

Coarse-grained modelling of complex systems:

From molecular fluids to colloidal particles

Carlos Avendaño

Department of Chemical Engineering and Analytical Science

The University Manchester

carlos.avendano@manchester.ac.uk

Outline

- Coarse-grained (CG) models
- Self-assembly of colloidal particles
 - Self-assembly of convex particles
 - Self-assembly of non-convex particle: Engineering

macroporous ordered materials

- CG models for molecular system
 - Statistical Associating Fluid Theory
 - SAFT-γ force field

Coarse-grained (CG) modelling

Coarse-grained (CG) modelling

P. Carbone and C. Avendaño, WIREs Comput Mol Sci 2014, 4:62–70

Coarse-grained (CG) modelling

Museo del Prado, Madrid Museo Picasso, Barcelona

Self-assembly of colloidal particles

Self-assembly of colloidal particles

The University of Manchester

JP Vigneron and P Simonis, *Physica B*, 2012, 407, 4032 Young et al., Angew. Chem. Int. Ed. 2013, 52, 13980 Hosein and Liddell, Langmuir 2007, 23, 10479 Ng et al, ACS Nano 2012, 6, 925 Whitesides and Boncheva, PNAS, 202, 99, 4769

Self-assembly of colloidal particles

Lithography

Mason's group @ UCLA

Swelling and phase separation

Pine's group @ NYU

Self-assembly of colloidal particles

Self-assembly of colloidal particles

The University of Manchester

Kepler (1611) conjecture.

Proved by Thomas Hale (1998)

$$\phi = \frac{\pi}{3\sqrt{2}} \approx 0.74048...$$

 $\min -\phi \left(r_1^{\lambda}, r_2^{\lambda}, r_3^{\lambda}, \dots, r_N^{\lambda}; \theta_1, \theta_2, \theta_3, \dots, \theta_N; \Gamma \right)$ such that $(S_i \cap S_j) \subseteq (\Gamma_i \cup \Gamma_j) \quad \forall i, j = 1, 2, 3, \dots, N, i \neq j$

> Escobedo, Soft Matter, 2014, 10, 8388 Atkinson et al., PRE, 2012, 86, 031302

Self-assembly of convex particles

E. K. Riley and C. M. Liddell, Langmuir, 2010, 26, 11648 Lowen, J. Phys. Condens. Matter, 2009, 20, 404201 Avendano, Liddell, Escobedo, Soft Matter, 2013, 9, 9153

The University of Manchester

Avendano, Liddell, Escobedo, Soft Matter, 2013, 9, 9153

The University of Manchester

McBride, Avendano, Soft Matter, 2017, 13, 2085

The University of Manchester

Avendano and Escobedo, Soft Matter, 2012, 8, 4675 Pakalidou, PhD Thesis, University of Manchester, 2017

Engineering ordered macroporous materials

The University of Manchester

- Photocatalysis (light scattering)
- Liquid phase catalysis (reduction of diffusion limitation)
- Battery electrodes (reduction of ion-transport resistance)
- Tissue engineering
- Thermal, acoustic, and electrical insulators
- Photonic materials

H Zhang, Nat. Nanotech., 2011, 6, 277 KR Phillips et al, Chem. Soc. Rev., 2016, 45, 281

Non-convex particles

C Avendano and FA Escobedo, Curr. Op. Colloids Interf. Sci, 30, 62 (2017)

Self-assembly of colloidal dimers

SH Lee et al., *J. Mater. Chem*, **41**, 4881 (2008) K Muangnapoh, C Avendano, C Liddell, and FA Escobedo, *Soft Matter*, **10**, 9729 (2014)

Self-assembly of colloidal dimers

Self-assembly of colloidal dimers

 $H^* = H/\sigma$

— Reflection plane

K. Muangnapoh, C. Avendano, C. Liddell, and F.A. Escobedo, Soft Matter (2014)

 σ

Self-assembly of colloidal dimers

Non-convex particles

The University of Manchester

A PtNi3 Polyhedra B PtNi Intermediates C Pt3Ni Nanoframes D Pt3Ni nanoframes/C with Pt-skin surfaces

