Efficient emulation of highdimensional outputs using manifold learning: Theory and applications

Akeel Shah, Wei Xing, Vasilis Triantafyllidis (WCPM)
Prasanth Nair
(University of Toronto)

THE UNIVERSITY OF
WARWICK

Outline of talk

- Problems and definition of emulator
- Types and basic construction
- 'Data' from PDE models
- Gaussian process emulation (scalar case)
- Gaussian process emulation for PDE outputs
- Gaussian process emulation for PDE outputs using dimensionality reduction
- Limitations of linear dimensionality reduction
- Nonlinear dimensionality reduction
- Application to PDE output data
- Emulation of multiple fields

Problem

- High fidelity simulation of fields, e.g., velocity or temperature field, in many computational physics and engineering problems
- Design optimization (4 inputs, 10 values $=10^{4}$ cases!)
- Model calibration, validation, sensitivity analysis, uncertainty analysis (parameter/structural, numerical error)
- Computational cost of Monte Carlo based methods for sensitivity/uncertainty analysis can be prohibitive
- For field problems, the dimesionality of the output space is typically high, e.g., numerical grid $100 \times 100 \times 100=10^{6}$ points
- Use emulators (meta-model, surrogate) to replace calls to full simulation model (simulator)
- Rapidly predict and visualize behavior of complex systems as functions of design parameters

Types of emulators

- How to construct emulators?
- Two basic approaches:
- Data driven (statistical)
- Physics based
- Data-driven emulators constructed by applying function approximation/machine learning (e.g., neural network, Gaussian process modeling) to input-output data
- Physics-based emulation works directly with the PDE model to achieve model order reduction, e.g. reduced basis expansion. No natural way of dealing with nonlinearities
- Both require careful design of experiment

PDE Problems: Spatio-temporal data

- Nonlinear PDE model

$$
\begin{aligned}
& \partial_{t} u_{i}+\mathcal{F}_{i}\left(\boldsymbol{q}, t, \boldsymbol{u}, D \boldsymbol{u}, D^{2} \boldsymbol{u}, \ldots, D^{n} \boldsymbol{u} ; \boldsymbol{x}\right)=0 \quad \text { in } \Omega \times(0, T] \\
& i=1, \ldots, J \\
& \boldsymbol{u}=\left(u_{1}, \ldots, u_{J}\right)^{T}, \boldsymbol{x} \in \mathcal{X} \subset \mathbb{R}^{l} \quad \boldsymbol{q}=(\xi, \chi)
\end{aligned}
$$

- $\mathcal{F}_{i}, i=1, \ldots, J$ are nonlinear, parameterized operators
- In 2D, spatial grid

$$
\left(\xi_{i}, \chi_{j}\right), i=1, \ldots N_{\xi}, j=1, \ldots N_{\chi}
$$

- Consider 1 quantity of interest (steady state): $u(\boldsymbol{q} ; \boldsymbol{x})$:

PDE Problems: Spatio-temporal data

- Choose design inputs $\boldsymbol{x}^{(k)} \in \mathcal{X} \subset \mathbb{R}^{l}, k=1, \ldots, m$,
- Simulator outputs $u^{(k)}\left(\xi_{i}, \chi_{j}\right), i=1, \ldots N_{\xi}, j=1, \ldots N_{\chi}$

- For time dependent case treat time as additional input parameter. Then there are $m N_{t}$ samples (training points)
- For spatially uniform problems $d=N_{t}$.

PDE Problems: Spatio-temporal data

- Simulator can be considered as a mapping from the design space to the output space

$$
\eta: \mathcal{X} \rightarrow \mathbb{R}^{d}:
$$

- The goal of emulation is to approximate this mapping using training points generated as the design points

$$
\boldsymbol{y}^{(i)}=\boldsymbol{\eta}\left(\boldsymbol{x}^{(i)}\right) \quad i=1, \ldots, m .
$$

- Machine learning strategies for such general (inputoutput) problems, e.g., neural networks, linear regression, Gaussian process emulation
- GP emulation is attractive because it is Bayesian and non-parametric (no basis functions to choose)

