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•  Problems and definition of emulator 
•  Types and basic construction 
•  ‘Data’ from PDE models 
•  Gaussian process emulation (scalar case) 
•  Gaussian process emulation for PDE outputs 
•  Gaussian process emulation for PDE outputs using 

dimensionality reduction 
•  Limitations of linear dimensionality reduction 
•  Nonlinear dimensionality reduction 
•  Application to PDE output data 
•  Emulation of multiple fields 
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•  High fidelity simulation of fields, e.g., velocity or temperature 
field, in many computational physics and engineering problems 
!  Design optimization (4 inputs, 10 values = 104 cases!) 
!  Model calibration, validation, sensitivity analysis, 

uncertainty analysis (parameter/structural, numerical error) 
•  Computational cost of Monte Carlo based methods for 

sensitivity/uncertainty analysis can be prohibitive 
•  For field problems, the dimesionality of the output space is 

typically high, e.g., numerical grid 100 × 100 × 100 = 106 points 
•  Use emulators (meta-model, surrogate) to replace calls to full 

simulation model (simulator) 
•  Rapidly predict and visualize behavior of complex systems as 

functions of design parameters 

WCPM 19/2/2015 



•  How to construct emulators? 
•  Two basic approaches: 
•  Data driven (statistical) 
•  Physics based 

•  Data-driven emulators constructed by applying function 
approximation/machine learning (e.g., neural network, 
Gaussian process modeling) to input-output data 

•  Physics-based emulation works directly with the PDE 
model to achieve model order reduction, e.g. reduced basis 
expansion. No natural way of dealing with nonlinearities 

•  Both require careful design of experiment 
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•  Nonlinear PDE model 

 
•  In 2D, spatial grid 

•  Consider 1 quantity of interest (steady state):  

   

•                             are nonlinear, parameterized operators  

space and to dramatically reduce the output space dimensionality (by three to

four orders of magnitude in the examples considered) when emulating spatial

and spatio-temporal datasets arising from a simulator. GP emulation is per-

formed in a feature space, to which the outputs of the simulator are mapped;

predictions are made by approximating the inverse mapping. The proposed

method (referred to as kGPE) inherits the advantages of HH but permits a

much broader class of response surfaces to be modelled. It is applied to three

test cases involving spatial, spatio-temporal and temporal data from computer

simulations. In two of the examples HH fails to provide meaningful results,

while kGPE proves to be accurate. The method can be combined with any

of the aforementioned multi-variate GP methods [13, 14, 17, 18] to e�ciently

perform emulation of multiple spatio-temporal fields simultaneously, e.g., when

pressure, temperature and velocity fields are required from a single simulator.

In the next section, the emulation problem is formulated. kPCA and its

application to emulation are also described in this section. The numerical results

are presented and discussed in section 3. An outline of the extension to multiple

fields is presented in Appendix C.
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partial derivatives of u
i

of order k. Then Dk

u = {D↵

u : |↵| = k}, where

D↵

u = {D↵u1, . . . , D
↵u

M

}, denotes the set of all partial derivatives of order k

of all variables u
i

. The boundary and initial conditions are also allowed to be

nonlinear and parameterized. It is assumed that the PDE model is well-posed

for any value of x and that a solution can be computed numerically.

We describe a method for constructing emulators for the numerical solutions

to (1), together with consistent initial/boundary conditions. The computational

model is referred to as a simulator. The quantity or quantities of interest can

include any or all of the u
i

, or functions derived from the u
i

. Consider one

such quantity, u(q ;x ), in the case of a 2D steady-state simulation. u(q ;x ) is

simulated or derived from the simulations at specified locations on a spatial

grid (⇠
i

,�
j

), i = 1, . . . N
⇠

, j = 1, . . . N
�

. The grid points need not be uniformly

spaced provided that the same grid is used for each simulation.

For di↵erent design inputs x

(k) 2 X ⇢ Rl, k = 1, . . . ,m, the simulator

gives outputs u(k)(⇠
i

,�
j

), i = 1, . . . N
⇠

, j = 1, . . . N
�

. We will use the compact

notation u
(k)
i,j

:= u(k)(⇠
i

,�
j

). Each of the outputs can be vectorized as follows:

y

(k) = (u(k)
1,1, . . . , u

(k)
1,N

�

, u
(k)
2,1, . . . , u

(k)
2,N

�

, . . . . . . . . . , u
(k)
N

⇠

,1, . . . , u
(k)
N

⇠

,N

�

) 2 Rd (2)

where d = N
⇠

⇥ N
�

. In the case of time-dependent simulations with N
t

time

steps in the temporal discretization, t is treated as an additional input, x 7!
(x , t) and y

(k) 2 Rd, where d = N
⇠

⇥N
�

. The number of training points is mN
t

.

This is a multivariate equivalent to the time input (TI) case defined by Conti and

O’Hagan [13]. For spatially-uniform, time-dependent simulations, y

(k) 2 Rd

where d = N
t

. The same procedure can be extended to other quantities of

interest from the simulations. Simultaneous emulation of multiple quantities is

discussed in section 4 and Appendix C.. For now it is assumed that a single

quantity u is the target for emulation.

