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Outline of talk

e Problems and definition of emulator

« Types and basic construction

« ‘Data’ from PDE models

« Gaussian process emulation (scalar case)

» Gaussian process emulation for PDE outputs

» Gaussian process emulation for PDE outputs using
dimensionality reduction

« Limitations of linear dimensionality reduction
« Nonlinear dimensionality reduction
« Application to PDE output data

« Emulation of multiple fields
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Problem

« High fidelity simulation of fields, e.g., velocity or temperature
field, in many computational physics and engineering problems

= Design optimization (4 inputs, 10 values = 104 cases!)

= Model calibration, validation, sensitivity analysis,
uncertainty analysis (parameter/structural, numerical error)

« Computational cost of Monte Carlo based methods for
sensitivity/uncertainty analysis can be prohibitive

 For field problems, the dimesionality of the output space is
typically high, e.g., numerical grid 100 x 100 x 100 = 10° points

« Use emulators (meta-model, surrogate) to replace calls to full
simulation model (simulator)

« Rapidly predict and visualize behavior of complex systems as
functions of design parameters
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Types of emulators

« How to construct emulators?

« Two basic approaches:
e Data driven (statistical)
 Physics based

« Data-driven emulators constructed by applying function
approximation/machine learning (e.g., neural network,
Gaussian process modeling) to input-output data

« Physics-based emulation works directly with the PDE
model to achieve model order reduction, e.g. reduced basis
expansion. No natural way of dealing with nonlinearities

* Both require careful design of experiment
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PDE Problems: Spatio-temporal data

e Nonlinear PDE model

Owu; + Fi(q,t,u,Du,D*u,...,D"u;x2) =0 in Q x (0,7
i=1,....J
uw=(u,...,u))T,ec X R ¢q=(§x)

e Fi,i = 1,...,J are nonlinear, parameterized operators

 In 2D, spatial grid
(527)(])77/: 1,N£,j= 17NX

 Consider 1 quantity of interest (steady state): u(q; x).
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PDE Problems: Spatio-temporal data

+ Choose designinputs z(¥) ¢ X ¢ RY, k =1,...,m.

- Simulator outputs u®) (&;, ), i =1,...Ne, j = 1,... N,
o

i,j+1 . i
Il
(i _‘l’j) o (i.—i_ 17j> Ugfl), . . ,ué’f])\fx,
(%:9) RTEEI
k L e p
(i, = 1) Ung,1o - UNg, ) ER
®

« For time dependent case treat time as additional input
parameter. Then there are m N, samples (training points)

 For spatially uniform problems d = V;.
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PDE Problems: Spatio-temporal data

« Simulator can be considered as a mapping from the
design space to the output space

n:X — RY

« The goal of emulation is to approximate this mapping
using training points generated as the design points

y = px®) 5 =1,....,m.

« Machine learning strategies for such general (input-
output) problems, e.g., neural networks, linear
regression, Gaussian process emulation

« GP emulation is attractive because it is Bayesian and
non-parametric (no basis functions to choose)
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Gaussian process emulation: Scalar

« A GP is a stochastic process S,., z € X : the joint
probability density function restricted to a finite subset of
the index set is multivariate Gaussian. A GP is specified
by its mean and covariance functions

. Consider a scalar valued simulator 7 : R' — R

. Run as before at design points ¥ € X ¢ R
. Outputs are y'V = n(m(i)), i=1,...,m

» GP prior assumption: 7(-) is regarded as a GP indexed by
the inputs x

n(m)z/ﬂTﬁ(m) + g,\("’) +e(@) S—— Modelling

Regression functions Zero mean GP measurement error
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Gaussian process emulation: Scalar

« In Bayesian linear regression (without noise)
n(z) =B h(x)

» Place a prior distribution on the weight vector, e.g.,
Gaussian with i.i.d coordinates, 8 ~ N (0, b*])

« Underlying function is distributed according to a
Gaussian process indexed by the inputs x, namely

n(x) ~ GP0,b*h(z)" h(x')

* GPE generalizes this concept by directly placing a
covariance structure on the GP — allows for a much
broader class of functions

