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Phase diagrams: Why to calculate them and how? 
overview of some well established tools 

Nested sampling algorithm 

Some applications 
• metals, alloys 
• clusters 
• molecules 
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Important in chemistry,  
   materials science,  
   engineering,  
   CALPHAD (Computer Coupling of Phase Diagrams and     
Thermochemistry) 



Reasons to use computational techniques

save time and resources by making predictions
(less/no need for expensive experimental equipment, and materials, 
where to look for phases with specific properties, unique/exotic 
phases) 

study phases under extreme conditions
(alloys under working conditions, 
planetary interiors (~TPa), critical point of metals…etc.) 

give an insight to phases on the atomistic level
(atomic interactions, driving forces) 

help to clarify structural properties
(provide candidate structures to match experimental findings) 
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save time and resources by making predictions
(less/no need for expensive experimental equipment, and materials, 
where to look for phases with specific properties, unique/exotic 
phases) 

study phases under extreme conditions
(alloys under working conditions, 
planetary interiors (~TPa), critical point of metals…etc.) 

give an insight to phases on the atomistic level
(atomic interactions, driving forces) 

help to clarify structural properties
(provide candidate structures to match experimental findings) 

How to generate the relevant atomic configurations?
How to model the interaction between atoms?



 Atomic configurations
How to generate relevant atomic configurations?
The number of possible atomic arrangements is enormous even for a very small 
system. 

N particles: 3N-dimensional phase space describes the state of every particle in 
that system, and a point in the phase space is a microstate of the system. 
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Potential energy surface (landscape): potential energy as a function of the atomic 
configurations. 



 Atomic configurations
How to generate relevant atomic configurations?
The number of possible atomic arrangements is enormous even for a very small 
system. 

N particles: 3N-dimensional phase space describes the state of every particle in 
that system, and a point in the phase space is a microstate of the system. 

The probability of a microstate at given T is given by the Boltzmann factor:  
                                                                                              exp(-E/kT)
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Potential energy surface (landscape): potential energy as a function of the atomic 
configurations. (minima, transition states, phase transitions)

phase space 
volume

partition 
function



Interaction models

How to describe atomic interactions?
     Ab initio, DFT 
     Classical pair potentials:
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Embedded atom model:

Coarse grain models

Lennard-Jones potential

U = �@ lnZ

@�
=

3N

2

1

�
+

1P
iwi exp(��Ei)

X

i

wiEi exp(��Ei) (13)

✓
� @

@T

◆

V

@ lnZ

@�
=

3N

2

k�

�
P

iwiEi exp(��Ei)/kT 2

[

P
iwi exp(��Ei)]

2

X

i

wiEi exp(��Ei)+

+

1P
iwi exp(��Ei)

X

i

wiE
2
i exp(��Ei)/kT

2.

(14)

p = f
N

N + 1

(15)

Var(X) = Np(1� p) (16)

� =

p
Np(1� p) (17)

Var(Xi) = Npi(1� pi) (18)

ULJ(r) = 4✏

⇣�
r

⌘12
�
⇣�
r

⌘6�
(19)

Ql =

 
4⇡

2l + 1

lX

m=�l

|Qlm|2
!1/2

(20)

Wl =

X

m1,m2,m3;m1+m2+m3=0

 
l l l

m1 m2 m3

!
Qlm1

Qlm2
Qlm3

(21)

2

Hard sphere potential

(from Shih et al.;DOI: 10.1098/rsif.2009.0173)
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Methods specific for 
a given part of the  
phase diagram 

Systematic exploration of  
the phase diagram 

Gibbs Ensemble MC

sample the equilibrium properties of two fluid phases, without the interface

limited to fluid phases 
fluctuations become too large nearer the critical point

V, N



Calculating a p-T phase diagram
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solid I.

solid II.
Methods specific for 
a given part of the  
phase diagram 

Systematic exploration of  
the phase diagram 

Gibbs Ensemble MC
coexistence simulations

equilibrate the coexisting phases by observing the interface

melting transition 
solid structure has to be known a priori 
several simulations needed for a single transition point 
large number of particles needed



Calculating a p-T phase diagram
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Methods specific for 
a given part of the  
phase diagram 

Systematic exploration of  
the phase diagram 

Gibbs Ensemble MC
coexistence simulations
free energy comparison

calculate the free energy of the candidate phases and choose the most favourable

solid structures have to be known a priori 
G1

G2



Calculating a p-T phase diagram
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Methods specific for 
a given part of the  
phase diagram 