Gaussian process emulation: Scalar

- A GP is a stochastic process $S_{x}, x \in \mathcal{X}$: the joint probability density function restricted to a finite subset of the index set is multivariate Gaussian. A GP is specified by its mean and covariance functions
- Consider a scalar valued simulator $\eta: \mathbb{R}^{l} \rightarrow \mathbb{R}$
- Run as before at design points $\boldsymbol{x}^{(i)} \in \mathcal{X} \subset \mathbb{R}^{l}$
- Outputs are $y^{(i)}=\eta\left(\boldsymbol{x}^{(i)}\right), \quad i=1, \ldots, m$
- GP prior assumption: $\eta(\cdot)$ is regarded as a GP indexed by the inputs \boldsymbol{x}

$$
\eta(\boldsymbol{x})=\boldsymbol{\beta}^{T} \boldsymbol{h}(\boldsymbol{x})+\underset{\boldsymbol{G}}{\mathcal{G}}(\boldsymbol{x})+\epsilon(\boldsymbol{x})
$$

$$
\leftarrow
$$

Regression functions
Zero mean GP

WA RWICK
 WCPM 19/2/2015

Gaussian process emulation: Scalar

- In Bayesian linear regression (without noise)

$$
\eta(\boldsymbol{x})=\boldsymbol{\beta}^{T} \boldsymbol{h}(\boldsymbol{x})
$$

- Place a prior distribution on the weight vector, e.g., Gaussian with i.i.d coordinates, $\beta \sim \mathcal{N}\left(0, b^{2} I\right)$
- Underlying function is distributed according to a Gaussian process indexed by the inputs \boldsymbol{x}, namely

$$
\eta(\boldsymbol{x}) \sim \mathcal{G} \mathcal{P}\left(0, b^{2} \boldsymbol{h}(\boldsymbol{x})^{T} \boldsymbol{h}\left(\boldsymbol{x}^{\prime}\right)\right.
$$

- GPE generalizes this concept by directly placing a covariance structure on the GP - allows for a much broader class of functions

Gaussian process emulation: Scalar

- Covariance function

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\sigma^{2} c\left(\boldsymbol{x}, \boldsymbol{x}^{\prime} ; \boldsymbol{\theta}\right)
$$

- Stationary correlation function

$$
c\left(\boldsymbol{x}, \boldsymbol{x}^{\prime} ; \boldsymbol{\theta}\right)=\exp \left(-\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)^{T} \operatorname{diag}\left(\theta_{1}, \ldots, \theta_{l}\right)\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)\right)
$$

- Expresses smoothness of the GP (of the mean square derivatives to all orders)
- Conditional distribution of data $\boldsymbol{t}=\left(y^{(1)}, \ldots, y^{(m)}\right)^{T}$

$$
\begin{aligned}
& \boldsymbol{t} \mid \boldsymbol{\beta}, \sigma^{2}, \boldsymbol{\theta}, \sim \mathcal{N}\left(H \boldsymbol{\beta}, \sigma^{2} C\right) \\
& H=\left[\boldsymbol{h}\left(\boldsymbol{x}^{(1)}\right) \ldots \boldsymbol{h}\left(\boldsymbol{x}^{(m)}\right)\right]^{T} \\
& {[C]_{i j}=c\left(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)} ; \boldsymbol{\theta}\right)}
\end{aligned}
$$

Gaussian process emulation: Scalar

- Predictive distribution given data and hyperparameters for a test point \boldsymbol{x}

$$
\begin{gathered}
\eta(\cdot) \mid \boldsymbol{\beta}, \sigma^{2}, \boldsymbol{\theta}, \boldsymbol{t} \sim \mathcal{G} \mathcal{P}\left(\mu^{\prime}(\cdot), \sigma^{2} \nu^{\prime}(\cdot, \cdot)\right) \\
\mu^{\prime}(\boldsymbol{x})=\boldsymbol{\beta}^{T} \boldsymbol{h}(\boldsymbol{x})+\boldsymbol{a}(\boldsymbol{x})^{T} C^{-1}(\boldsymbol{t}-H \boldsymbol{\beta}) \\
\nu^{\prime}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=c\left(\boldsymbol{x}, \boldsymbol{x}^{\prime} ; \boldsymbol{\theta}\right)-\boldsymbol{a}(\boldsymbol{x})^{T} C^{-1} \boldsymbol{a}\left(\boldsymbol{x}^{\prime}\right) \\
\boldsymbol{a}(\boldsymbol{x})=\left(c\left(\boldsymbol{x}^{(1)}, \boldsymbol{x} ; \boldsymbol{\theta}\right), \ldots c\left(\boldsymbol{x}^{(m)}, \boldsymbol{x} ; \boldsymbol{\theta}\right)\right)^{T}
\end{gathered}
$$

