Coarse-grained modelling of complex systems:

From molecular fluids to colloidal particles

Carlos Avendaño

Department of Chemical Engineering and Analytical Science The University Manchester
carlos.avendano@manchester.ac.uk

Outline

- Coarse-grained (CG) models
- Self-assembly of colloidal particles
-Self-assembly of convex particles
\triangleright Self-assembly of non-convex particle: Engineering
macroporous ordered materials
- CG models for molecular system
- Statistical Associating Fluid Theory
\triangleright SAFT- γ force field

MANCHESTER 1824

The University of Manchester

Coarse-grained (CG) modelling

MANCHESTER 1824

Coarse-grained (CG) modelling

The University of Manchester

P. Carbone and C. Avendaño, WIREs Comput Mol Sci 2014, 4:62-70

MANCHESTER

 1824The University of Manchester

Coarse-grained (CG) modelling

The University of Manchester

Self-assembly of colloidal particles

MANCHESTER 1824

Self-assembly of colloidal particles

The University of Manchester

JP Vigneron and P Simonis, Physica B, 2012, 407, 4032
Young et al., Angew. Chem. Int. Ed. 2013, 52, 13980
Hosein and Liddell, Langmuir 2007, 23, 10479
Ng et al, ACS Nano 2012, 6, 925
Whitesides and Boncheva, PNAS, 202, 99, 4769

MANCHESTER 1824

Self-assembly of colloidal particles

The University of Manchester

Topology

Entropy
8

Frustration

Crystal

Liquid crystal
Plastic crystal
Isotropic

MANCHESTER 1824

Self-assembly of colloidal particles

The University of Manchester

Lithography

Mason's group @ UCLA

Swelling and phase separation

Pine's group @ NYU

b

4 O

MANCHESTER 1824

Self-assembly of colloidal particles

The University of Manchester

$$
\phi=\frac{\pi}{3 \sqrt{2}} \approx 0.74048 \ldots
$$

Kepler (I6II) conjecture. Proved by Thomas Hale (1998)

$$
\min -\phi\left(r_{1}^{\lambda}, r_{2}^{\lambda}, r_{3}^{\lambda}, \ldots, r_{N}^{\lambda} ; \theta_{1}, \theta_{2}, \theta_{3}, \ldots, \theta_{N} ; \Gamma\right)
$$

such that $\left(S_{i} \cap S_{j}\right) \subseteq\left(\Gamma_{i} \cup \Gamma_{j}\right) \quad \forall i, j=1,2,3, \ldots, N, i \neq j$

MANCHESTER 1824

Self-assembly of convex particles

The University of Manchester

E. K. Riley and C. M. Liddell, Langmuir, 2010, 26, 11648

Lowen, J. Phys. Condens. Matter, 2009, 20, 404201
Avendano, Liddell, Escobedo, Soft Matter, 2013, 9, 9153

MANCHESTER 1824

Self-assembly of convex particles

The University of Manchester

Avendano, Liddell, Escobedo, Soft Matter, 2013, 9, 9153

Self-assembly of convex particles

MANCHESTER 1824

Self-assembly of convex particles

The University of Manchester

MANCHESTER 1824

Self-assembly of convex particles

The University of Manchester

Avendano and Escobedo, Soft Matter, 2012, 8, 4675
Pakalidou, PhD Thesis, University of Manchester, 2017

MANCHESTER
 1824

Self-assembly of convex particles

The University of Manchester

Avendano and Escobedo, Soft Matter, 2012, 8, 4675 Pakalidou, PhD Thesis, University of Manchester, 2017

MANCHESTER 1824

Engineering ordered macroporous materials

- Photocatalysis (light scattering)
- Liquid phase catalysis (reduction of diffusion limitation)
- Battery electrodes (reduction of ion-transport resistance)
- Tissue engineering
- Thermal, acoustic, and electrical insulators
- Photonic materials

H Zhang, Nat. Nanotech., 2011, 6, 277
KR Phillips et al, Chem. Soc. Rev., 2016, 45, 281

MANCHESTER 1824

Non-convex particles

The University of Manchester

Curved, bent and twisted particles

Branched particles and non-convex polyhedra
(e)

(c)

Rings, frames and cages
(f)

Bowls, contact lenses, and indented colloids

C Avendano and FA Escobedo, Curr. Op. Colloids Interf. Sci, 30, 62 (2017)

