2m2

Clm′

l1m
′
1l2m

′
2
. (35)

Raising a positive-definite function to a positive integer power
yields a function that is similarly positive definite. In our
context, raising k to some power ζ ! 2 has the effect of ac-
centuating the sensitivity of the kernel to changing the atomic
positions, which we generally found to be advantageous in
experiments. Therefore, following normalization by dividing
by

√
k(ρ,ρ)k(ρ ′,ρ ′), we define the general form of what we

call the SOAP kernel as

K(ρ,ρ ′) =
(

k(ρ,ρ ′)√
k(ρ,ρ)k(ρ ′,ρ ′)

)ζ

, (36)

where ζ is any positive integer.

B. Radial basis and relation to spectra

Note that I l
mm′ needs to be computed for each pair of

neighbors, which can become expensive for a large number of
neighbors. If we expand Eq. (32) using radial basis functions
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angular band limit, the radial basis and also which subset of
the basis elements are actually used. As we have shown in
Sec. II, the key to PES fitting is not the descriptors per se, but
the similarity measure K(q,q′) that is constructed from the
descriptors. This suggests an alternative approach, in which
descriptors are bypassed altogether, and a similarity measure
between atomic neighborhoods is constructed directly. The
criteria for a good similarity measure is not only that it
be invariant to symmetry operations of the atoms of each
environment and have a well-defined limit when comparing
two identical or two very different environments, but also that
it change smoothly with the Cartesian atomic coordinates.

We define the similarity of two atomic environments
directly as the inner product of two atomic neighbor densities
ρ and ρ ′ [defined in Eq. (9)],

S(ρ,ρ ′) =
∫

ρ(r)ρ ′(r)dr. (29)

This clearly satisfies the permutational invariance criterion.
Integrating Eq. (29) over all possible rotations of one of the
environments leads to a rotationally invariant similarity kernel

k(ρ,ρ ′) =
∫
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∫
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∫
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It is easy to see that for n = 1, all angular information
(the relative orientation of individual atoms) is lost because
the order of the two integrations can be exchanged, but
for n ! 2 the kernel retains the angular information of the
original environments. The obvious practical difficulty with
this construction is the evaluation of the angular integral, which
is addressed next.

A. Analytic evaluation a smooth similarity kernel

Retaining the Dirac-delta functions in the definition of
the atomic neighbor density would lead to a discontinuous
similarity kernel in that the dissimilarity between two envi-
ronments with very close but not identical atomic positions
would be large. Therefore, instead of the Dirac-delta functions,
we construct the atomic neighbor density using Gaussians,
expanded in terms of spherical harmonic functions as58

exp(−α|r − ri |2)

= 4π exp
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(
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where ιl are the modified spherical Bessel functions of the first
kind. The atomic neighbor density function is then defined as
a sum of Gaussians with one centered on each neighbor,
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The overlap between an atomic environment (unprimed)
and a rotated environment (primed) is

S(R̂) ≡ S(ρ,R̂ρ ′) =
∫

dr ρ(r)ρ ′(R̂r)

=
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i,i ′

∑
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The rotationally invariant kernel with n = 2 then becomes
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where we used the orthogonality of the Wigner matrices.
Although in practice we always use n = 2, it is easy to derive
the kernel for any arbitrary order n using the Clebsch-Gordan
series in Eq. (18). For n = 3, using the fact that S as defined
in Eq. (29) is real and positive,

k(ρ,ρ ′) =
∫

dR̂ S(R̂)3,

which can be shown to be

k(ρ,ρ ′) =
∑
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m1m

′
1
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m2m

′
2
I l
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Raising a positive-definite function to a positive integer power
yields a function that is similarly positive definite. In our
context, raising k to some power ζ ! 2 has the effect of ac-
centuating the sensitivity of the kernel to changing the atomic
positions, which we generally found to be advantageous in
experiments. Therefore, following normalization by dividing
by

√
k(ρ,ρ)k(ρ ′,ρ ′), we define the general form of what we

call the SOAP kernel as

K(ρ,ρ ′) =
(

k(ρ,ρ ′)√
k(ρ,ρ)k(ρ ′,ρ ′)

)ζ

, (36)

where ζ is any positive integer.