WA KW/IC K WCPM 19/2/2015



Gaussian process emulation: Scalar

« Covariance function
k(z,z') = o°c(z,z’;0)
 Stationary correlation function
c(z,z';0) = exp (—(z — x’)" diag(bs,...,0,)(x — z'))
« Expresses smoothness of the GP (of the mean square
derivatives to all orders)
. Conditional distribution of data t = (y'V), ..., y™)7T

t|B,o%,0,~ N(HB,o°C)

= [R(zW)... h(z())"

[C]Zj ((I;(’L) a‘;(]) 0)
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Gaussian process emulation: Scalar

« Predictive distribution given data and hyperparameters
for a test point x

77()‘:87 02797 t ~GP (:u/(')a UZV/('? ))

() = B h() + a(z)TC~(t — HB)
V'(z,2') = c(z,2';0) — a(z)! Cla(x’)
(

e Once hyperparameters are known, predictions can be
made easily and quickly with simple formulae

« Formulae can be extended to predict several points
simultaneously
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Gaussian process emulation: Scalar

 Fully Bayesian approach places a prior f(6) on these
hyperparameters and uses MCMC to present predictions
as a sample

« Time consuming process so often ‘plug in’ (point)
estimates are used

« Maximum a-posteriori (MAP) using a conjugate prior
 Maximum likelihood estimate (MLE)

1 1
oMLE — arg ImaxXpy (—5 In ‘C‘ — §tTC_1t — % IH(QW))

* Depends on number of samples m
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GP emulation for PDE outputs

« How do we extend the scalar case to outputs in a high
dimensional space?

« A naive approach (Kennedy and O’Hagan (2001)) is to
treat the output index as an additional parameter and
perform scalar GPE — for emulating a whole field this
requires d computations

 How do we overcome this problem?

e Consider (Paulo et al. (2102)) the linear model of
coregionalization (Wackernagel (1995))

n(z) = Aw(z) w(z)=(wi(z),...,ws(z))

Independent zero-mean GPs. A independent of x

T
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GP emulation for PDE outputs

* Correlation functions for the GPs are ¢;(-, -, ;)

e The covariance function for the multivariate GP is

Cov(n( Zaa c;i(z,z',0;)

 Fairly general assumption — allows different scales to be
incorporated by using a linear combination of correlation
functions with different scale parameters 6;

« We can assume a separable structure for the covariance by
taking all w; to be i.i.d., i.e. a single correlation function

« Leads to a tractable problem (Conti & O’Hagan (2009);
Rougier (2008)) — equivalent to a multivariate GP prior
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GP emulation for PDE outputs using DR

An alternative method is to use the data to find a ‘suitable’
A and at the same time restrict the number of univariate
GPs to those that contribute the ‘most’

Leads to a reduction in dimensionality of the output space
(restrict to a linear subspace) — Higdon et al. (2008)

The method relies on only principal component analysis

Singular value decomposition of data matrix (or eigen-
decomposition of sample covariance matrix) reorders
data according to variance in the d dimensions with
uncorrelated coefficients

Natural basis (columns of A) for output space and
expansion in terms of coefficients (assumed to be GPs)
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GP emulation for PDE outputs using DR

- Orthonormal basis p;,i = 1,...,m for R”. Select linear
subspace: span{p,...,p,.},r < d

(%)

» Coefficientsin thisbasisc¢;”,j =1,...,d,i=1,...,m

« Expansion (restrict to subspace)

74

Yy =9¢(z) = chpj

Jj=1
Select a test point & for prediction

for j=1:r
scalar GPE on training set cg-z), () §=1,...,m, prediction C;
end

Approximate y = ¥(x) ~ > ;_, ¢;p;
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Limitations of linear DR methods

20

<
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 Fails in many cases to provide an accurate representation
of a response surface

 Informally, works with a relatively ‘flat’ surface

 For highly nonlinear response surfaces with abrupt
changes it could fail completely
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Nonlinear Dimensionality Reduction

« There are other methods for dimensionality reduction

e Linear methods
— PCA

— Multi-dimensional scaling

20
10

— Independent component analysis
0

e Nonlinear methods
— Kernel PCA

— Isomap/kernel Isomap

-10

-20-
40

— Diffusion maps 0 -10
— Laplacian eigenmaps

— Local linear embedding
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Nonlinear Dimensionality Reduction

« Manifold assumption: the input data resides on or close
to a ‘low-dimensional’ manifold embedded in the
ambient space — informally the dimension is the number
of parameters needed to specify a point, e.g., a surface of
a sphere has dimension 2

