Micromechanical modelling of near-ideal polymer networks

Laurence Brassart

18 May 2020
Research interests

- Continuum mechanics
- Constitutive modelling
- Micromechanics, scale transition methods
- Chemo-mechanical couplings in materials

Materials:
Composite materials; Polymers; Energy materials; Soft materials; Biomaterials

Collaborations:
Université catholique de Louvain, Harvard University, Monash University, Ecole Centrale de Nantes
Micromechanics of composites

- Mean-field modelling in elasto-viscoplasticity
- FEA at micro and macro scales
- Applications to fibre-reinforced composites, dual-phase steels, porous materials, 3D-printed architected materials

Mechanics of Li-ion batteries

- Constitutive modelling of a-LiSi
- Coupled diffusion-plasticity analysis
- Anisotropic swelling and fracture in c-Si

This figure examines the effects of structural relaxation parameter q_0 on the stress and disorder. In the early stages of deformation all stress-strain and disorder-strain curves overlap for different q_0. In the strain-softening stage larger q_0 leads to smaller strain-softening which correspond to smaller step value in disorder. In addition, larger q_0, larger relaxation of disorder, causes faster access to steady-state and smaller/larger steady-state value of disorder/stress.

Fig. 4 is plotted for uniaxial tension with 10^{-1} applied strain rate and shows the evolution of stress, disorder and the ratio of plastic volume for different degrees of material yield dependency on pressure (different values of b). Regarding Fig. 4a, the maximum and steady-state value of stress decreases with increasing b ($b<0.15$). After that, the maximum value of stress decreases while the steady-state value of stress increases. Furthermore, when the yield criterion has a weak dependency on pressure (smaller b), material experience larger maximum stress at a larger strain. Based on Eq. (31) the creation of disorder is proportional to b. Thus, more disorder and plastic dilatation are expected for larger value of b (Fig. 4b, 4c).

Mean-field homogenisation for transient diffusion problems

- Diffusion in heterogeneous media with high diffusivity contrast
- Non-classical effective behaviour

\[\bar{\mu} \dot{c} - \bar{j} \cdot \bar{g} = -\frac{1}{V} \int_{\partial \omega} \mu j \cdot \mathbf{n} dS \]

\[= \frac{1}{V} \int_{\omega} \mu \dot{c} \, dV - \frac{1}{V} \int_{\omega} j \cdot \nabla \mu \, dV \]

Hydrogels in everyday life

Hydrogels are crosslinked polymer networks swollen in water
Network design for strength and toughness

Example: Double-network gels

$\Gamma = 1000 \text{ J/m}^2$

Network design for strength and toughness

Example: hybrid ionic-covalent gels

\[\lambda = 1 \]

\[\lambda = 21 \]

\[\Gamma = 8700 \, \text{J/m}^2 \]

\[\lambda_{\text{max}} > 20 \]

Continuum modelling

Kinematics:

\[x = \chi(X, t) \]

\[F = \nabla \chi \]

\[\det(F) = 1 + \Omega C \]

Conservation equations:

\[\nabla \cdot P = 0 \]

\[\frac{\partial C}{\partial t} = -\nabla \cdot J \]

Constitutive models:

\[\mu \dot{C} + P : \dot{F} - J \cdot \nabla \mu - \dot{W} \geq 0 \]

\[W = W^e(F) + W^c(C) \]

+ kinetic relations

Micromechanical modelling

e.g. Hong et al., JMPS (2008); Chester and Anand, JMPS (2010).
Single chain behaviour

Freely-jointed chain with N Kuhn segments of length b

\[w = NkT \left(\frac{\beta}{\tanh \beta} + \log \frac{\beta}{\sinh \beta} \right) \]

\[\beta = \mathcal{L}^{-1} \left(\frac{r}{Nb} \right) \]

\[\beta = \frac{3r}{Nb} \]
Network models

Assembly of representative chains deforming affinely with the macroscopic strain

- 3-chain model

- 8-chain model

- Full-network model

\[W^e = \frac{1}{V} \sum_n w \]

Wang and Guth (1952); Treloar (1975); Arruda and Boyce (1993); Wu and Van Der Giessen (1993)
Real networks are imperfect

Gu et al., Trends Chem. (2019)
Micromechanical modelling

• Random assembly of springs (polymer chains) connecting at junction points (crosslinks)

• Spring behaviour described by entropic force-extension relation

• Includes topological defects

Objectives

• Understand the relative contributions of network parameters to mechanical properties

• Generate reference results to validate constitutive models
Model system: near-ideal networks

4-arm PEG hydrogels

Polymer precursors

Gelation in solution

- Controlled arm length
- High conversion rate
- No first-order loops
- Few entanglements