MANCHESTER 1824

The University of Manchester

Liddell group @ Cornell

SH Lee et al., J. Mater. Chem, 41, 4881 (2008)
K Muangnapoh, C Avendano, C Liddell, and FA Escobedo, Soft Matter, 10, 9729 (2014)

MANCHESTER 1824

The University of Manchester

Self-assembly of colloidal dimers

MANCHESTER 1824

The University of Manchester
r

Self-assembly of colloidal dimers

MANCHESTER 1824

Self-assembly of colloidal dimers

The University of Manchester

MANCHESTER 1824

Non-convex particles

The University of Manchester
A PtNi3 Polyhedra B PtNi Intermediates C Pt3Ni Nanoframes D $\begin{gathered}\text { PtNinanoframes/C } \\ \text { with } \mathrm{P} \text {-skin surfaces }\end{gathered}$

C Chen et al., Science, 343, 1339 (2014)

HH Jang et al., JACS, 136, 17674 (2014)
a

b

Giri, Cooper, Nature (2015)

Y Tian et al., Nat. Mater. 15, 654 (2014)

MANCHESTER 1824

The University of Manchester

Non-convex particles

D An et al., Nat. Comm. 7, 12401 (2016)

Self-assembly of colloidal rings

Rings of type I

Rings of type 2

Avendano, Jackson, Muller, Escobedo, PNAS (2016)
Wensink, Avendano, PRE (2016)

MANCHESTER 1824

The University of Manchester

C Avendaño, EA Müller, G Jackson, and FA Escobedo, PNAS, 113, 9699 (2016)

MANCHESTER

 1824
Colloidal rings confined in a planar slit

The University of Manchester

$$
L / r_{\mathrm{p}}=11.2 \quad L_{z} / r_{\mathrm{p}}=65.4
$$

$$
L / r_{\mathrm{p}}=11.2 \quad L_{z} / r_{\mathrm{p}}=59.2
$$

$$
\eta\left(z_{j}\right)=\frac{N_{s} \sigma^{3} \pi}{6} \frac{\left\langle N\left(z_{j}\right)\right\rangle}{L^{2} \delta z}
$$

$$
\mathbf{Q}\left(z_{j}\right)=\frac{1}{N\left(z_{j}\right)} \sum_{i=1}^{N\left(z_{j}\right)}\left(\frac{3 \hat{\mathbf{u}}_{i} \otimes \hat{\mathbf{u}}_{i}}{2}-\frac{\mathbf{I}}{2}\right)
$$

C Avendaño, G Jackson, and HH Wensink, Mol. Phys. (2018)

C Avendaño, EA Müller, G Jackson, and FA Escobedo, PNAS, 113, 9699 (2016)
(a)

MANCHESTER 1824

Colloidal rings confined in a planar slit

The University of Manchester

C Avendaño, G Jackson, and HH Wensink, Mol. Phys. (2018)

MANCHESTER 1824
 Colloidal rings confined in a planar slit

The University of Manchester

C Avendaño, G Jackson, and HH Wensink, Mol. Phys. (2018)

MANCHESTER 1824

The University of Manchester

Colloidal rings confined in a planar slit

MANCHESTER 1824

Self-assembly of colloidal frames

MANCHESTER 1824

The University of Manchester

Self-assembly of colloidal frames

MANCHESTER 1824

Self-assembly of colloidal frames

The University of Manchester

MANCHESTER 1824

The University of Manchester

Self-assembly of non-convex polygons

N Pakalidou, D Cheung, AJ Masters, and C Avendaño, Soft Matter, 13, 8618 (2017)

Self-assembly of non-convex polygons

coses)

MANCHESTER 1824

Self-assembly of non-convex polygons

The University of Manchester

SH Kang et al., Adv. Mater., 25, 3380 (2013)

Self-assembly of non-convex polygons

The University of Manchester

(b)

(d)

Self-assembly of non-convex polygons

Self-assembly of non-convex polygons

MANCHESTER

 1824
Self-assembly of non-convex polygons

The University of Manchester

Pakalidou, Mu, Masters, Avendano, Molecular Systems Design and Engineering (accepted)

MANCHESTER 1824

Self-assembly of non-convex polygons

The University of Manchester

Pakalidou, Mu, Masters, Avendano, Molecular Systems Design and Engineering (accepted)

MANCHESTER 1824

Self-assembly of non-convex polygons

The University of Manchester

Pakalidou, Mu, Masters, Avendano, Molecular Systems Design and Engineering (accepted)

The University of Manchester

SAFT- γ coarse grained

MANCHESTER 1824

Statistical Associating Fluid Theory (SAFT)