« Learning/characterizing such manifolds from given data
is called manifold learning

« Approaches are characterized in a number of ways, e.g.,
spectral, kernel-based, embeddings

« Each have their own advantages and disadvantages — no
universal technique

« Performance on toy data sets can be misleading
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Using kernel PCA for field emulation

« Mapped to a higher dimensional (possibly infinite)
feature space and apply LPCA to mapped data (Scholkopf

et al. (1998))

« Transform data in such a way that it lies in (or near) a
linear subspace of the feature space

« Feature space can be very high dimensional (possibly
infinite)

» Feature map ¢ : R — F is implicitly specified via kernel
function

¢( (4) )T¢( (7)Y = ( @) yU)) = f{ij
B(yD) =¢(y") — ¢
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Using kernel PCA for field emulation

« In general the map is not known explicitly

« Recast eigenproblem for sample covariance matrix (in
feature space) as a eigenproblem for kernel matrix o;

. Eigenvectors of sample covariance matrix v; are not
known but the coefficients in an expansion are known

(ﬂ Z akz¢k Z O‘szkg

e Do GPE on first r coefflclents (test 1nput x) to approximate

projection of ¢(y(xz)) onto span{wvi,...,v,}
Sly(z)) = z(x)v; +¢
i=1
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Using kernel PCA for field emulation

« Examples of a kernel functions

: — 1 (g _qg )2
Gaussian kernel e~ 3.z 1¥ =yl

Polynomial (order n) ((y)Tyl) 4 5)»
Multiquadric V14 5|y — y)]]2

Sigmoid tanh(s(y)TyU) + s

 Since the map is not known (nor the basis vectors in feature
space), a pre-image problem has to be solved —
approximate the inverse map

o It turns out this is possible to do in 3 main ways for most
standard kernels
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Using kernel PCA for field emulation

« Least squares approximation is possible by expressing
distances between points in physical space to distances
between points in feature space via kernel function.
Method can suffer from numerical instabilities if m < d.

A fixed-point iterative algorithm (Mika et al. (1999)) can
be used but is again prone to instability

« Local linear interpolation (Ma & Zabaras (2011)) is the
third method (again based on distance information) —
use a weighted sum of known data point values. This
gives stable results
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Summary of method

1. Select design points x) ¢ X c RY, j =1,...,m, using DOE
2. Collect outputs y\9) = n(xU)) € R? from the simulator
3. Perform kPCA on y¥) = zz-(j), j=1,....mi=1,...,d
4. Select a test point x for prediction
forc=1:r
perform scalar GPE on D; = {x(j),zi(j) L= %
end

Reconstruct = y = ¢_1(gAb) ~ n(x)
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Example 1

Subsurface flow in porous media driven by density variations

gu+Vp— % % (Vu+VuT) = pgB(T - T¢)

V-u=0 T=T.
pCpou-VT —V - (k,,VT) =0
@ T=T,
« Use Brinkman’s equation with i
Boussinesq buoyancy term = T
< I
« Temperature varies from high - n lﬂ
T, to T.along outer edges = ‘ =
|
o Initially water stagnant but 5 2

temperature gradients alter fluid T =T,
density and buoyant flow generated
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Example 1: Training and Testing

« Two input parameters varied: coefficient of volumetric
thermal expansion 3 and the high temperature T;,

A total of 500 numerical experiments were per-
formed, with inputs selected using a Sobol sequence

« For each simulation, magnitude of the velocity |u| was
recorded on regular 100 x 100 square spatial grid

« The 10000 points in the 2D spatial domain re-ordered
into vector form in

« 400 samples reserved for testing
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Example 1: Results
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Example 2

« CSTR used to produce propylene glycol (PrOH) from the
propylene oxide (PrO) with water in the presence of H,SO,

« Mass Balances

de;
Wd—(; = vf(cf,i — c,,;) + v; Vor

e« Heat balance

Zcicp,i‘;_T — _Hr+ Cp.a ) (1 _ eUA/(chp,w)>+Z vreyi(hy, )

i t / v, 3 /‘vr

Heat of reaction  Heat loss to HX Convective heat flow

« Molar enthalpy of species i
hi — Cp,i (T — Tref) + hi,ref
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Example 2: Training and Testing

« The model was solved in COMSOL Multiphysics 4.3b
(‘Free convection in porous media’)