Systematic exploration of  
the phase diagram 

Gibbs Ensemble MC
coexistence simulations
free energy comparison
minima search

use minimisation techniques to find the lowest energy structure

strong predictive power 
only low temperature phases can be found

random configuration

minima search  
algorithm



Calculating a p-T phase diagram
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a given part of the  
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Systematic exploration of  
the phase diagram 

Gibbs Ensemble MC
coexistence simulations
free energy comparison
minima search

Wang-Landau 
sampling
parallel tempering

en
er

gy

log(phase space volume)

simulate a series of temperature levels simultaneously  

thermodynamic properties 
can be calculated 
hard to equilibrate around 
phase transitions

T1

T2

T3

T4



Calculating a p-T phase diagram
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the phase diagram 

Gibbs Ensemble MC
coexistence simulations
free energy comparison
minima search
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log(phase space volume)

simulate a series of temperature levels simultaneously  

thermodynamic properties 
can be calculated 
hard to equilibrate around 
phase transitions

T1

T2

T3

T4

Can’t we get the entire phase diagram in a 
simple, automated way and without prior 

knowledge of the structures?



“...to sample probability densities in high-dimensional 
spaces where the regions contributing most of the 

probability mass are exponentially localised.“

John Skilling, 2004,  Bayesian statistics

Nested Sampling

minima of the surface, and are therefore impractical for
large systems; they also do not provide information about
the entropy of the system (which governs the widths of
the conceptual protein-folding funnel).

The funnel like nature of the energy landscape provides
a challenging conformational space for computer simula-
tions to explore, because only an exponentially small number
of conformations have low energy and low entropy and are
found toward the bottom of the funnel; the system also
undergoes a first-order phase transition as the protein
collapses into its native state. In this work, we use nested
sampling to explore the energy landscapes of protein folding
simulations. Nested sampling is a Bayesian sampling tech-
nique introduced by Skilling (17,18), designed to explore
probability distributions where the posterior mass is local-
ized in an exponentially small area of the parameter space.
It both provides an estimate of the evidence (also known as
the marginal likelihood, or partition function) and produces
samples of the posterior distribution. Nested sampling offers
distinct advantages over methods such as simulated anneal-
ing (19), Wang-Landau sampling (20), parallel tempering
(replica exchange) (21), and annealed importance sampling
(22), in systems characterized by first-order phase transitions
(17,23). The technique reduces multidimensional problems
to one dimension and has a single key parameter in the
trade-off between cost and accuracy. The calculation of
free energies by thermodynamic integration (24) and thermo-
dynamic observables, such as heat capacities, typically
involves multiple simulations at different temperatures.
Nested sampling provides an efficient framework for
computing the partition function and hence thermodynamic
observables at any temperature, without the need to generate
new samples at each temperature. Hence, it allows us to
directly investigate the macroscopic states of the protein-
folding pathway and evaluate the associated free energies.
Nested sampling has previously been used in the field of
astrophysics (25) and for exploring potential energy hyper-
surfaces of Lennard-Jones atomic clusters (23), yielding
large efficiency gains over parallel tempering. Its use in
this article represents, to our knowledge, the first application
of this technique to a biophysical problem.

MATERIALS AND METHODS

In general, the energy of a polypeptide, E(U,q), is defined by its conforma-
tion, U, and arbitrary interaction parameters, q. These interaction parame-
ters may be as diverse as force constants, distance cutoffs, dielectric
permittivity, atomic partial charges, etc. This energy, in turn, defines the
probability of a particular conformation, U, at inverse thermodynamic
temperature b via the Boltzmann distribution

PðU; qjbÞ ¼ 1

Zðq; bÞ
exp½ % EðU; qÞb&; (1)

Zðq; bÞ ¼
Z

dU exp½ % EðU; qÞb&; (2)

where Z(q, b) is the partition function (or evidence, in Bayesian termi-
nology). In the following, energy is expressed in units of RT, the product
of the molar gas constant and absolute temperature and b ¼ 1/RT.

In Bayesian statistics, with q an unknown parameter,D the observed data,
and H the underlying model or hypothesis, we have the following relation
(Bayes’ rule)—posterior ' evidence ¼ likelihood ' prior—

PðqjD;HÞZ ¼ PðDjH; qÞPðqjHÞ;

where Z, the evidence, is defined as

Z ¼
Z

PðDjH; qÞPðqjHÞdq:

Nested sampling provides an algorithm for estimating the evidence, Z ¼
P(DjH), and the procedure additionally explores the posterior distribution,
allowing its properties to be estimated.