The simulator can be considered as a mapping ⌘⌘⌘ : Rl ! Rd (representing

the PDE solution u(q ;x ) at the defined grid points). The goal of emulation

is to learn the mapping ⌘⌘⌘, given data y

(i) = ⌘⌘⌘(x (i)) for design points x

(i),

i = 1, . . . ,m. The high dimension d of the output space means that most
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•  Choose design inputs 
•  Simulator outputs 

 

 
•  For time dependent case treat time as additional input 

parameter. Then there are           samples (training points)  
•  For spatially uniform problems     
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•  Simulator can be considered as a mapping from the 
design space to the output space  

  
•  The goal of emulation is to approximate this mapping 

using training points generated as the design points 
 
•  Machine learning strategies for such general (input-

output) problems, e.g., neural networks, linear 
regression, Gaussian process emulation 

•  GP emulation is attractive because it is Bayesian and 
non-parametric (no basis functions to choose) 

1. Introduction
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•  A GP is a stochastic process      ,             : the joint 
probability density function restricted to a finite subset of 
the index set is multivariate Gaussian. A GP is specified 
by its mean and covariance functions 

•  Consider a scalar valued simulator 
•  Run as before at design points   
•  Outputs are                  
•  GP prior assumption:          is regarded as a GP indexed by 

the inputs x 

be calculated as follows:

d2
i,· = ||y (i)||2+ ||by ||2�2(y (i))T by = (k(i, i))1/n+(k(·, ·))1/n�2(k(i, ·))1/n (16)

in which:

k(·, ·) = b���
T b��� = (�⌧⌧⌧)T �⌧⌧⌧ = ⌧⌧⌧TK⌧⌧⌧

k(i, ·) = b���
T

���
i

= (�⌧⌧⌧)T ���
i

= ⌧⌧⌧Tk
i

(17)

2.2. Single output Gaussian process emulation

We summarize the standard (scalar) formulation in Oakley and O’Hagan [5].

A simulator is defined as an unknown function ⌘ : Rl ! R of inputs x 2 X ⇢ Rl.

A stochastic process is a family of random variables, W(x), indexed by elements

x 2 X, which can be discrete (X ✓ N) or continuous (X ✓ R). For a GP, the

joint probability density function restricted to a finite subset ofX is multivariate

Gaussian. A GP is specified by its mean and covariance functions.

An emulator provides a probability distribution for ⌘(·) given data from the

simulator. The emulator is trained using m simulator outputs Z(i) = ⌘(x (i))

from design points x (i) 2 X ⇢ Rl (this notation is used to avoid confusion with

the outputs y of the multi-output simulator ⌘⌘⌘(·)). In GP emulation, ⌘(·) is

regarded as a random function that has a GP distribution:

⌘(x ) = ���T

h(x ) +W(x ) (18)

where h : Rl ! Rp is a vector of regression functions, ��� 2 Rp (for some p)

is a vector of regression coe�cients and W(x ) is a GP with mean zero and

(positive definite) covariance function k(x ,x 0) = Cov[W(x ),W(x 0)]. A linear

model structure is assumed for the mean function, E[⌘(x )] = ���T

h(x ). The

most common choices of the regression functions are h(x ) = (1, x1, . . . , xl

)T or

a constant value, which have been found to be adequate in most applications.

A zero constant value is frequently assumed after centering the data (see Ras-

mussen and Williams [7]). If prior knowledge of the input-output relationship

is available, more complex forms of h could be used.

The covariance function is given by k(x ,x 0) = �2c(x ,x 0;✓✓✓), where �2 is the

variance of the GP and c(x ,x 0;✓✓✓) is the correlation between ⌘(x ) and ⌘(x 0).
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y(i) = ⌘(x (i)), i = 1, . . . ,m

⌘(·)

⌘(x ) = ���T
h(x ) + G(x ) + ✏(x )

Regression functions 
Modelling 

measurement error Zero mean GP 
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•  In Bayesian linear regression (without noise)  
 
•  Place a prior distribution on the weight vector, e.g., 

Gaussian with i.i.d coordinates,                              
•  Underlying function is distributed according to a 

Gaussian process indexed by the inputs x, namely 

•  GPE generalizes this concept by directly placing a 
covariance structure on the GP – allows for a much 
broader class of functions                                 

��� ⇠ N (0, b2I)

⌘(x ) = ���T
h(x )

⌘(x ) ⇠ GP(0, b2h(x )Th(x 0)
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•  Covariance function 

•  Stationary correlation function 
 
•  Expresses smoothness of the GP (of the mean square 

derivatives to all orders) 
•  Conditional distribution of data 

k(x ,x 0) = �2c(x ,x 0;✓✓✓)

c(x ,x 0
;✓✓✓) = exp

�
�(x � x

0
)

T
diag(✓1, . . . , ✓l)(x � x

0
)

�

t |���,�2,✓✓✓,⇠ N (H���,�2C)

t = (y(1), . . . , y(m))T

H =
⇥
h(x (1)) . . .h(x (m))

⇤T

[C]ij = c(x (i),x (j);✓✓✓)
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•  Predictive distribution given data and hyperparameters 
for a test point x 

•  Once hyperparameters are known, predictions can be 
made easily and quickly with simple formulae 