B. Radial basis and relation to spectra

Note that I l
mm′ needs to be computed for each pair of

neighbors, which can become expensive for a large number of
neighbors. If we expand Eq. (32) using radial basis functions
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set into training, testing, and validation. This is partly
because this has been done many times before for the same
kernel, representation, and approach to parameter choice
that we use here and partly because the SOAP kernel does
not have hyperparameters that are worth optimizing: They
are dictated by the length and energy scales inherent in
atomic interactions, which are well known. (The other
parameters in the regression correspond to accuracy targets
on a few classes of configurations.) Ultimately, the paper is
about the validation on material properties, and all those are
based on atomic configurations which are themselves not in
the training set.
Figure 1 provides an overview of many of the verifica-

tion and validation tests carried out for our new silicon

GAP model in comparison to the empirical analytical
models mentioned above. While the individual tests are
discussed in more detail below, we present an overview
here. The first three groups of quantities in the figure are
verification tests, in the sense that they require accuracy on
configurations which are directly represented in the training
set. These are split into three classes of test: bulk properties,
surfaces, and point defects. Bulk properties, namely, the
bulk modulus B and diamond cubic elastic constants C11,
C12, and C44, are well reproduced by the GAP model with
fractional errors relative to the DFT of less than 10%; none
of the other interatomic potentials reach this accuracy,
although in many cases they are fit to different training data
(e.g., an experiment or simply other exchange-correlation

FIG. 1. Comparison of percentage errors made by a range of interatomic potentials for selected properties, with respect to our DFT
reference. Those on the left of the break in the axis are interpolative, i.e., well represented within a training set of the GAP model: elastic
constants (bulk modulus B, stiffness tensor components Cij), unreconstructed (but relaxed) surface energies [(111), (110), and (100)
low-index surfaces], point-defect formation energies (vacancy and hexagonal, tetrahedral, and dumbbell interstitials); while the planar
defects to the right are extrapolative: (112) Σ3 symmetric tilt grain boundary and unstable stacking-fault energies on shuffle plane γðsÞus

and glide plane γðgÞus . The first row in the corresponding table shows reference quantities computed with the DFT (units indicated in the
header row).

MACHINE LEARNING A GENERAL-PURPOSE … PHYS. REV. X 8, 041048 (2018)

041048-5

B. Liquid

To simulate the structure of liquid silicon with each
interatomic potential and DFTB, we use constant-pressure
(P ¼ 0 GPa) molecular dynamics as implemented in the
QUIP package through the quippy PYTHON interface [172].
A 2 × 2 × 2 supercell of the eight-atom diamond cubic cell
(64 atoms total) is heated from T ¼ 0 K to T ¼ 5000 K for
rapid melting over 20 000 0.5 fs time steps and then
equilibrated at T ¼ 2000 K for 10 000 0.25 fs time steps.
Structural data are gathered over an additional 5000 0.25 fs
time steps. Reference DFT results are obtained from a
similar MD simulation using the Castep software, averag-
ing over 9700 0.25 fs time steps at T ¼ 2000 K. For the
electronic-structure calculations, a 200 eV plane-wave
energy cutoff and a 2 × 2 × 2 Monkhorst-Pack [177]
k-point grid are used (equivalent to a k-point density of
about 0.05 Å−1). The radial distribution function (RDF)
and angular distribution function (ADF) are calculated and
averaged using the tools included in QUIP.
The resulting structural quantities are shown in Fig. 7.

The GAP RDF is in excellent agreement with the DFT
result, including both peak heights and radii at all distances
captured in the simulation cell. The DFTB is in comparably
good agreement on this structural quantity, and the various
interatomic potentials are in much worse agreement, with
significant variation among them. The ADF proves to be an
even more stringent test. Again, the GAP results are in
excellent agreement with the DFT, showing a narrow peak
at about 60° and a broader peak with similar height at about
100°. Most of the potentials greatly underestimate the
height of the small-angle peak and overestimate the height
of the large-angle peak. The only two that are qualitatively
correct are EDIP and MEAM, but those both overestimate
the depth of the trough separating the two peaks. Several
issues with the analytical interatomic potentials may be the
source of the differences. Some, e.g., Tersoff [2], greatly
overestimate the melting point and are therefore strongly
undercooled at T ¼ 2000 K rather than an equilibrium
liquid. In other cases, it is possible that the wide variety of
curves observed is consistent with the hypothesized liquid-
liquid phase transition between a high-coordination, high-
density metallic phase and a low-coordination, low-density
semiconductorlike phase [178]. Some of the potentials may
simply be incorrectly predicting the low-coordination phase
to be present at T ¼ 2000 K and zero pressure, leading to a
predominantly tetrahedral-like bond angle distribution.
In addition to the two structural quantities, we evaluate a