- Once hyperparameters are known, predictions can be made easily and quickly with simple formulae
- Formulae can be extended to predict several points simultaneously

Gaussian process emulation: Scalar

- Fully Bayesian approach places a prior $f(\boldsymbol{\theta})$ on these hyperparameters and uses MCMC to present predictions as a sample
- Time consuming process so often 'plug in' (point) estimates are used
- Maximum a-posteriori (MAP) using a conjugate prior
- Maximum likelihood estimate (MLE)

$$
\boldsymbol{\theta}_{M L E}=\arg \max _{\boldsymbol{\theta}}\left(-\frac{1}{2} \ln |C|-\frac{1}{2} \boldsymbol{t}^{T} C^{-1} \boldsymbol{t}-\frac{m}{2} \ln (2 \pi)\right)
$$

- Depends on number of samples m

GP emulation for PDE outputs

- How do we extend the scalar case to outputs in a high dimensional space?
- A naive approach (Kennedy and O'Hagan (2001)) is to treat the output index as an additional parameter and perform scalar GPE - for emulating a whole field this requires d computations
- How do we overcome this problem?
- Consider (Paulo et al. (2102)) the linear model of coregionalization (Wackernagel (1995))

$$
\boldsymbol{\eta}(\boldsymbol{x})=A \boldsymbol{w}(\boldsymbol{x}) \quad \boldsymbol{w}(\boldsymbol{x})=\left(w_{1}(\boldsymbol{x}), \ldots, w_{J}(\boldsymbol{x})\right)^{T}
$$

- Independent zero-mean GPs. A independent of \boldsymbol{x}

GP emulation for PDE outputs

- Correlation functions for the GPs are $c_{i}\left(\cdot, \cdot, \boldsymbol{\theta}_{i}\right)$
- The covariance function for the multivariate GP is

$$
\operatorname{Cov}\left(\boldsymbol{\eta}(\boldsymbol{x}), \boldsymbol{\eta}\left(\boldsymbol{x}^{\prime}\right)\right)=\sum_{i=1}^{J} \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{T} c_{i}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}, \boldsymbol{\theta}_{i}\right)
$$

- Fairly general assumption - allows different scales to be incorporated by using a linear combination of correlation functions with different scale parameters $\boldsymbol{\theta}_{i}$
- We can assume a separable structure for the covariance by taking all w_{i} to be i.i.d., i.e. a single correlation function
- Leads to a tractable problem (Conti \& O’Hagan (2009); Rougier (2008)) - equivalent to a multivariate GP prior

GP emulation for PDE outputs using DR

- An alternative method is to use the data to find a 'suitable' A and at the same time restrict the number of univariate GPs to those that contribute the 'most'
- Leads to a reduction in dimensionality of the output space (restrict to a linear subspace) - Higdon et al. (2008)
- The method relies on only principal component analysis
- Singular value decomposition of data matrix (or eigendecomposition of sample covariance matrix) reorders data according to variance in the d dimensions with uncorrelated coefficients
- Natural basis (columns of A) for output space and expansion in terms of coefficients (assumed to be GPs)

GP emulation for PDE outputs using DR

- Orthonormal basis $\boldsymbol{p}_{j}, i=1, \ldots, m$ for \mathbb{R}^{d}. Select linear subspace: $\operatorname{span}\left\{\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{r}\right\}, r \ll d$
- Coefficients in this basis $c_{j}^{(i)}, j=1, \ldots, d, i=1, \ldots, m$
- Expansion (restrict to subspace)

$$
\boldsymbol{y}=\boldsymbol{\psi}(\boldsymbol{x}) \approx \sum_{j=1}^{r} c_{j} \boldsymbol{p}_{j}
$$

Select a test point \boldsymbol{x} for prediction
for $j=1: r$
scalar GPE on training set $c_{j}^{(i)}, \boldsymbol{x}^{(i)}, i=1, \ldots, m$, prediction c_{j} end
Approximate $\boldsymbol{y}=\boldsymbol{\psi}(\boldsymbol{x}) \approx \sum_{j=1}^{r} c_{j} \boldsymbol{p}_{j}$

Limitations of linear DR methods

- Fails in many cases to provide an accurate representation of a response surface
- Informally, works with a relatively 'flat' surface
- For highly nonlinear response surfaces with abrupt changes it could fail completely