Procedure

We define X(l) ¼ l to be the proportion of the prior distribution with likeli-
hood L(X) > l. Then, following Skilling (17), the evidence is

Z ¼
Z 1

0

LðXÞdX;

where L(X(l)) ¼ l and dX ¼ p(q)dq, with p(q) the prior distribution. Fig. 1
shows the graph of L against X (this is not to scale, as normally the bulk of
the posterior is in an exponentially small area of the phase space). L is
a decreasing function of X, as the restriction on the likelihood becomes
tighter as l increases. The area under the curve is Z. The nested sampling
procedure estimates points on this curve (see Algorithm, below) and then
uses numerical integration to calculate Z.

Algorithm

1. Sample (uniformly, with respect to the prior distribution) K points of the
parameter space {q1.qK}, i.e., the ‘‘active list’’; then calculate their
likelihoods: {L(q1),.,L(qK)}.

2. Take the sample point with the smallest likelihood; save it as (L1, X1)
(see below for an estimate of X); remove this point from the active list.

FIGURE 1 Evidence Z is the area under the function L(X). The sample qn
represents Xn%1 – Xn of the phase space volume; the proportion of the x axis
is shaded. Its weighting for the posterior is Ln (Xn%1 – Xn)/Z; the proportion
of Z is shaded.

Biophysical Journal 102(4) 878–886

Protein Energy Landscapes 879

evidence (Z) likelihood (L) proportion of the prior distribution
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spaces where the regions contributing most of the 
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minima of the surface, and are therefore impractical for
large systems; they also do not provide information about
the entropy of the system (which governs the widths of
the conceptual protein-folding funnel).

The funnel like nature of the energy landscape provides
a challenging conformational space for computer simula-
tions to explore, because only an exponentially small number
of conformations have low energy and low entropy and are
found toward the bottom of the funnel; the system also
undergoes a first-order phase transition as the protein
collapses into its native state. In this work, we use nested
sampling to explore the energy landscapes of protein folding
simulations. Nested sampling is a Bayesian sampling tech-
nique introduced by Skilling (17,18), designed to explore
probability distributions where the posterior mass is local-
ized in an exponentially small area of the parameter space.
It both provides an estimate of the evidence (also known as
the marginal likelihood, or partition function) and produces
samples of the posterior distribution. Nested sampling offers
distinct advantages over methods such as simulated anneal-
ing (19), Wang-Landau sampling (20), parallel tempering
(replica exchange) (21), and annealed importance sampling
(22), in systems characterized by first-order phase transitions
(17,23). The technique reduces multidimensional problems
to one dimension and has a single key parameter in the
trade-off between cost and accuracy. The calculation of
free energies by thermodynamic integration (24) and thermo-
dynamic observables, such as heat capacities, typically
involves multiple simulations at different temperatures.
Nested sampling provides an efficient framework for
computing the partition function and hence thermodynamic
observables at any temperature, without the need to generate
new samples at each temperature. Hence, it allows us to
directly investigate the macroscopic states of the protein-
folding pathway and evaluate the associated free energies.
Nested sampling has previously been used in the field of
astrophysics (25) and for exploring potential energy hyper-
surfaces of Lennard-Jones atomic clusters (23), yielding
large efficiency gains over parallel tempering. Its use in
this article represents, to our knowledge, the first application
of this technique to a biophysical problem.

MATERIALS AND METHODS
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tion, U, and arbitrary interaction parameters, q. These interaction parame-
ters may be as diverse as force constants, distance cutoffs, dielectric
permittivity, atomic partial charges, etc. This energy, in turn, defines the
probability of a particular conformation, U, at inverse thermodynamic
temperature b via the Boltzmann distribution

PðU; qjbÞ ¼ 1
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where Z(q, b) is the partition function (or evidence, in Bayesian termi-
nology). In the following, energy is expressed in units of RT, the product
of the molar gas constant and absolute temperature and b ¼ 1/RT.