•  Formulae can be extended to predict several points 
simultaneously 

⌘(·)|���,�2,✓✓✓, t ⇠ GP
�
µ0(·),�2⌫0(·, ·)

�

µ0(x ) = ���T
h(x ) + a(x )TC�1(t �H���)

⌫0(x ,x 0) = c(x ,x 0;✓✓✓)� a(x )TC�1
a(x 0)

a(x ) =
�
c(x (1),x ;✓✓✓), . . . c(x (m),x ;✓✓✓)

�T
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•  Fully Bayesian approach places a prior          on these 
hyperparameters and uses MCMC to present predictions 
as a sample 

•  Time consuming process so often ‘plug in’ (point) 
estimates are used 

•  Maximum a-posteriori (MAP) using a conjugate prior  
•  Maximum likelihood estimate (MLE) 

•  Depends on number of samples m  
 

f(✓✓✓)

✓✓✓MLE = arg max✓✓✓

✓
�1

2

ln |C|� 1

2

tTC�1t � m

2

ln(2⇡)

◆
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•  How do we extend the scalar case to outputs in a high 
dimensional space? 

•  A naive approach (Kennedy and O’Hagan (2001)) is to 
treat the output index as an additional parameter and 
perform scalar GPE – for emulating a whole field this 
requires d computations 

•  How do we overcome this problem? 
•  Consider (Paulo et al. (2102)) the linear model of 

coregionalization (Wackernagel (1995)) 

•  Independent zero-mean GPs. A independent of x!
⌘⌘⌘(x ) = Aw(x ) w(x ) = (w1(x ), . . . , wJ(x ))

T
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•  Correlation functions for the GPs are  
•  The covariance function for the multivariate GP is  

•  Fairly general assumption – allows different scales to be 
incorporated by using a linear combination of correlation 
functions with different scale parameters  

•  We can assume a separable structure for the covariance by 
taking all       to be i.i.d., i.e. a single correlation function 

•  Leads to a tractable problem (Conti & O’Hagan (2009); 
Rougier (2008)) – equivalent to a multivariate GP prior!

Cov(⌘⌘⌘(x ),⌘⌘⌘(x 0
)) =

JX

i=1

a ia
T
i ci(x ,x

0,✓✓✓i)

ci(·, ·,✓✓✓i)

✓✓✓i

wi
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•  An alternative method is to use the data to find a ‘suitable’ 
A and at the same time restrict the number of univariate 
GPs to those that contribute the ‘most’ 

•  Leads to a reduction in dimensionality of the output space 
(restrict to a linear subspace) – Higdon et al. (2008) 

•  The method relies on only principal component analysis 
•  Singular value decomposition of data matrix (or eigen-

decomposition of sample covariance matrix) reorders 
data according to variance in the d dimensions with 
uncorrelated coefficients 

•  Natural basis (columns of A) for output space and 
expansion in terms of coefficients (assumed to be GPs) 
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•  Orthonormal basis                                for       . Select linear 
subspace:                                                   

•  Coefficients in this basis 

•  Expansion (restrict to subspace) 

 
d

Select a test point x for prediction

for j = 1 : r

scalar GPE on training set c(i)j , x

(i)
, i = 1, . . . ,m, prediction cj

end

Approximate y =    (x ) ⇡
Pr

j=1 cjpj

pj , i = 1, . . . ,m
span{p1, . . . ,pr}, r ⌧ d

c(i)j , j = 1, . . . , d, i = 1, . . . ,m

y =    (x ) ⇡
rX

j=1

cjpj
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detailed analyses can be found in. e.g., [25–27]). Replacing PCA with a nonlinear dimensionality
reduction method is, therefore, a natural extension, which forms the motivation for the method
developed below.
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Figure 1.

(c) Dimensionality reduction via Isomap

(i) Multidimensional scaling (MDS)

Classical MDS, which was motivated by the work of Torgerson [28], provides a low-dimensional
Euclidean space representation of a data set that lies in a high-dimensional ambient space. It
does so by relating the distances �

ij

between data points in the low-dimensional Euclidean
space to dissimilarities d

ij

between the data points in the ambient space. In ‘classical scaling’,
the dissimilarities are Euclidean distances and the Euclidean distances in the low-dimensional
space satisfy �

ij

= d
ij
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•  Fails in many cases to provide an accurate representation 
of a response surface 

•  Informally, works with a relatively ‘flat’ surface 
•  For highly nonlinear response surfaces with abrupt 

changes it could fail completely  
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•  There are other methods for dimensionality reduction 
•  Linear methods 

–  PCA 
–  Multi-dimensional scaling  
–  Independent component analysis  

•  Nonlinear methods 
–  Kernel PCA 
–  Isomap/kernel Isomap 
–  Diffusion maps 
–  Laplacian eigenmaps 
–  Local linear embedding 
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detailed analyses can be found in. e.g., [25–27]). Replacing PCA with a nonlinear dimensionality
reduction method is, therefore, a natural extension, which forms the motivation for the method
developed below.
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(c) Dimensionality reduction via Isomap

(i) Multidimensional scaling (MDS)
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•  Manifold assumption: the input data resides on or close 
to a ‘low-dimensional’ manifold embedded in the 
ambient space – informally the dimension is the number 
of parameters needed to specify a point, e.g., a surface of 
a sphere has dimension 2  