C Chen et al., Science, 343, 1339 (2014)

Y Tian et al., Nat. Mater. 15, 654 (2014)

HH Jang et al., JACS, 136, 17674 (2014)

Giri, Cooper, Nature (2015)

Non-convex particles

The University of Manchester

Ungphaiboon, Soft Matter (2010)

RG Gabbrielli, Y Jiao, S. Torquato, *Phys. Rev. E*, **89**, 022133 (2014)

S Ungphaiboon *et al., Soft Matter,* **6**, 4070 (2010)

D An et al., Nat. Comm. 7, 12401 (2016)

Self-assembly of colloidal rings

The University of Manchester

Avendano, Jackson, Muller, Escobedo, PNAS (2016) Wensink, Avendano, PRE (2016)

Self-assembly of colloidal rings

The University of Manchester

C Avendaño, EA Müller, G Jackson, and FA Escobedo, PNAS, 113, 9699 (2016)

The University of Manchester

$$L/r_{\rm p} = 11.2$$
 $L_z/r_{\rm p} = 65.4$

$$L/r_{\rm p} = 11.2$$
 $L_z/r_{\rm p} = 59.2$

$$\eta(z_j) = \frac{N_s \sigma^3 \pi}{6} \frac{\langle N(z_j) \rangle}{L^2 \delta z}$$

$$\mathbf{Q}(z_j) = \frac{1}{N(z_j)} \sum_{i=1}^{N(z_j)} \left(\frac{3\mathbf{\hat{u}}_i \otimes \mathbf{\hat{u}}_i}{2} - \frac{\mathbf{I}}{2} \right)$$

C Avendaño, G Jackson, and HH Wensink, Mol. Phys. (2018)

C Avendaño, EA Müller, G Jackson, and FA Escobedo, PNAS, **113**, 9699 (2016)

20

The University of Manchester

C Avendaño, G Jackson, and HH Wensink, Mol. Phys. (2018)

Self-assembly of colloidal frames

L

The University of Manchester

100 nn

a

Self-assembly of colloidal frames

Self-assembly of colloidal frames

Self-assembly of non-convex polygons

N Pakalidou, D Cheung, AJ Masters, and C Avendaño, Soft Matter, 13, 8618 (2017)

MANCHESTER

1824

Self-assembly of non-convex polygons

The University of Manchester

SH Kang et al., Adv. Mater., 25, 3380 (2013)

The University of Manchester

SH Kang et al., Adv. Mater., 25, 3380 (2013)

The University of Manchester

SAFT-y coarse grained

Statistical Associating Fluid Theory (SAFT)

Gil-Villegas, Galindo, Whitehead, Mills, Jackson, Burgess, J. Chem. Phys. 106, 4168 (1997)

SAFT-VR Mie

r

Group contribution methods

Group contribution methods

SAFT-VR homonuclear model

Papaioannou, Lafitte, Avendano, Adjiman, Jackson, Muller, Galindo, *J. Chem. Phys.* **140**, 054107 (2014)

SAFT-γ heteronuclear model

Alkane series : CH3, CH2

Ester series : COO

SAFT-y coarse grained force field

Avendano, Lafitte, Galindo, Adjiman, Jackson, Muller, *J Phys Chem B* (2011) Avendano, Lafitte, Galindo, Adjiman, Muller, Jackson, *J Phys Chem B* (2013)

Olga Lobanova, PhD Thesis, Imperial College London (2014)

Nikoletta Pakalidou

Paola Carbone

John McBride

Erich Muller

George Jackson

Andrew J. Masters

EPSRC NSF DoE Unilever AstraZeneca

Fernando Escobedo

Chekesha Liddell Kullachate Muangnapoh

Angela Stelson

Erin Riley