dynamical quantity, the diffusivity of liquid Si, by carrying
out variable cell size constant enthalpy MD simulations
using the LAMMPS software [173,179] on a 512-atom
cell for 105 1 fs time steps at temperatures ranging
from about 1700 to 2200 K. The resulting diffusivity
as a function of the temperature is shown in Fig. 8 and
compared to the experimental results [180], DFT results
[181] (using the PBE generalized gradient approximation

exchange-correlation functional, which is somewhat differ-
ent from the PW91 functional we use to generate our fitting
database), and previously published SW potential results
[182–185]. The GAP results are in excellent agreement

FIG. 7. Liquid silicon radial and angular structure from well-
equilibrated constant temperature and pressure 64-atom samples
at P ¼ 0 GPa and T ¼ 2000 K. Top: RDF. Bottom: ADF. The
black solid line indicates DFT results, the red dashed line and
symbols indicate GAP results, and dashed lines (various colors)
indicate the DFTB and other interatomic potentials.

FIG. 8. Diffusivity of liquid silicon from literature DFT
simulations [181] (black), literature experiment [180] (gray),
GAP (red), and literature SW potential [Refs. [182–185] for
(a)–(d), respectively, pink]. Error bars for GAP simulations are
smaller than symbols on this scale and are not available for
literature SW results.
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The phase transitions result from a delicate balance
between energetic and entropic effects and, for finite-
temperature transitions, probe relatively high-energy con-
figurations. To calculate the liquid-solid transition lines, we
perform coexistence simulations for the diamond and
simple hexagonal structure at a fixed pressure and enthalpy
and measure the resulting average equilibrium temperature
[188]. The diamond-liquid simulations contain 432 atoms,
and the pressure is fixed at the values of 0, 4, and 8 GPa; the
simple hexagonal-liquid system contains 1024 atoms, and
the simulations are carried out at 8 and 12 GPa. To estimate
the transition line between β-Sn and simple hexagonal
phases, we run isothermic-isobaric molecular-dynamics
simulations of both pure phases in a temperature range
of 0–1000 K and a pressure range of 6–14 GPa and observe
the transition (which occurs in both directions in all cases)
by monitoring the Steinhardt bond-order parameters [189].
Finally, the transition line between diamond and β-Sn
structures is determined by calculating the Gibbs free
energy using the quasiharmonic approximation (QHA).
We also establish that in these phases anharmonic con-
tributions to the free-energy differences are negligible at
0 K. We use the LAMMPS package for the MD simulations
and phonopy [190] for the phonon calculations. Figure 10
shows the calculated phase diagram, compared to the
published DFT results for the diamond-liquid melting point
[191] and our own calculations with the Castep program for
the diamond/β-tin and β-tin/simple hexagonal transition
pressures at 0 K. For comparison, we also show the
experimentally determined phase relations [192]. Note that
the Imma phase is missing from the calculated phase
diagram, which is due to the fact that both our DFT
calculations and GAP model find the Imma phase to be
metastable.

E. Defects

1. Point defects

Several point defects are represented in the fitting data-
base (Table I), and their formation energies would therefore
be expected to be accurately reproduced by the GAP.
Indeed, as Fig. 1 shows, the relative error for the vacancy
and three interstitial positions, hexagonal, tetrahedral, and
dumbbell, are all within at most 7% of the reference DFT
values. The only other potential that is close to this level of
accuracy is EDIP, with similar errors for all but the
hexagonal interstitial, where it is off by 14%. All the other
potentials, as well as DFTB, differ from our DFT calcu-
lations by tens of percent for at least some of the defects.
Since point defects control properties such as diffusivity

in bulk silicon, their migration barriers are also of interest
and as they represent bond breaking and formation proc-
esses, often present a challenge for interatomic potentials.
Since the training database configurations come from
finite-temperature MD, it could, in principle, include
configurations near the barrier, but, since the system spends
relatively little time near the energy saddle point, this is
actually unlikely [52]. However, the hexagonal and tetra-
hedral interstitials are related by a short displacement, so
one is typically a local minimum and the other a saddle
point along an interstitial diffusion pathway. We find that
the GAP preserves the DFT ordering, although the energy
difference is underestimated, while the other potentials
make much larger errors, many reversing the relative order
of the two high-symmetry geometries. Two other related
observables, the migration path of the vacancy and the
formation energy of the fourfold defect [193] (the midpoint
of the concerted-exchange diffusionmechanism [194,195]),
which are not represented in the database, are discussed
below in Secs. IV E and IV F.