The University of Manchester

Keith Gubbins' group

 @ Cornell UniversityChapman, Jackson, Gubbins, Radosz, Fluid Phase Equil 52, 31 (1989);
Mol Phys 65, 1 (1988);
Mol Phys 651057 (1988);
Ind. Eng. Chem. Res 291709 (1990)

MANCHESTER 1824

SAFT-VR

The University of Manchester

$$
\frac{A^{\mathrm{SAFT}}}{N k T}=\frac{A^{\text {ideal }}}{N k T}+\frac{A^{\text {mono }}}{N k T}+\frac{A^{\text {chain }}}{N k T}+\frac{A^{\text {assoc }}}{N k T}
$$

Gil-Villegas, Galindo, Whitehead, Mills, Jackson, Burgess, J. Chem. Phys. 106, 4168 (1997)

MANCHESTER 1824

SAFT-VR Mie

The University of Manchester

$$
\frac{A^{\mathrm{SAFT}}}{N k T}=\frac{A^{\text {ideal }}}{N k T}+\frac{A^{\text {mono }}}{N k T}+\frac{A^{\text {chain }}}{N k T}+\frac{A^{\text {assoc }}}{N k T}
$$

$$
\phi^{\mathrm{Mie}}(r)=\mathscr{C} \epsilon\left[\left(\frac{\sigma}{r}\right)^{n}-\left(\frac{\sigma}{r}\right)^{m}\right]
$$

Avendano, Lafitte, Galindo, Adjiman, Jackson, Muller,
J Phys Chem B 115, 11154 (2011);
Mol Phys 110, 1189 (2012);
J Phys Chem B 117, 2717 (2013);
J Chem Phys 139, 154504 (2013);
J. Chem. Phys. 140, 054107 (2014)

MANCHESTER 1824

SAFT-VR Mie

(b)

MANCHESTER

SAFT-VR Mie

$\min _{\sigma, \epsilon, n, m} F(\sigma, \epsilon, n, m)=\min _{\sigma, \epsilon, n, m}\left[\sum_{i=1}^{N_{p}}\left(\frac{P_{i}^{\mathrm{sat}}(T ; \sigma, \epsilon, n, m)-P_{i}^{\mathrm{sat}, \exp }(T)}{P_{i}^{\mathrm{sat}, \exp }(T)}\right)^{2}+\sum_{i=1}^{N_{d}}\left(\frac{\rho_{i}^{\mathrm{L}}(T ; \sigma, \epsilon, n, m)-\rho_{i}^{\mathrm{L}, \exp }(T)}{\rho_{i}^{\mathrm{L}, \exp }(T)}\right)^{2}\right]$

(b)

MANCHESTER 1824

Group contribution methods

The University of Manchester

Group contribution methods

SAFT- $ү$ Mie

The University of Manchester

SAFT-VR homonuclear model

Papaioannou, Lafitte, Avendano, Adjiman, Jackson, Muller, Galindo, J. Chem. Phys. 140, 054107 (2014)

SAFT- γ heteronuclear model

MANCHESTER 1824

SAFT- $ү$ Mie

(a)

Ester series: COO

SAFT- γ coarse grained force field

The University of Manchester

Properties of Interest

Macroscopic properties

(fitting data)

Experimental structure; atomistic or QM calculations

MANCHESTER 1824

SAFT- γ coarse grained force field

The University of Manchester
CO_{2}

Avendano, Lafitte, Galindo, Adjiman, Jackson, Muller, J Phys Chem B (2011) Avendano, Lafitte, Galindo, Adjiman, Muller, Jackson, J Phys Chem B (2013)

MANCHESTER 1824

SAFT- γ coarse grained force field

The University of Manchester

MANCHESTER 1824

SAFT- γ coarse grained force field

MANCHESTER 1824

SAFT- γ coarse grained force field

(a)

(b)

(c)

MANCHESTER 1824

SAFT- γ coarse grained force field

(c)

MANCHESTER 1824

SAFT- γ coarse grained force field

The University of Manchester

Alkyl Polyoxyethylene Surfactants

Olga Lobanova, PhD Thesis, Imperial College London (2014)

MANCHESTER 1824

The University of Manchester

Nikoletta Pakalidou

John McBride

Paola Carbone

Andrew J. Masters

EPSRC NSF DoE Unilever AstraZeneca

Imperial College London

Fernando Escobedo

Chekesha Liddell Kullachate Muangnapoh

Angela Stelson

Erin Riley

George Jackson