•  Learning/characterizing such manifolds from given data 
is called manifold learning 

•  Approaches are characterized in a number of ways, e.g., 
spectral, kernel-based, embeddings 

•  Each have their own advantages and disadvantages – no 
universal technique 

•  Performance on toy data sets can be misleading 
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•  Mapped to a higher dimensional (possibly infinite) 
feature space and apply LPCA to mapped data (Scholkopf 
et al. (1998)) 

•  Transform data in such a way that it lies in (or near) a 
linear subspace of the feature space 

•  Feature space can be very high dimensional (possibly 
infinite) 

•  Feature map                        is implicitly specified via kernel 
function  

 

��� : Rd ! F

Gaussian kernel e�
1

2s2
||y(i)�y

(j)||2

Polynomial (order n) ((y (i))Ty (j) + s)n

Multiquadric
p

1 + s||y (i) � y

(j)||2
Sigmoid tanh(s(y (i))Ty (j) + s0)

Table 1: Examples of kernels. s and s0 are user defined shape parameters. || · || denotes the

Euclidean norm.

finding the eigenvectors and eigenvalues of the sample covariance matrix S:

S =
1

m

mX

i=1

e���(y (i))
⇣
e���(y (i))

⌘
T

(3)

in which e���(y (i)) = ���(y (i)) � ��� = ���(y (i)) � (1/m)
P

m

j=1���(y
(j)) is the ith data

point centered in feature space. This problem is recast by introducing a kernel

function k(·, ·) (examples of kernels are given in Table 2.1). The centred kernel

function ek(·, ·) is defined as:

e���(y (i))T e���(y (j)) = ek(y (i),y (j)) = eK
ij

(4)
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matrix [ eK]
ij

, i, j = 1, . . . ,m, is called the centred kernel matrix. We use the

compact notation ���
i
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s is used to control the flexibility of the kernel. A common choice for s is the
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(6)
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•  In general the map is not known explicitly 
•  Recast eigenproblem for sample covariance matrix (in 

feature space) as a eigenproblem for kernel matrix  
•  Eigenvectors of sample covariance matrix       are not 

known but the coefficients in an expansion are known 

•  Do GPE on first r coefficients (test input x) to approximate 
projection of                  onto   

 
 

or in matrix form (using the positive definiteness of eK), m�↵↵↵ = eK↵↵↵. The

problem then becomes one of finding the eigenvectors of the kernel matrix.

If the eigenvectors ↵↵↵
i

are replaced by e↵↵↵
i

= ↵↵↵
i

/
p
�
i

, normalized eigenvectors

e
v

j

, j = 1, . . . , dim(F ), can be defined as e
v

i

=
P

m

k=1 e↵ki

e���
k

, in which e↵
ki

=

↵
ki

/
p
�
i

and ↵
ki

denotes the kth component of ↵↵↵
i

. The projection of e���
j

onto

e
v

i

is given by:

z
(j)
i

= e
v

T

i

e���
j
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mX

k=1

e↵
ki
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T

k
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j

=
mX

k=1

e↵
ki

eK
kj

i = 1, . . . ,m (7)

The centred kernel values ek(i, j), can be calculated are related to the non-centred

kernel values k(i, j) := k(y (i),y (j)) by:

ek(i, j) = k(i, j)� 1T

k

i

� 1T

k

j

+ 1TK1 (8)

in whichK, [K]
ij

= k(i, j), is the non-centred kernel matrix, 1 = (1/m)(1, . . . , 1)T 2
Rm, and k

p

= (k(1, p), . . . , k(m, p))T for any p. Let ek
p

= (ek(1, p), . . . ,ek(m, p))T .

Using equation (8), ek
p

= Hk

p

�HK1, in which H = I�m11T is the centering

matrix. The projections (7) can be rewritten as follows:

z
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in which eU = [e↵↵↵1 . . . , e↵↵↵m

]. The data matrix � = [���(y (1)), . . . ,���(y (m))] can be

centered in feature space by e� = �H, yielding:
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(10)

Similarly to PCA, the projections are arranged in order of decreasing variance,

which potentially allows the data points to be projected onto a low-dimensional

subspace of F while preserving most of the information. The projection b���
j

of

an arbitrary point ���
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onto the first r basis vectors is given by:
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b���(y(x )) =
rX

i=1

zi(x )ev i + ���

span{ev1, . . . , evr}���(y(x ))
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•  Examples of a kernel functions 

 

•  Since the map is not known (nor the basis vectors in feature 
space), a pre-image problem has to be solved – 
approximate the inverse map 

•  It turns out this is possible to do in 3 main ways for most 
standard kernels 
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2s2
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(j)||2

Polynomial (order n) ((y (i))Ty (j) + s)n

Multiquadric
p

1 + s||y (i) � y

(j)||2
Sigmoid tanh(s(y (i))Ty (j) + s0)

Table 1: Examples of kernels. s and s0 are user defined shape parameters. || · || denotes the

Euclidean norm.
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•  Least squares approximation is possible by expressing 
distances between points in physical space to distances 
between points in feature space via kernel function. 
Method can suffer from numerical instabilities if m < d.!