2. Surfaces

Surfaces are a class of defects that have particular
importance for the behavior of materials. Solids fail under
tension by opening new surfaces, and it is on surfaces that
reactions involving chemical species in the environment
can take place, where special functional layers can form,
e.g., by oxidation, and also where a crystal can grow under
suitable conditions. Apart from useful applications, a rich
complexity of bonding emerges on surfaces due to the
subtle interplay of strain effects with the chemistry of
dangling bonds. This complexity makes surface formation
energies, and particularly the energies and geometries of
various reconstructions, a sensitive test of the accuracy of
an interatomic potential.
Figure 11 shows the energy as a function of separation as

a gap is opened up in a unit cell that is long in one direction
and has the dimensions of the minimal surface unit cell in
the orthogonal plane. For the purposes of this test, the
atomic positions are not relaxed but kept rigid relative to

FIG. 10. Temperature-pressure phase diagram of silicon, com-
puted with the GAP (red), compared to available DFT results
(black) and experimental phase transitions (gray). The finite-
temperature DFT value and slope are from Ref. [191], and the
experimental lines are from Ref. [192].
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previous study. A snapshot from a quasistatic simulation
showing the formation of the crack-tip reconstruction at a
strain energy release rate of G ¼ 5.13 J=m2 is illustrated
in Fig. 15.
It is worth noting that atoms at the crack tip have rather

unique neighbor environments, and, with nothing nearby in
the database, the description of crack tips is not reasonable
by an earlier version of the potential. But including just a
handful (17) of crack tips in the database (using just an
∼200-atom unit cell) already leads to a potential that
describes the subtle competition between bond breaking
and bond rotation, and qualitatively correct surfaces and
crack-tip reconstructions are obtained. The atoms are
colored by the predicted error of the GAP model, showing
high confidence in the bulk but significant predicted errors
at the crack tip, which could be reduced by expanding the
database.

IV. RESULTS: VALIDATION

In addition to the tests presented in the previous section,
we tested quantities and configurations that are physically
important but do not map so cleanly to particular geom-
etries in the database. The first is a random structure search,
which probes a very wide range of geometries, bonding
topologies, and energies. The second is a test of the
vibrational properties (harmonic phonons and anharmonic
Grüneisen parameters) of the diamond structure, which are
only implicitly included in the fit through the perturbed
diamond configurations. Finally, two types of defects are

tested, a high-symmetry grain boundary and di-interstitials,
which have geometries related to, but clearly different than,
the defects in the fitting database.

A. Random structure search

The random structure search (RSS) [207,208] method
provides a global test of the potential energy surface,
including not only regions near the physically reasonable
minima (i.e., typical bulk lattices with small distortions and
defects that vary only locally from the bulk structure) but
also much more distorted and correspondingly higher
energy configurations. We carry out the RSS using the
various interatomic potentials and DFT for eight-atom unit
cells with constraints on the initial shape (close to cubic)
and interatomic distances (>1.7 Å) to exclude unphysically
close atoms, relaxed with the two-point steepest-descent
[209] method. The resulting distribution of configuration
energy and volume are plotted in Fig. 16. The GAP results
show a similar distribution to the DFT, with the diamond
structure at the correct volume, a few structures with
energies up to 0.2 eV per atom higher, mostly at comparable

FIG. 16. Relaxed volumes and energies (relative to the diamond
structure) for random structure search minima. The top left shows
a scatter plot with the DFT (black stars), GAP (red stars), and
various other interatomic potentials (various color circles). The
top right shows the density of states for the minima. The bottom
shows a convex hull surrounding all minima for each method
with the same xaxis and colors as the top.