In Bayesian statistics, with q an unknown parameter,D the observed data,
and H the underlying model or hypothesis, we have the following relation
(Bayes’ rule)—posterior ' evidence ¼ likelihood ' prior—

PðqjD;HÞZ ¼ PðDjH; qÞPðqjHÞ;

where Z, the evidence, is defined as

Z ¼
Z

PðDjH; qÞPðqjHÞdq:

Nested sampling provides an algorithm for estimating the evidence, Z ¼
P(DjH), and the procedure additionally explores the posterior distribution,
allowing its properties to be estimated.

Procedure

We define X(l) ¼ l to be the proportion of the prior distribution with likeli-
hood L(X) > l. Then, following Skilling (17), the evidence is

Z ¼
Z 1

0

LðXÞdX;

where L(X(l)) ¼ l and dX ¼ p(q)dq, with p(q) the prior distribution. Fig. 1
shows the graph of L against X (this is not to scale, as normally the bulk of
the posterior is in an exponentially small area of the phase space). L is
a decreasing function of X, as the restriction on the likelihood becomes
tighter as l increases. The area under the curve is Z. The nested sampling
procedure estimates points on this curve (see Algorithm, below) and then
uses numerical integration to calculate Z.

Algorithm

1. Sample (uniformly, with respect to the prior distribution) K points of the
parameter space {q1.qK}, i.e., the ‘‘active list’’; then calculate their
likelihoods: {L(q1),.,L(qK)}.

2. Take the sample point with the smallest likelihood; save it as (L1, X1)
(see below for an estimate of X); remove this point from the active list.

FIGURE 1 Evidence Z is the area under the function L(X). The sample qn
represents Xn%1 – Xn of the phase space volume; the proportion of the x axis
is shaded. Its weighting for the posterior is Ln (Xn%1 – Xn)/Z; the proportion
of Z is shaded.

Biophysical Journal 102(4) 878–886

Protein Energy Landscapes 879

evidence (Z) likelihood (L) proportion of the prior distribution

partition function Boltzmann-factor 
(energy)

phase space volume 
(prior distribution is uniform)

en
er
gy



Nested Sampling Algorithm
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Generate K random samples uniformly in the total phase space volume 

Iterative algorithm, starting form the “top” (ideal gas) and going towards the “bottom” (global 
minimum), through a series of nested energy “contours”. 



Nested Sampling Algorithm
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Generate K random samples uniformly in the total phase space volume 

Choose the sample with the highest energy

the rest of the points will have E < E1  and the 
the phase space volume they occupy is 
approximately K/(K+1) 

E1 

Iterative algorithm, starting form the “top” (ideal gas) and going towards the “bottom” (global 
minimum), through a series of nested energy “contours”. 



Nested Sampling Algorithm
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Generate K random samples uniformly in the total phase space volume 

E1 

Generate a new sample uniformly with E < E1

Choose the sample with the highest energy

the rest of the points will have E < E1  and the 
the phase space volume they occupy is 
approximately K/(K+1) 

Iterative algorithm, starting form the “top” (ideal gas) and going towards the “bottom” (global 
minimum), through a series of nested energy “contours”. 

How?



Generating a new sample configuration

Markov Chain Monte Carlo (MCMC):
single particle and cell moves (volume, shear, stretch) 

Total Enthalpy Hamiltonian Monte Carlo (TE-HMC)
short constant total energy MD trajectories  

Galilean Monte Carlo (GMC)
all-atoms moves, along straight lines between elastic collisions (reflect the velocities to 
redirect the sample to allowed phase space region)

Clone a randomly selected sample 
and perform a random walk until it is 
independent from its parent 
configuration: 

atomic coordinates 
cell shape 
cell volume 
swap types

en
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Generate K random samples uniformly in the total phase space volume 

Iterative algorithm, starting form the “top” (ideal gas) and going towards the “bottom” (global 
minimum), through a series of nested energy “contours”. 



Nested Sampling Algorithm

Generate K random samples uniformly in the total phase space volume 

Repeat this iteration many times…

at the i th iteration the samples will have 
 E < Ei  and phase space volume ~[K/(K+1)]i

en
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Choose the sample with the highest energy

Generate a new sample uniformly with E < Ei

Iterative algorithm, starting form the “top” (ideal gas) and going towards the “bottom” (global 
minimum), through a series of nested energy “contours”. 



Nested Sampling Algorithm

Generate K random samples uniformly in the total phase space volume 
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Repeat this iteration many times…

at the i th iteration the samples will have 
 E < Ei  and phase space volume ~[K/(K+1)]i

Choose the sample with the highest energy

Generate a new sample uniformly with E < Ei

Iterative algorithm, starting form the “top” (ideal gas) and going towards the “bottom” (global 
minimum), through a series of nested energy “contours”. 