Nonlinear Dimensionality Reduction

- There are other methods for dimensionality reduction
- Linear methods
- PCA
- Multi-dimensional scaling
- Independent component analysis
- Nonlinear methods
- Kernel PCA
- Isomap/kernel Isomap
- Diffusion maps

- Laplacian eigenmaps
- Local linear embedding

Nonlinear Dimensionality Reduction

- Manifold assumption: the input data resides on or close to a 'low-dimensional' manifold embedded in the ambient space - informally the dimension is the number of parameters needed to specify a point, e.g., a surface of a sphere has dimension 2
- Learning/characterizing such manifolds from given data is called manifold learning
- Approaches are characterized in a number of ways, e.g., spectral, kernel-based, embeddings
- Each have their own advantages and disadvantages - no universal technique
- Performance on toy data sets can be misleading

Using kernel PCA for field emulation

- Mapped to a higher dimensional (possibly infinite) feature space and apply LPCA to mapped data (Scholkopf et al. (1998))
- Transform data in such a way that it lies in (or near) a linear subspace of the feature space
- Feature space can be very high dimensional (possibly infinite)
- Feature map $\phi: \mathbb{R}^{d} \rightarrow \mathcal{F}$ is implicitly specified via kernel function

$$
\begin{gathered}
\widetilde{\boldsymbol{\phi}}\left(\boldsymbol{y}^{(i)}\right)^{T} \widetilde{\boldsymbol{\phi}}\left(\boldsymbol{y}^{(j)}\right)=\widetilde{k}\left(\boldsymbol{y}^{(i)}, \boldsymbol{y}^{(j)}\right)=\widetilde{K}_{i j} \\
\widetilde{\boldsymbol{\phi}}\left(\boldsymbol{y}^{(i)}\right)=\boldsymbol{\phi}\left(\boldsymbol{y}^{(i)}\right)-\overline{\boldsymbol{\phi}}
\end{gathered}
$$

Using kernel PCA for field emulation

- In general the map is not known explicitly
- Recast eigenproblem for sample covariance matrix (in feature space) as a eigenproblem for kernel matrix $\widetilde{\boldsymbol{\alpha}}_{i}$
- Eigenvectors of sample covariance matrix $\widetilde{\boldsymbol{v}}_{i}$ are not known but the coefficients in an expansion are known

$$
z_{i}^{(j)}=\widetilde{\boldsymbol{v}}_{i}^{T} \widetilde{\boldsymbol{\phi}}_{j}=\sum_{k=1}^{m} \widetilde{\alpha}_{k i} \widetilde{\boldsymbol{\phi}}_{k}^{T} \widetilde{\boldsymbol{\phi}}_{j}=\sum_{k=1}^{m} \widetilde{\alpha}_{k i} \widetilde{K}_{k j}
$$

- Do GPE on first r coefficients (test input \boldsymbol{x}) to approximate projection of $\boldsymbol{\phi}(\boldsymbol{y}(\boldsymbol{x}))$ onto $\operatorname{span}\left\{\widetilde{\boldsymbol{v}}_{1}, \ldots, \widetilde{\boldsymbol{v}}_{r}\right\}$

$$
\widehat{\boldsymbol{\phi}}(\boldsymbol{y}(\boldsymbol{x}))=\sum_{i=1}^{r} z_{i}(\boldsymbol{x}) \widetilde{\boldsymbol{v}}_{i}+\overline{\boldsymbol{\phi}}
$$

Using kernel PCA for field emulation

- Examples of a kernel functions

$$
\begin{array}{ll}
\hline \text { Gaussian kernel } & e^{-\frac{1}{2 s^{2}}\left\|\boldsymbol{y}^{(i)}-\boldsymbol{y}^{(j)}\right\|^{2}} \\
\text { Polynomial (order } n) & \left(\left(\boldsymbol{y}^{(i)}\right)^{T} \boldsymbol{y}^{(j)}+s\right)^{n} \\
\text { Multiquadric } & \sqrt{1+s\left\|\boldsymbol{y}^{(i)}-\boldsymbol{y}^{(j)}\right\|^{2}} \\
\text { Sigmoid } & \tanh \left(s\left(\boldsymbol{y}^{(i)}\right)^{T} \boldsymbol{y}^{(j)}+s^{\prime}\right) \\
\hline
\end{array}
$$