50 Å(a)

(b)

> 0.005 eV

5 Å

< 0.001 eV

FIG. 15. (a) Snapshot from a quasistatic simulation of fracture
in the Sið111Þ½11̄0%cleavage system at a strain energy release rate
of G ¼ 5.13 J=m2. The model system contains 23 496 atoms and
has dimensions 600 × 200 × 3.86 Å3. (b) A close-up of the crack
tip, which undergoes a crack-tip reconstruction as previously
reported in DFT-based hybrid simulations in Ref. [204]. Atoms
are colored by the predicted error per atom of the GAP model,
from blue (low) to red (high).
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previous study. A snapshot from a quasistatic simulation
showing the formation of the crack-tip reconstruction at a
strain energy release rate of G ¼ 5.13 J=m2 is illustrated
in Fig. 15.
It is worth noting that atoms at the crack tip have rather

unique neighbor environments, and, with nothing nearby in
the database, the description of crack tips is not reasonable
by an earlier version of the potential. But including just a
handful (17) of crack tips in the database (using just an
∼200-atom unit cell) already leads to a potential that
describes the subtle competition between bond breaking
and bond rotation, and qualitatively correct surfaces and
crack-tip reconstructions are obtained. The atoms are
colored by the predicted error of the GAP model, showing
high confidence in the bulk but significant predicted errors
at the crack tip, which could be reduced by expanding the
database.

IV. RESULTS: VALIDATION

In addition to the tests presented in the previous section,
we tested quantities and configurations that are physically
important but do not map so cleanly to particular geom-
etries in the database. The first is a random structure search,
which probes a very wide range of geometries, bonding
topologies, and energies. The second is a test of the
vibrational properties (harmonic phonons and anharmonic
Grüneisen parameters) of the diamond structure, which are
only implicitly included in the fit through the perturbed
diamond configurations. Finally, two types of defects are

tested, a high-symmetry grain boundary and di-interstitials,
which have geometries related to, but clearly different than,
the defects in the fitting database.

A. Random structure search

The random structure search (RSS) [207,208] method
provides a global test of the potential energy surface,
including not only regions near the physically reasonable
minima (i.e., typical bulk lattices with small distortions and
defects that vary only locally from the bulk structure) but
also much more distorted and correspondingly higher
energy configurations. We carry out the RSS using the
various interatomic potentials and DFT for eight-atom unit
cells with constraints on the initial shape (close to cubic)
and interatomic distances (>1.7 Å) to exclude unphysically
close atoms, relaxed with the two-point steepest-descent
[209] method. The resulting distribution of configuration
energy and volume are plotted in Fig. 16. The GAP results
show a similar distribution to the DFT, with the diamond
structure at the correct volume, a few structures with
energies up to 0.2 eV per atom higher, mostly at comparable

FIG. 16. Relaxed volumes and energies (relative to the diamond
structure) for random structure search minima. The top left shows
a scatter plot with the DFT (black stars), GAP (red stars), and
various other interatomic potentials (various color circles). The
top right shows the density of states for the minima. The bottom
shows a convex hull surrounding all minima for each method
with the same xaxis and colors as the top.
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FIG. 15. (a) Snapshot from a quasistatic simulation of fracture
in the Sið111Þ½11̄0%cleavage system at a strain energy release rate
of G ¼ 5.13 J=m2. The model system contains 23 496 atoms and
has dimensions 600 × 200 × 3.86 Å3. (b) A close-up of the crack
tip, which undergoes a crack-tip reconstruction as previously
reported in DFT-based hybrid simulations in Ref. [204]. Atoms
are colored by the predicted error per atom of the GAP model,
from blue (low) to red (high).
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at the right-hand side of Fig. 21: That mismatch corre-
sponds to the stable stacking-fault energy. The GAP value
is positive but much too small, indicating that the diamond
structure is indeed the lowest-energy configuration but
underestimating the energy difference. There are four
atoms with a non-diamond-like second neighbor environ-
ment, and the DFT energy difference corresponds to a
contribution of about 10 meV from each roughly in
correspondence with the ∼2.5 meV per atom predicted
error (purple). The elevated predicted error shows that the
GAP’s range and flexibility can distinguish these environ-
ments, and the γsf value could probably be improved by
extending the database. While most potentials tested are
short ranged and give exactly zero energy, ReaxFF has a
similar value to the GAP, while MEAM gives a qualita-
tively incorrect negative γsf . The DFTB model is the only
one that accurately reproduces the DFT value.

D. Grain boundary

Another class of planar defects that is not included in
the fitting database are grain boundaries, which are the
interfaces between identical crystal lattices in different
orientations. As a simple example of these structures, we
choose the ð112ÞΣ3 tilt boundary of the diamond structure,
which can be represented by a relatively small unit cell and
can therefore be efficiently computed with the DFT. We
computed the energy per unit area of this grain boundary
with the various interatomic potentials and the DFTB, as
well as the DFT, using a cell with 48 atoms, which has a
single interface unit cell and is about 27 Å long normal to
the boundary. The resulting fractional errors relative to the
DFT value are shown in Fig. 1, and the GAP force errors for
the DFT-relaxed configuration are shown in Fig. 2. Despite
the fact that the grain boundary structure is not in the fitting
database, the GAP energy is in excellent agreement with
the DFT. The difference between the DFT- and GAP-
relaxed geometries is also small, as indicated by the small
magnitudes of the GAP forces in the DFT-relaxed geometry
(Fig. 2), and the corresponding displacements (not shown)
are nearly imperceptible. The accuracy of the other inter-
atomic potentials varies considerably, with some also in

very good agreement but others with very large energy
errors relative to the DFT reference.