Nested Sampling Algorithm
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Generate K random samples uniformly in the total phase space volume 

Repeat this iteration many times…

at the i th iteration the samples will have 
 E < Ei  and phase space volume ~[K/(K+1)]i

Until the “bottom” is reached.

Iterative algorithm, starting form the “top” (ideal gas) and going towards the “bottom” (global 
minimum), through a series of nested energy “contours”. 



Nested Sampling Algorithm
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Generate K random samples uniformly in the total phase space volume 

309 atoms (Cu and Pt) in fixed cell: 
cluster

Iterative algorithm, starting form the “top” (ideal gas) and going towards the “bottom” (global 
minimum), through a series of nested energy “contours”. 



Nested Sampling Algorithm
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Generate K random samples uniformly in the total phase space volume 

Sampling itself independent from temperature 
Thermodynamic quantities as a simple post processing step 

Easy control parameter of the sampling is K, called the “live set” ~ resolution of the PES 
No need for prior knowledge of the structures 
Can be done with both (N,p,T) and (N,V,T)Clone an existing configuration and do random 
walk with a hard energy limit

We have a set of {Ei } and corresponding 
volumes {[K/(K+1)]i }
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Iterative algorithm, starting form the “top” (ideal gas) and going towards the “bottom” (global 
minimum), through a series of nested energy “contours”. 
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2

3. Let i i+ 1, and return to step 1.

At each iteration, the pool of K samples are uni-
formly distributed in configuration space with energy
E < Elimit. The finite sample size leads to a statisti-
cal error in log�i, and also in the computed observables,
that is asymptotically proportional to 1/

p
K, so any de-

sired accuracy can be achieved by increasing K. Note
that for any given K, the sequence of energies and phase
volumes converge exponentially fast (the number of iter-
ations required to obtain results shown below never ex-
ceeded 2000 · K), and increasing K necessitates a new
simulation from scratch.

We now modify the algorithm for the constant pres-
sure case. The integration in (1) needs to be extended
over all volumes and all shapes of a periodic unit cell.
The partition function describing the system at isotropic
pressure p is[17, 18],

�(N, p,�) = Zm�p

Z
dh0� (|h0|� 1)

Z 1

0
dV V N⇥

Z
ds e��(E(s,V,h0)+pV )

(3)

where h is the 3 ⇥ 3 matrix of lattice vectors relating
the Cartesian positions of the atoms r to the fractional
coordinates s via r = hs, V = |h| is the volume, and h0 =
hV �1/3 is the image of the unit cell normalised to unit
volume. NS is performed at fixed pressure to generate a
sequence of enthalpies, Hi, where H = E (s, V,h0) + pV .
We split the volume integral into two by imposing an
upper limit of V0 (approximating the dilute limit of the
ideal gas) on the numerical integration and incorporate
the factor V N into the measure by drawing samples with
volumes proportional to V N . Volumes greater than V0

make a negligible contribution to the partition function,
provided kBT ⌧ pV0. In this case we have

�(N, p,�) ⇡ Zm�p�NS (N, p,�, V0) (4)

One can always assert the condition kBT ⌧ pV0, and in
practice it is easy to find values of V0 suitable for phys-
ically relevant conditions. We found V0 = 107N Å3 to
be suitable for all conditions considered in this paper.
For completeness the contribution to the partition func-
tion from volumes greater than V0 is detailed in the the
Supplementary Information (SI).

Equation (4) is computed using the samples generated
by NS, as

�NS (N, p,�, V0) ⇡
X

i

(�i�1 � �i)e
��Hi . (5)

We use single atom Monte Carlo (MC) moves in frac-
tional coordinates with the amplitude updated every K

2
iterations to maintain a good acceptance rate. Uniform
sampling of lattice shapes was achieved by independent
shearing and stretching moves which do not change the
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FIG. 1. Top: heat capacity curves (blue) and phase diagram
for the periodic Lennard-Jones model. The NS simulations
were performed on 64 particles with parameters K = 640,
L = 1.6 ⇥ 105. The red lines are calculations from the lit-
erature for the melting (solid)[19], boiling (dashed)[20] and
sublimation (dotted)[21] curves. Bottom: performance com-
parison to parallel tempering (PT) which used 128 equispaced
temperature values in the range [0.4, 1.4]. Both NS and PT
simulations were initialised from the vapour phase and the
pressure was 0.027. The bottom left panel shows the esti-
mated transition temperatures as a function of computational
cost while the bottom right panel shows the mean enthalpy
as a function of temperature corresponding to three selected
values of the cost.