•  A fixed-point iterative algorithm (Mika et al. (1999)) can 
be used but is again prone to instability 

•  Local linear interpolation (Ma & Zabaras (2011)) is the 
third method (again based on distance information) – 
use a weighted sum of known data point values. This 
gives stable results  
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1. Select design points x(j) 2 X ⇢ Rl, j = 1, . . . ,m, using DOE

2. Collect outputs y(j) = ⌘⌘⌘(x(j)) 2 Rd from the simulator

3. Perform kPCA on y

(j) ))) z(j)i , j = 1, . . . ,m, i = 1, . . . , d

4. Select a test point x for prediction

for i = 1 : r

perform scalar GPE on Di = {x(j), z(j)i }mj=1 ))) zi

end

Reconstruct ))) b
y = ����1(b���) ⇡ ⌘⌘⌘(x)



Subsurface flow in porous media driven by density variations 
 
 
 
 
 
 

4.1. Free convection in porous media

This example concerns subsurface flow in porous media driven by density

variations that result from temperature changes [28]. The two-dimensional do-

main (⇠, ⌘) 2 [0, 10]⇥[0, 10] (in units of cm) is filled with water. The temperature

varies from a high value T
h

to a low value T
c

along the outer edges, as shown

in Figure 2. Initially the water is stagnant, but temperature gradients alter

the fluid density and buoyant flow is generated. The free-convection problem is

modelled by introducing a Boussinesq buoyancy term (accounting for the lifting

force due to thermal expansion) to the Brinkmans equation:
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in which T represents temperature, g denotes gravitational acceleration, ⇢ is the

fluid density at the reference temperature T
c

, ✏ is the porosity of the medium,

and � is the coe�cient of volumetric thermal expansion of the fluid. The heat

balance takes the form:

⇢C
p

u ·rT �r · (k
m

rT ) = 0 (56)

in which k
m

denotes the e↵ective (volume averaged) thermal conductivity of

the fluid-solid mixture, and C
p

is the specific heat capacity of the fluid at con-

stant pressure. The Brinkman equations are subject to no-slip conditions on

all boundaries (with a reference pressure specified arbitrarily). The boundary

conditions for the temperature are shown in Figure 2. The model was solved

in COMSOL Multiphysics 4.3b (‘Free convection in porous media’ under the

Subsurface Flow (Heat Transfer) module) without modification. Two input pa-

rameters were varied: the coe�cient of volumetric thermal expansion � and the

high temperature T
h

. For each simulation, the magnitude of the velocity |u|

was recorded on a regular 100 ⇥ 100 square spatial grid. The 10000 points in

the 2D spatial domain were re-ordered into vector form in R10000 (d = 10000 in

the notation of the previous section).

Training and Testing. A total of 500 numerical experiments were per-

formed, with inputs selected using a Sobol sequence design-of-experiment (DOE):
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Figure 2: Temperature boundary for the ‘Free convection in porous media’ example.

� 2 [10�11, 10�8] (K�1) and T
h

2 [40, 60] (oC). This method generally provides

a more uniform coverage of the input space than a Latin hypercube. 400 of

these samples were reserved for testing. Di↵erent numbers of the remaining 100

samples were used as training points to assess the e↵ects of the training point

number. The relative square errors (the total square error divided by the num-

ber of grid points and the magnitudes of the average values of the test samples)

were measured to provide an indication of the generalization error.

Results. For 40 training points, box plots of the relative square errors

are shown in Figures 3 (a) and (b), up to 9 principal components for both

kPCA-GPR and LPCA-GPR. The superiority of kPCA-GPR, which improves

considerably with an increased number of principal components, is clear. The

improvement in LPCA-GPR as the number of principal components is increased

is marginal (linear PCA shows that the first component contains over 95 % of

the modal energy). The MLE was obtained using a variety of gradient-based

algorithms, apart from the interior point method used as the default. For the

LPCA-GPR, the best result was obtained with a steepest descent algorithm,
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•  Use Brinkman’s equation with 
Boussinesq buoyancy term 

•  Temperature varies from high             
Th to  Tc along outer edges 

•  Initially water stagnant but 
temperature gradients alter fluid 
density and buoyant flow generated 
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•  Two input parameters varied: coefficient of volumetric 
thermal expansion β and the high temperature Th 

•  A total of 500 numerical experiments were per- 
formed, with inputs selected using a Sobol sequence 

•  For each simulation, magnitude of the velocity |u| was 
recorded on regular 100 × 100 square spatial grid 

•  The 10000 points in the 2D spatial domain re-ordered 
into vector form in  

•  400 samples reserved for testing 
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between the HH prediction and the test case (⇣, T
h

) = (3.87 ⇥ 10�10, 50.59).

kGPE, on the other hand, captures the test case extremely accurately.
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Figure 2:

3.2. Continuously stirred tank reactor

In this example, a continuously stirred tank reactor (CSTR) is used to pro-

duce propylene glycol (PrOH) from the reaction of propylene oxide (PrO) with

water in the presence of an acid catalyst (H2SO4): PrO+H2O
H2SO4�! PrOH. The

liquid phase reaction takes place in a CSTR, equipped with a heat-exchanger.