E. Fourfold defect

The point defect with the lowest formation energy in the
diamond structure of silicon is the so-called “fourfold
coordinated defect” [193], which is formed by a bond
rotation followed by reconnecting all broken bonds. The
energy barrier for the reverse process (i.e., annealing out
this defect) is relatively small, and the GAPmodel does not,
in fact, stabilize this defect, as shown in Fig. 23. Indeed, the
database does not contain anything resembling the bond
rotation process or the final defect structure, which is
quantitatively shown by the predicted error. The energies of
the GAP model agree very well with those of the DFT up to
where the predicted error (taken as the maximum over all
atoms) is lower than about 3 meV per atom and strongly
deviate after that. Similarly to the planar defects, the
predicted error gives a good qualitative indication of where
the database is deficient and is in need of extension.

F. Vacancy migration

We compare the migration paths for vacancies in
63-atom diamond structure cells predicted by the various
models, as a test of their ability to describe bond-breaking
processes. The end points are relaxed with preconditioned
the Limited-memory Broyden–Fletcher–Goldfarb–Shanno
(LBFGS) scheme [220] to a maximum force tolerance
of 10−3 eV=Å, and the path is calculated as a linear

TABLE III. Stable stacking-fault energy γsf for each model.

Model γsf (J=m2)

DFT 0.047
GAP 0.002
EDIP 0.000
Tersoff 0.000
TersoffScr 0.001
Purja Pun 0.000
MEAM −0.046
SW 0.000
ReaxFF 0.004
DFTB 0.052

FIG. 23. Relaxation path of the GAP model showing the
instability of the fourfold defect as a function of the angle of
the rotating bond relative to its initial orientation. The left-hand
side of the plot corresponds to the local minimum of the fourfold
defect for the DFT model. The black curve shows the energy of
the configurations of this path evaluated with the DFT (which is
not a DFT minimum energy path but, of course, still shows a
barrier). The thick curve shows the GAP model energies, colored
according to the maximum per-atom predicted error of the GAP
model and is dashed where the predicted error exceeds the scale
maximum of 5 meV per atom.
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A remarkable observation in this analysis is the realization
that the presence of the cation catalyzed unexpected proton
transfer reactions that change the chemical structure of the
molecule. Configurations that underwent a chemical reaction
are clustered on one side of the map (Fig. 5), with further
internal structure reflecting the fact that SOAP-based structural
metrics treat on the same footing information on the chemical
bonding and on the conformational variability of the molecule.
It is again worth noting that by changing the cut-off value for
the SOAP descriptors, one can ‘‘focus’’ the structural metric on
different molecular features. A short cutoff of 2Å makes the
chemically different structures stand out more as outliers –
which would for instance be useful to detect automatically this
kind of unwanted transition in an automatically generated
dataset – while in contrast a longer cutoff would give more
importance to the difference between collapsed and extended
molecular conformers.

3.4 Mapping (al)chemical space

As a final example of the evaluation of a structural and
alchemical similarity metric, and its use to represent complex

ensembles of compounds, let us consider the QM7b database.25

This set of compounds contains 7211 minimum-energy structures
for small organic compounds containing up to seven non-
hydrogen atoms (C, N, O, S, and Cl), saturated with H to different
degrees. This database constitutes a small fraction of a larger
chemical library that contains millions of hypothetical structures
screened for accessible synthetic pathways.57

This is an extremely challenging dataset to benchmark a
structural similarity metric: molecules differ by the number of
atoms, chemical composition, bonding and conformation. To
simplify the description, we decided to use SOAP descriptors
with a cutoff of 3 Å, and to include H atoms in the environments
but not as environment centers, to simplify the description –
considering also that in the case of the arginine dipeptide this
choice did not prevent clear identification of isomers that only
differed by a proton transfer reaction. We used a best-match
strategy to compare configurations, and topped them up with
isolated atoms up to the maximum number of each species that is
present in the database. This effectively corresponds to choosing a
‘‘kit’’ (in other terms, a fully atomized reference state) starting from
which all of the compounds can be assembled.