volume, while h0 was also constrained not to be too

oblique by rejecting moves that would result in the depth
of the unit cell (normalised to unit volume) less than
0.7. The ratios of the atom, volume, shear and stretch
moves were N :10:1:1. Further details on the MC moves
and equation (5) are given in the SI. Given the parti-
tion function, phase transitions can be easily located by
finding the peaks of response functions such as the heat
capacity, given by

Cp =

✓
@H

@T

◆

p

=

✓
� @

@T

◆

p

@ ln�(N, p,�)

@�
. (6)

By performing separate NS simulations for a range of
pressures and combining the pressure and temperature
values corresponding to the heat capacity peaks one can
straightforwardly construct the entire phase diagram in-
cluding all thermodynamically stable phases.

Nested Sampling vs. Parellel Tempering

levels equidistant in temperature

levels equidistant in log(phase volume)
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Phase behaviour of water
coarse grain water model: mW  
angular dependent term that encourages tetrahedral configurations
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Martensitic Transition in NiTi alloys
shape memory alloy: “remembers” it’s original shape when 
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Martensitic Transition in NiTi alloys
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Lennard-Jones clusters

and more importantly, it does not contain the entropy informa-
tion which controls the thermodynamic behavior. Nested
sampling naturally provides a solution to this.

In this section we introduce and illustrate an algorithm that
identifies the large-scale basins of the energy landscape auto-
matically by postprocessing the sample set produced by nested
sampling. The key point is that we get a broad-brush view of
the landscape, using relatively few samples (clearly not enough
to discover all local minima), but nevertheless giving a helpful
overview of the system. To carry out the topological analysis
of the samples, we construct a graph in which the vertices are
the sample points and connect them by edges based on the
Cartesian distance between the sample points: each vertex is
connected to its k nearest neighbors which have a higher energy
than itself. Then we successively remove vertices and their
associated edges from the graph in a decreasing order in energy.
When the removal of a vertex results in the graph splitting into
two or more disconnected subgraphs, the vertices in the
subgraphs are identified with new basins. The relative phase
space volumes of the basins is estimated from the ratio of the
number of samples belonging to each at the moment of splitting.
The subgraphs are analyzed recursively using the same proce-
dure. If a subgraph is eliminated without splitting further, it
represents a basin associated with a local minimum, and we
identify the sample with the lowest energy in this basin as our

estimate of the local minimum. The output of the algorithm is
a hierarchical nested tree of basins, with known phase space
volumes.

To demonstrate this procedure, we show how it works on a
simple toy model, a two-dimensional potential energy surface
given by the sum of three Gaussians, shown in the top left panel
of Figure 6. This surface has two local minima in addition to
the global minimum. We performed a nested sampling run on
this surface using K ) 100 samples and 1900 iterations, in this
case choosing the new sample points randomly from the entire
[0,10;0,10] range (thus satisfying eq 11 exactly). The final set
of sample points are shown by green crosses in Figure 6, and
to construct the graph, we have chosen k ) 6. To help visualize
the saddle point identification process, in the bottom panel of
Figure 6 we show the state of the graph just before it splits into
two subgraphs corresponding to the two larger basins.

We draw an energy landscape chart, shown in the bottom
left panel of Figure 6, in which the width of the landscape at a
given energy level is proportional to the phase space volume
enclosed by the subset of samples below that energy, as given
by the nested sampling weights, wn. Separate basins are drawn
according to our graph analysis. Note that the ordering of the
basins on the horizontal axis is arbitrarily chosen at each
transition state, but their topological relationships are preserved.
The gray shading in Figure 6 represents one standard deviation
error in the overall phase space volume. The error in the relative
phase space volumes of split basins is estimated as the standard
deviation of the multinomial distribution with generator prob-
abilities equal to the relative basin sizes.