Methanol (MeOH) is added to the mixture but does not react. The mass bal-

ances for the species (i = PrO, MeOH, PrOH, H2O) are:

V
r

dc
i

dt
= v

f

(c
f,i

� c
i

) + �
i

V
r

R (24)
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3.2. Continuously stirred tank reactor

In this example, a continuously stirred tank reactor (CSTR) is used to pro-

duce propylene glycol (PrOH) from the reaction of propylene oxide (PrO) with

water in the presence of an acid catalyst (H2SO4): PrO+H2O
H2SO4�! PrOH. The

liquid phase reaction takes place in a CSTR, equipped with a heat-exchanger.

Methanol (MeOH) is added to the mixture but does not react. The mass bal-

ances for the species (i = PrO, MeOH, PrOH, H2O) are:

V
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dc
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dt
= v

f

(c
f,i
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i

) + �
i

V
r
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•  CSTR used to produce propylene glycol (PrOH) from the 
propylene oxide (PrO) with water in the presence of H2SO4 

•  Mass Balances 

•  Heat balance 

•  Molar enthalpy of species i 

 
 
 
 

while the other methods tested (conjugate gradient, L-BFGS, Hessian free New-

ton, Barzilai & Borwein, all implemented using the Matlab library minFunc

1)

gave unstable results that led to complete failure of LPCA-GPR, irrespective of

the initial guess for the hyperparameters. The MLE problem for kPCA-GPR

was found to be much more robust.

Representative examples are shown in Figure 4, corresponding to (�, T
h

) =

(4.45 ⇥ 10�9, 57.66) and (�, T
h

) = (3.87 ⇥ 10�10, 50.59). In both cases, 9 prin-

cipal components were used. While kPCA-GPR performs well in both cases,

particularly the first, LPCA-GPR exhibits noticeable quantitative and qualita-

tive di↵erences from the test output. For 100 training examples, the boxplots

of the relative square errors are shown in Figures 3 (c) and (d), again up to

9 principal components for both kPCA-GPR and LPCA-GPR. Even for this

high number of samples, the performance of LPCA-GPR was poor. Figure 5 re-

veals noticeable qualitative di↵erences between the LPCA-GPR prediction and

the test case (�, T
h

) = (3.87 ⇥ 10�10, 50.59). kPCA-GPR, on the other hand,

captures the test case extremely accurately.

4.2. Continuously stirred tank reactor

In this example, the startup phase of a continuously stirred tank reactor

(CSTR) used to produce propylene glycol (PrOH) from the reaction of propylene

oxide (PrO) with water in the presence of an acid catalyst (H2SO4) is modelled:

PrO + H2O
H2SO4�! PrOH (57)

The liquid phase reaction takes place in a CSTR, equipped with a heat-exchanger.

Methanol (MeOH) is added to the mixture but does not react. The mass bal-

ances for the species (i = PrO, MeOH, PrOH, H2O) are:

V
r

dc
i

dt
= v

f

(c
f,i

� c
i

) + ⌫
i

V
r

r (58)

in which: c
i

is the concentration, ⌫
i

is the stoichiometric coe�cient and c
f,i

is the feed stream concentration of species i, respectively; v
f

is the volumetric

1
Available from http://www.di.ens.fr/ mschmidt/Software/minFunc.html
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flow rate into (and out of) the tank; and r = AcPrO exp(�E/(RT )) is the rate

of reaction (57). The reaction rate is assumed to be first order (mass action)

with respect to PrO and to have an Arrhenius temperature dependence, with

activation energy E and pre-exponential factorA (R is the universal gas constant

and T is the temperature of the reactor). The energy balance is expressed as

follows:

X

i

c
i

C
p,i

dT

dt
= �Hr+

F
x

C
p,x

(T
x

� T )

V
r

⇣
1� eUA/(F

x

C

p,x

)
⌘
+
X

i

v
f

c
f,i

(h
f,i

� h
i

)

V
r

(59)

in which: the specific heat capacity is assumed to be a molar averaged value of

the specific heat capacities of the individual species in the liquid, C
p,i

; H is the

enthalpy of reaction (57), with the first term on the right hand side representing

the heat of reaction. The second term on the right hand side represents the

heat loss to the heat exchanger, where F
x

is the flow rate, C
p,x

is the specific

heat capacity and T
x

is the inlet temperature of the heat exchanger medium.

U and A are the heat transfer coe�cient and heat exchange area of the heat

exchanger, respectively. The third term on the right hand side is the enthalpy

change due to the flow of species through the reactor. The molar enthalpy of

species i is given by h
i

= C
p,i

(T �T
ref

)+h
i,ref

, in which h
i,ref

is the standard

heat of formation of i at the reference temperature T
ref

. The feed stream molar

enthalpies h
f,i

are calculated similarly. The model is completed by initial values

for the reactor temperature and molar concentrations. The above model was

solved using the ‘cstr startup’ model in the ‘Chemical Reaction Engineering

Module’ of COMSOL Multiphysics 4.3b without modification.