Sakai et al., *Macromol.* (2008) > 700 citations
Network structures

Input:
- Chain density $v = n/L^3$
- Conversion probability p
- average coordination \bar{Z}
- Loop fraction ζ

$$x_\alpha = F \cdot X_\alpha$$
$$P = \frac{1}{V} \sum_\alpha (f_\alpha^e \otimes X_\alpha)$$

Output:
- Stress-strain curves
- Chain length and orientation distribution

Energy minimisation (LAMMPS)

$\bar{Z}_{\text{eff}} \approx \bar{Z}(1 - \frac{\zeta}{2})$
Scaling of the shear modulus

\[G \sim \frac{1}{N} \nu^{1/3} (\bar{Z}_{\text{eff}} - \bar{Z}_{\text{eff},c})^{2/3} \]
Interpretation based on chain pre-stretch

Elastic modulus of a network of Gaussian chains:

\[G = kT \nu \frac{\bar{r}_0^2}{Nb^2} \quad \bar{r}_0^2 = \langle r_0^2 \rangle \]

(exact result)

- Topology impacts the modulus via the chain pre-stretch
- Scaling of chain pre-stretch with topology largely explained by geometric arguments
- Coincides with the classical affine estimate only when \(\bar{r}_0 = \sqrt{Nb} \):

\[G = \nu kT \]

![Graph showing the relationship between \(\bar{r}_0^3 \) and \(\bar{Z}_{\text{eff}} \)]
Large-deformation behaviour

Stiffening rate depends on density and topology via the pre-stretch.
Limit extensibility

- Limit extensibility partly explained by the pre-stretch
- Loops reduce the shortest chain path

\[
\lambda_{\text{max}} \approx N \nu^{1/3} (\bar{Z}_{\text{eff}} - \bar{Z}_{\text{eff},c})^{-1/3}
\]

\[
\lambda_{\text{max}} = \frac{n^{SP} Nb}{L}
\]
Comparison to analytical models

- Overall, the full-network is the most accurate
- The 8-chain model consistently underestimates the response

\[\lambda_1 \geq 1 \quad \lambda_2 = \lambda_3 = \frac{1}{\sqrt{\lambda_1}} \]

Uniaxial extension

\[\lambda_1 = \lambda_2 \geq 1, \quad \lambda_3 = \frac{1}{\lambda_1^2} \]

Biaxial extension
Chain length distribution: Uniaxial extension

The full-network model well captures the chain length distribution.
Chain length distribution: Biaxial extension

The full-network misses out a fraction of the highly extended chains.
Application to PEG hydrogels

\[
\text{\begin{tikzpicture}
\draw[thick,->] (0,0) -- (0,1);
\draw[thick,->] (0,1) -- (1,1);
\draw[thick,->] (1,1) -- (1,0);
\draw[thick,->] (1,0) -- (0,0);
\draw[thick] (0.5,0.5) circle (0.1);
\draw[thick] (0.5,0.5) circle (0.2);
\end{tikzpicture}}_n
\]

- Kuhn length: \(b = 1.1 \text{ nm} \)
- Contour length:
 \[
 L_c = n_{\text{mon}} \times 0.36 \text{ nm} = Nb
 \]

- Modified FJC to account for non-ideal chain behaviour

\[
\frac{f \bar{b}}{kT} = \mathcal{L}^{-1} \left(\frac{r}{N_b} \right) \quad \bar{b} = \frac{R_F^2}{Nb} \quad \bar{N} = \frac{(Nb)^2}{R_F^2}
\]

\[R_F \approx v^{1/5} b^{3/5} N^{3/5}\]
Quantifying Loops in 4-arm PEG gels

The fraction of loops increases as the pre-polymer volume fraction decreases

Lange et al., Macromol. (2011)
4-arm PEG with tunable connectivity probability

Akagi et al., RSC Adv. (2013)

Good prediction with only one fitting parameter v^*
Dependence of modulus on concentration

Modulus dependence on molecular weight results primarily from the non-ideality of chain behaviour

Akagi et al., *Macromol.* (2013)
Summary

- Discrete network models as a tool to investigate the role of network parameters on the mechanical response of hydrogels
- Network defects (dangling ends, loops) have a significant impact on mechanical properties
- Coupling between strain pre-stretch and topology gives scaling relations different from classical theories
- The model can explain experimental trends by considering non-ideal chain behaviour and the presence of network defects

References:
G. Alamé and L. Brassart, About to be submitted.
Future work

Extend the computational framework to describe:

- Chain scission
- Crosslink breaking and reforming
- Distribution of chain length
- Interpenetrating networks

Parada and Zhao, *Soft Matter*, 2018

Yang et al., *JMP$, 2019