To construct the energy landscape charts for LJ clusters, a
distance metric between the configurations has to be constructed
that takes account of the exact symmetries of the Hamiltonian.
The metric that we use has been described elsewhere;47 it is
calculated in an auxiliary space in which configurations related
by an exact symmetry (translations, rotations, and particle
permutations) are first mapped onto the same point by a
continuous mapping. The resulting energy landscape charts are
shown in Figure 7 for LJ7, LJ8, and LJ13 and in Figure 8 for
LJ31 and LJ36. Note that in this case and in general for high-
dimensional systems, in contrast to the toy model, the horizontal
scale on which the phase space volume is represented has to be
an exponential function of the energy in order to fit the diagram
comfortably on the page. It is particularly notable for LJ7 that
the two local minima with the highest energies correspond to
configurations in which one atom is in the gas phase and the

Figure 4. Heat capacity as a function of temperature for Lennard-Jones clusters LJ17 and LJ25, using nested sampling (red lines) and parallel
tempering (black lines with black dots indicating the temperature values where the simulations were performed in parallel tempering). The standard
errors of the prediction are shown by dashed lines (nested sampling) and error bars (parallel tempering). The number of energy evaluations needed
to calculate the curves are also indicated.

Figure 5. Phase diagram of Lennard-Jones clusters as a function of
temperature and density. Each colored band represents a region in which
the corresponding cluster is thermodynamically stable against evapora-
tion, while the smaller clusters are not. The black arrow indicates the
density at which the nested sampling calculations were carried out.
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evaluation of the free energy corresponding to each value of
this order parameter, and hence give information on the relative
stability of the macroscopic states, without need for a priori
definitions of these states.

We demonstrated nested sampling in the well-studied system
of Lennard-Jones clusters, where the efficiency of evaluating
the heat capacity was more than an order of magnitude better
than that of parallel tempering, without using any prior

knowledge of the location of the global minima. Because the
efficiency gain comes from the natural handling of first-order
phase transitions, we expect even better results in bulk systems,
whose study is already underway.
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Figure 9. Free energy of basins (top) and energy landscape chart
(bottom) of LJ38. The colored regions identify the major basins: global
fcc minimum (green), icosahedral local minimum (L1, red), alternative
icosahedral structure (L2, gray). The dashed lines indicate the depth
of the basins as obtained with direct minimization starting from the
lowest local sample of nested sampling. The wavy line between L1
and the global minimum on the energy landscape chart indicates the
approximate energy of the minimum energy path connecting to
the minima.52 The relative phase space volumes of the basins at the
separation point are shown by the boxed ratios. The light blue region
represents states in which the fcc and lowest energy icosahedral states
cannot be distinguished; the dark blue region includes states in which
L2 states also become indistinguishable. The top panel shows the free
energy associated with each colored region, with respect to the free
energy of the global minimum. For reference, the heat capacity curve
is also plotted again.
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Lennard-Jones clusters
Using the landscape chart, calculate the free energy of the basins, 
determine the phase transitions without the need of externally 
defined order parameter.

evaluation of the free energy corresponding to each value of
this order parameter, and hence give information on the relative
stability of the macroscopic states, without need for a priori
definitions of these states.

We demonstrated nested sampling in the well-studied system
of Lennard-Jones clusters, where the efficiency of evaluating
the heat capacity was more than an order of magnitude better
than that of parallel tempering, without using any prior

knowledge of the location of the global minima. Because the
efficiency gain comes from the natural handling of first-order
phase transitions, we expect even better results in bulk systems,
whose study is already underway.
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Figure 9. Free energy of basins (top) and energy landscape chart
(bottom) of LJ38. The colored regions identify the major basins: global
fcc minimum (green), icosahedral local minimum (L1, red), alternative
icosahedral structure (L2, gray). The dashed lines indicate the depth
of the basins as obtained with direct minimization starting from the
lowest local sample of nested sampling. The wavy line between L1
and the global minimum on the energy landscape chart indicates the
approximate energy of the minimum energy path connecting to
the minima.52 The relative phase space volumes of the basins at the
separation point are shown by the boxed ratios. The light blue region
represents states in which the fcc and lowest energy icosahedral states
cannot be distinguished; the dark blue region includes states in which
L2 states also become indistinguishable. The top panel shows the free
energy associated with each colored region, with respect to the free
energy of the global minimum. For reference, the heat capacity curve
is also plotted again.
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Code release - pymatnest

Python code with an interface to QUIP and LAMMPS 

http://github.com/libAtoms/pymatnest 
http://libatoms.github.io/pymatnest/ 

http://libatoms.github.io/pymatnest/
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