Training and Testing. A total of 500 numerical experiments were per-

formed, with inputs selected using a Sobol sequence: initial temperatures,

T
init

2 [297, 360] (K); initial concentrations of PrO, c0,PrO 2 [100, 1500] (mol

m�3), heat exchange parameter, UA 2 [1000, 10000] (J s�1 K�1). For each set

of conditions, the temperature was recorded at intervals of 14 s up to 7000 s,

yielding 501 values for each of the 501 cases. For each sample, the 501 temper-

ature values were reordered to form a vector in R501 (d = 501 in the notation

29
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29

WCPM 19/2/2015 



•  The model was solved in COMSOL Multiphysics 4.3b 
(‘Free convection in porous media’) 

•  Three input parameters varied: initial temperatures, 
initial concentrations of PrO, heat exchange 
parameter, UA!

•  A total of 500 numerical experiments were per- 
formed, with inputs selected using a Sobol sequence 

•  Temperature recorded every 14 s up to 7000 s 
•  The 501 points re-ordered into vector form  
•  400 samples reserved for testing 
 
 
 
 

WCPM 19/2/2015 



WCPM 19/2/2015 

0 20 40 60 80 100 120
30

40

50

60

70

80

90

Time / min

T
em

p
er

at
u

re
 /

 C

(a)

0 20 40 60 80 100 120
30

40

50

60

70

80

90

Time / min

T
em

p
er

at
u

re
 /

 C

(b)

0 20 40 60 80 100 120
30

40

50

60

70

80

90

Time / min

T
em

p
er

at
u

re
 /

 C

(c)

0 20 40 60 80 100 120
30

40

50

60

70

80

90

Time / min

T
em

p
er

at
u

re
 /

 C

(d)

Figure 6:

22

0 20 40 60 80 100 120
30

40

50

60

70

80

90

Time / min

T
em

p
er

at
u

re
 /

 C

(a)

0 20 40 60 80 100 120
30

40

50

60

70

80

90

Time / min

T
em

p
er

at
u

re
 /

 C

(b)

0 20 40 60 80 100 120
30

40

50

60

70

80

90

Time / min

T
em

p
er

at
u

re
 /

 C

(c)

0 20 40 60 80 100 120
30

40

50

60

70

80

90

Time / min

T
em

p
er

at
u

re
 /

 C

(d)

Figure 6:

22

formance is seen with kGPE. Both methods show little improvement beyond

three components, representing dramatic reductions in dimensionality. Three

examples of the predictions for each method are illustrated in Figure 6 for both

40 and 80 training points (using 5 components (r = 5)). This figure reveals

that HH in fact fails, even for the higher number of training points. kGPE, on

the other hand provides a good fit to the trends and a good quantitative fit in

most of the cases. With 100 training points, kGPE showed minor improvements

while HH continued to fail in all tests cases.
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•  Classical multidimensional scaling provides a low-
dimensional Euclidean space representation of data that 
lies on a manifold in a high dimensional ambient space 

•  It relates ‘dissimilarities’ dij between points i and j  to 
Euclidean distances δij in the low-dimensional space 

•   Classical scaling is an isometric embedding 
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�ij = ||z (i) � z (j)|| = dij
z (j)

z (i)

y (i)

y (j)

dij �ij

D = [dij ]

Dissimilarity matrix 



•  When dissimilarities are defined by Euclidean distance 
MDS is equivalent to PCA (easily seen from least-squares 
optimality of PCA) 

•  Method is also spectral: eigenvectors of a centred kernel 
matrix   

•  Idea generalised by Tenenbaum et al. using geodesic 
distances for dij (e.g. shortest path distance) – Isomap 

•  Can be considered equivalent to kPCA: Dissimilarity 
matrix defines distances between points in feature space 
and leads to a centred kernel matrix 

•  Coordinates obtained from a spectral decomposition same 
as before, provided the kernel matrix is p.s.d. 
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K = �(1/2)H(D �D)H



•  Kernel ISOMAP guarantees p.s.d. kernel matrices and 
therefore the existence of a feature space 

•  Can use same procedure as before on coefficients learned 
by ISOMAP 

•  Pre-image problem can be solved similarly by relating 
distances between points in the low-dimensional space to 
dissimilarities (= Euclidean distances for ‘neighbours’) 
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Metal melting front: a square cavity containing solid and 
liquid submitted to a temperature difference between the 
left and right boundaries  

T = T
c

⇠

⌘

�n · (�krT ) = 0

�n · (�krT ) = 0

Liquid! Solid!

T = T
f

T = T
h

Figure 8: Temperature boundary for the ‘Metal melting front’ example.

liquid at constant pressure, g denotes gravitational acceleration, ⇢0 is the refer-

ence density of the liquid, ⇢ is the linearized density, � is the metal coe�cient

of thermal expansion, and T
f

denotes the fusion temperature of the solid. In

the solid phase, the heat balance takes the form:

⇢C
p

@T
s

@t
�r · (krT ) = 0 (61)

in which T
s

represents the solid temperature and k denotes the thermal conduc-

tivity of the solid (assumed to be the same as that of the liquid). The liquid-solid

front is defined by ⇠ = s(⌘, t), along which T = T
f

. An energy balance at the

melting front is given by [29]:

⇢0�h
f

@s

@t
=

 
1 +

✓
@s

@y

◆2
!✓

k
@T

s

@y
� k

@T
l

@x

◆
(62)

where�h
f

is the latent heat of fusion. A no slip condition is applied at the other

boundaries for the liquid. The model was solved in COMSOL Multiphysics 4.3b

(‘Tin Melting Front’ under the Heat Transfer (Phase change) module) without

modification. Two input parameters were varied: the latent heat of fusion

�h
f

and the thermal conductivity of the material k. For each simulation, the

33

of the previous section). 400 of the samples were reserved for testing. Di↵erent

numbers of the remaining 100 samples were used as training points to assess the

e↵ects of the training point number.