« Three input parameters varied: initial temperatures,
initial concentrations of PrO, heat exchange
parameter, UA

« A total of 500 numerical experiments were per-
formed, with inputs selected using a Sobol sequence

« Temperature recorded every 14 s up to 7000 s
« The 501 points re-ordered into vector form

e 400 samples reserved for testing
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Example 2: Results
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Isomap

 C(Classical multidimensional scaling provides a low-
dimensional Euclidean space representation of data that
lies on a manifold in a high dimensional ambient space

» It relates ‘dissimilarities’ d; between points i and j to
Euclidean distances 9, in the low-dimensional space

« Classical scaling is an isometric embedding

5i; = Hz(i) _ Z(j)H = d;;

Dissimilarity matrix

D = [d;;]
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Isomap

« When dissimilarities are defined by Euclidean distance
MDS is equivalent to PCA (easily seen from least-squares
optimality of PCA)

« Method is also spectral: eigenvectors of a centred kernel
matrix K = —(1/2)H(D o D)H

« Idea generalised by Tenenbaum et al. using geodesic
distances for d; (e.g. shortest path distance) — Isomap

« Can be considered equivalent to kPCA: Dissimilarity
matrix defines distances between points in feature space
and leads to a centred kernel matrix

« Coordinates obtained from a spectral decomposition same
as before, provided the kernel matrix is p.s.d.
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Isomap

« Kernel ISOMAP guarantees p.s.d. kernel matrices and
therefore the existence of a feature space

« Can use same procedure as before on coefficients learned
by ISOMAP

e Pre-image problem can be solved similarly by relating
distances between points in the low-dimensional space to
dissimilarities (= Euclidean distances for ‘neighbours’)
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Example

Metal melting front: a square cavity containing solid and
liquid submitted to a temperature difference between the
left and right boundaries

ou
Poa—I—po(u-V)u—I—Vp—V-,u(Vu—I—VuT)—pg:()
V-u=0
o, —n- (—kVT) =0
C,— C,u-VI; -V - (kVT;)) =0
PO gy T PCa- VI =V - (WVT) §=s(nt) | r-n

p=poB(T; — Ty) \\\\
aTs Liquid Solid
pC — V- (kVT)=0

pat n

2
PoAhf% = <1+ (63) ) (kaTs —k@) ¢

oy oy dx T (VD) =0
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Example: Training and Testing

« The model was solved in COMSOL Multiphysics 4.3b

« Two input parameters varied: latent heat of fusion Ah;,
and thermal conductivity k

« 50 numerical experiments were performed, with
inputs selected using a Sobol sequence.

« For each set of parameters, 10 snapshots of the
velocity field were recorded for 7 = 50, 100, ..., 500 s.

« For each simulation, magnitude of the velocity |u| was
recorded on regular 100 x 100 square spatial grid

e 400 samples reserved for testing
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Example: Results
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Emulating multiple fields

« We can emulate multiple fields or vector fields by
combining data sets or separate emulation assuming
independence

« Could lead to problems with scaling (e.g., temperature
variations vs. velocity variations) or ignores correlations
between outputs (e.g., electric potential and current)

« Multiple outputs types (fields) yf,-i) J=1...,J
« Perform NDR for each output type and extract

coefficients z,(jz where k indexes the coefficient number, j

indexes the output type and i/ indexes inputs

- For a fixed k, define z!" = (z,(f,)l, ooy Z;(f?J)T

WA KW/IC K WCPM 19/2/2015



Emulating multiple fields

« Use LMC to infer coefficients simultaneously for test
inputs: a J-variate GP

Zy(-) = FxWi(")

e« Wi=Wik....,Wsr)" where coordinates are independent
GPs with zero mean and correlation functions ¢; (-, -, 8; &)

Z.(-)| parameters, data ~ GP (My(+), K (-, "))

« Explicit formulae for mean function M (z) and variance-
covariance matrix Ky (z, ) are given

« Parameters determined via likelihood or MCMC

« Repeat for each k and solve pre-image problem
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Other work

 Diffusion maps, with a new method for solving pre-
image problem based on an extended diffusion matrix
and local interpolation

« Physics based approaches using NDR (direct
approach?)

« Large scale problems (more complex data sets)
including issues with DOE, number of samples and
dimensionality of input space
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