Fig. 3 Sketch-map of 1274 crystalline and amorphous silicon structures obtained by sampling different phases from the phase diagram (disks),
polymorphs obtained by ab initio random structure search52 (+ signs) and by minima hopping53 (! signs). The color and size of the points vary according
to their atomic energy and atomic volumes, respectively. Regions of the plot which represents different phases have been outlined with dotted contours.
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the Supplementary Materials), we can observe the trade-off between the
completeness of the representation and its extrapolative power (38). For
small training set sizes, a very short cutoff of 2 Å and the averaged mo-
lecular kernel give the best performance but then saturates at about
2 kcal/mol. Longer cutoffs give initially worse performance, because
the input space is larger but the learning rate deteriorates more slowly;
at 20,000 training structures, rc = 3 Å yields the best performance.
Given that the SOAP kernel gives a complete description (39) of each
environment up to rc, we can infer from these observations the rela-
tionship between the length and energy scales of physical interactions
(see the Supplementary Materials). For a DFT model, considering in-
teractions up to 2 Å is optimal if one is content to capture physical
interactions with an energy scale of the order of 2.5 kcal/mol. When
learning corrections to electron correlation, DDFT-CC, most of the

short-range information is already included in the DFT baseline,
and so, length scales up to and above 3 Å become relevant already
for ntrain < 20,000, allowing an accuracy of less than 0.2 kcal/mol to
be reached.

In contrast, the case of ligand-binding predictions poses a sig-
nificant challenge to an additive energy model already at the small-
molecule scale. Ligand binding is typically mediated by electronegative/
electropositive or polarizable groups located in “strategic” locations
within the ligand molecule, which additionally must satisfy a set of
steric constraints to fit into the binding pocket of the receptor. Cap-
turing these spatial correlations of the molecular structure is a pre-
requisite to accurately predict whether or not a given molecule binds
to a receptor. This is demonstrated by the unsatisfactory performance
of a classifier based on an averaged combination of atomic SOAP
kernels (see Fig. 4B). By combining the atomic SOAP kernels using an
“environment matching” procedure, one can introduce a degree of
nonlocality—because now environments in the two molecules must
be matched pairwise rather than in an averaged sense. Thus, the
relative performance of different kernel combination strategies gives
a sense of whether the global property of a molecule can result from
averages over different parts of the system or whether a very particular
spatial distribution of molecular features is at play.

A striking demonstration of inferring structure-property relations
from an ML model is given in Fig. 4 (B and C), where the SOAP clas-
sifier is used to identify binding moieties (“warheads”) for each of the
receptors. To this end, we formally project the SVM decision function
z onto individual atoms of a test compound associated with each
“binding score” (see the Supplementary Materials). Red and yellow
regions of the isosurface plots denote moieties that are expected
to promote binding. For decoys, no consistent patterns are resolved.
The identified warheads are largely conserved across the set of
ligands—by investigating the position of the crystal ligand inside
the binding pocket of the adenosine receptor A2 (Fig. 4B), we can

Fig. 4. Predictions of ligand-receptor binding. (A) ROCs of binary classifiers based on a SOAP kernel, applied to the prediction of the binding behavior of ligands and
decoys taken from the DUD-E, trained on 60 examples. Each ROC corresponds to one specific protein receptor. The red curve is the average over the individual ROCs. The
dashed line corresponds to receptor FGFR1, which contains inconsistent data in the latest version of the DUD-E. Inset: AUC performancemeasure as a function of the number
of ligands used in the training, for the “bestmatch”–SOAP kernel (MATCH) and averagemolecular SOAP kernel (AVG). (B and C) Visualization of bindingmoieties for adenosine
receptor A2, as predicted for the crystal ligand (B), aswell as two known ligands and onedecoy (C). The contribution of an individual atomic environment to the classification is
quantified by the contribution dzi in signed distance z to the SVM decision boundary and visualized as a heat map projected on the SOAP neighbor density [images for all
ligands and all receptors are accessible online (27)]. Regions with dz > 0 contain structural patterns expected to promote binding (see color scale and text). The snapshot in (B)
indicates the position of the crystal ligand in the receptor pocket as obtained by x-ray crystallography (28). PDB, Protein Data Bank.