Results. Figure 6 shows the boxplots of the relative errors for LPCA-GPR

and kPCA-GPR up to 9 principal components for both 40 and 80 training

points. The best performance is seen with kPCA-GPR. Both methods show

little improvement beyond three principal components, representing dramatic

reductions in the dimensionality of the original problem. Three examples of

the predictions for each method are illustrated in Figure 7 for both 40 and 80

training points. This figure reveals that LPCA-GPR in fact fails, even for the

higher number of training points. kPCA-GPR, on the other hand provided a

good fit to the trends and a good quantitative fit in most of the cases. Further

tests were performed with 100 training points, with kPCA-GPR showing minor

improvements and LPCA-GPR continuing to fail.

4.3. Metal melting front

In this time dependent, spatially distributed example, a square cavity, (⇠, ⌘) 2

[0, 10]⇥ [0, 10] (in units of cm), containing both solid and liquid is submitted to

a temperature di↵erence between the left and right boundaries, as illustrated

in Figure 8, which also shows the other temperature boundary conditions. The

fluid and solid phases are treated as separate domains sharing a moving melting

front (see Figure 8). The position of the melting front is calculated according

to a Stefan condition. A full description of the model can be found in Wol↵

and Viskanta [29]. The liquid part on the left of Figure 8 is governed by the

Navier-Stokes equations using a Boussinesq approximation:
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(60)

in which u is the liquid velocity, T
l

represents the liquid temperature, k denotes

the thermal conductivity of the liquid, C
p

is the specific heat capacity of the
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Figure 8: Temperature boundary for the ‘Metal melting front’ example.

liquid at constant pressure, g denotes gravitational acceleration, ⇢0 is the refer-

ence density of the liquid, ⇢ is the linearized density, � is the metal coe�cient

of thermal expansion, and T
f

denotes the fusion temperature of the solid. In

the solid phase, the heat balance takes the form:

⇢C
p

@T
s

@t
�r · (krT ) = 0 (61)

in which T
s

represents the solid temperature and k denotes the thermal conduc-

tivity of the solid (assumed to be the same as that of the liquid). The liquid-solid

front is defined by ⇠ = s(⌘, t), along which T = T
f

. An energy balance at the

melting front is given by [29]:
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•  The model was solved in COMSOL Multiphysics 4.3b  
•  Two input parameters varied: latent heat of fusion ∆hf  

and thermal conductivity k  
•  50 numerical experiments were performed, with 

inputs selected using a Sobol sequence.  
•  For each set of parameters, 10 snapshots of the 

velocity field were recorded for t = 50, 100, . . . , 500 s.  
•  For each simulation, magnitude of the velocity |u| was 

recorded on regular 100 × 100 square spatial grid 
•  400 samples reserved for testing 
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Figure 10: Predictions of the velocity magnitude using 40 training points and 9 princi-

pal components in the ‘Metal melting front’ example: the test case for (a) (�hf , k, t) =

(1031.25, 76.25, 150) and (b) (�hf , k, t) = (246.88, 82.03, 100). The corresponding predictions

using kPCA-GPR are shown in (c) and (d), respectively, while the corresponding predictions

using LPCA-GPR are shown in (e) and (f), respectively.
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•  We can emulate multiple fields or vector fields by 
combining data sets or separate emulation assuming 
independence 

•  Could lead to problems with scaling (e.g., temperature 
variations vs. velocity variations) or ignores correlations 
between outputs (e.g., electric potential and current)  

•  Multiple outputs types (fields) 
•  Perform NDR for each output type and extract 

coefficients         where k indexes the coefficient number, j 
indexes the output type and i indexes inputs 

•  For a fixed k, define  
 

WCPM 19/2/2015 

y (i)
j , j = 1, . . . , J

z(i)k,j

Z (i)
k = (z(i)k,1, . . . , z

(i)
k,J)

T



•  Use LMC to infer coefficients simultaneously for test 
inputs: a J-variate GP 

•                                        where coordinates are independent 
GPs with zero mean and correlation functions 

•  Explicit formulae for mean function             and variance-
covariance matrix                 are given 

•  Parameters determined via likelihood or MCMC 
•  Repeat for each k and solve pre-image problem 
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WWWk = (W1,k . . . ,WJ,k)
T

ci,k(·, ·,✓✓✓i,k)

ZZZk(·) = FkWWWk(·)

MMMk(x )

Kk(x ,x )

ZZZk(·)| parameters, data ⇠ GP (MMMk(·),Kk(·, ·))



•  Diffusion maps, with a new method for solving pre-
image problem based on an extended diffusion matrix 
and local interpolation 

•  Physics based approaches using NDR (direct 
approach?) 

•  Large scale problems (more complex data sets) 
including issues with DOE, number of samples and 
dimensionality of input space 
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