Fig. 5. A kernel function to compare solids and molecules can be built based
on density overlap kernels between atom-centered environments. Chemical
variability is accounted for by building separate neighbor densities for each dis-
tinct element [see the study of De et al. (20) and the Supplementary Materials].
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the Supplementary Materials), we can observe the trade-off between the
completeness of the representation and its extrapolative power (38). For
small training set sizes, a very short cutoff of 2 Å and the averaged mo-
lecular kernel give the best performance but then saturates at about
2 kcal/mol. Longer cutoffs give initially worse performance, because
the input space is larger but the learning rate deteriorates more slowly;
at 20,000 training structures, rc = 3 Å yields the best performance.
Given that the SOAP kernel gives a complete description (39) of each
environment up to rc, we can infer from these observations the rela-
tionship between the length and energy scales of physical interactions
(see the Supplementary Materials). For a DFT model, considering in-
teractions up to 2 Å is optimal if one is content to capture physical
interactions with an energy scale of the order of 2.5 kcal/mol. When
learning corrections to electron correlation, DDFT-CC, most of the

short-range information is already included in the DFT baseline,
and so, length scales up to and above 3 Å become relevant already
for ntrain < 20,000, allowing an accuracy of less than 0.2 kcal/mol to
be reached.

In contrast, the case of ligand-binding predictions poses a sig-
nificant challenge to an additive energy model already at the small-
molecule scale. Ligand binding is typically mediated by electronegative/
electropositive or polarizable groups located in “strategic” locations
within the ligand molecule, which additionally must satisfy a set of
steric constraints to fit into the binding pocket of the receptor. Cap-
turing these spatial correlations of the molecular structure is a pre-
requisite to accurately predict whether or not a given molecule binds
to a receptor. This is demonstrated by the unsatisfactory performance
of a classifier based on an averaged combination of atomic SOAP
kernels (see Fig. 4B). By combining the atomic SOAP kernels using an
“environment matching” procedure, one can introduce a degree of
nonlocality—because now environments in the two molecules must
be matched pairwise rather than in an averaged sense. Thus, the
relative performance of different kernel combination strategies gives
a sense of whether the global property of a molecule can result from
averages over different parts of the system or whether a very particular
spatial distribution of molecular features is at play.

A striking demonstration of inferring structure-property relations
from an ML model is given in Fig. 4 (B and C), where the SOAP clas-
sifier is used to identify binding moieties (“warheads”) for each of the
receptors. To this end, we formally project the SVM decision function
z onto individual atoms of a test compound associated with each
“binding score” (see the Supplementary Materials). Red and yellow
regions of the isosurface plots denote moieties that are expected
to promote binding. For decoys, no consistent patterns are resolved.
The identified warheads are largely conserved across the set of
ligands—by investigating the position of the crystal ligand inside
the binding pocket of the adenosine receptor A2 (Fig. 4B), we can

Fig. 4. Predictions of ligand-receptor binding. (A) ROCs of binary classifiers based on a SOAP kernel, applied to the prediction of the binding behavior of ligands and
decoys taken from the DUD-E, trained on 60 examples. Each ROC corresponds to one specific protein receptor. The red curve is the average over the individual ROCs. The
dashed line corresponds to receptor FGFR1, which contains inconsistent data in the latest version of the DUD-E. Inset: AUC performancemeasure as a function of the number
of ligands used in the training, for the “bestmatch”–SOAP kernel (MATCH) and averagemolecular SOAP kernel (AVG). (B and C) Visualization of bindingmoieties for adenosine
receptor A2, as predicted for the crystal ligand (B), aswell as two known ligands and onedecoy (C). The contribution of an individual atomic environment to the classification is
quantified by the contribution dzi in signed distance z to the SVM decision boundary and visualized as a heat map projected on the SOAP neighbor density [images for all
ligands and all receptors are accessible online (27)]. Regions with dz > 0 contain structural patterns expected to promote binding (see color scale and text). The snapshot in (B)
indicates the position of the crystal ligand in the receptor pocket as obtained by x-ray crystallography (28). PDB, Protein Data Bank.

Fig. 5. A kernel function to compare solids and molecules can be built based
on density overlap kernels between atom-centered environments. Chemical
variability is accounted for by building separate neighbor densities for each dis-
tinct element [see the study of De et al. (20) and the Supplementary Materials].
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Similarity of atomic structures



• Inform models based on higher level theory 
• Interatomic potentials based on QM data 
• Machine learning glues it together

Conclusions