- Since the map is not known (nor the basis vectors in feature space), a pre-image problem has to be solved approximate the inverse map
- It turns out this is possible to do in 3 main ways for most standard kernels

Using kernel PCA for field emulation

- Least squares approximation is possible by expressing distances between points in physical space to distances between points in feature space via kernel function. Method can suffer from numerical instabilities if $m<d$.
- A fixed-point iterative algorithm (Mika et al. (1999)) can be used but is again prone to instability
- Local linear interpolation (Ma \& Zabaras (2011)) is the third method (again based on distance information) use a weighted sum of known data point values. This gives stable results

Summary of method

1. Select design points $\mathbf{x}^{(j)} \in \mathcal{X} \subset \mathbb{R}^{l}, j=1, \ldots, m$, using DOE
2. Collect outputs $\mathbf{y}^{(j)}=\boldsymbol{\eta}\left(\mathbf{x}^{(j)}\right) \in \mathbb{R}^{d}$ from the simulator
3. Perform kPCA on $\mathbf{y}^{(j)} \Rightarrow z_{i}^{(j)}, j=1, \ldots, m, i=1, \ldots, d$
4. Select a test point \mathbf{x} for prediction for $i=1: r$ perform scalar GPE on $\mathcal{D}_{i}=\left\{\mathbf{x}^{(j)}, z_{i}^{(j)}\right\}_{j=1}^{m} \Rightarrow z_{i}$ end

Reconstruct $\Rightarrow \widehat{\mathbf{y}}=\boldsymbol{\phi}^{-1}(\widehat{\boldsymbol{\phi}}) \approx \boldsymbol{\eta}(\mathbf{x})$

Example 1

Subsurface flow in porous media driven by density variations

$$
\begin{gathered}
\frac{\mu}{\kappa} \mathbf{u}+\nabla p-\nabla \cdot \frac{\mu}{\epsilon}\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{T}\right)=\rho \mathbf{g} \beta\left(T-T_{c}\right) \\
\nabla \cdot \mathbf{u}=0
\end{gathered}
$$

$$
\rho C_{p} \mathbf{u} \cdot \nabla T-\nabla \cdot\left(k_{m} \nabla T\right)=0
$$

- Use Brinkman's equation with Boussinesq buoyancy term
- Temperature varies from high T_{h} to T_{c} along outer edges
- Initially water stagnant but temperature gradients alter fluid
 density and buoyant flow generated

Example 1: Training and Testing

- Two input parameters varied: coefficient of volumetric thermal expansion β and the high temperature T_{h}
- A total of 500 numerical experiments were performed, with inputs selected using a Sobol sequence
- For each simulation, magnitude of the velocity $|\mathrm{u}|$ was recorded on regular 100×100 square spatial grid
- The 10000 points in the 2D spatial domain re-ordered into vector form in
- 400 samples reserved for testing

Example 1: Results

WARWICK
WCPM 19/2/2015

Example 2

- CSTR used to produce propylene glycol (PrOH) from the propylene oxide (PrO) with water in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$
- Mass Balances

$$
V_{r} \frac{d c_{i}}{d t}=v_{f}\left(c_{f, i}-c_{i}\right)+\nu_{i} V_{r} r
$$

- Heat balance

$$
\sum_{i} c_{i} C_{p, i} \frac{d T}{d t}=-H r+\frac{F_{x} C_{p, x}\left(T_{x}-T\right)}{V_{r} \uparrow}\left(1-e^{U A /\left(F_{x} C_{p, x}\right)}\right)+\sum_{i} \frac{v_{f} c_{f, i}\left(h_{f, i}-h_{i}\right)}{\prod_{r}}
$$

Heat of reaction
Heat loss to HX
Convective heat flow

- Molar enthalpy of species i

$$
h_{i}=C_{p, i}\left(T-T_{r e f}\right)+h_{i, r e f}
$$

Example 2: Training and Testing

- The model was solved in COMSOL Multiphysics 4.3 b ('Free convection in porous media')
- Three input parameters varied: initial temperatures, initial concentrations of PrO, heat exchange parameter, UA
- A total of 500 numerical experiments were performed, with inputs selected using a Sobol sequence
- Temperature recorded every 14 s up to 7000 s
- The 501 points re-ordered into vector form
- 400 samples reserved for testing

Example 2: Results

WA RWICK

Isomap

- Classical multidimensional scaling provides a lowdimensional Euclidean space representation of data that lies on a manifold in a high dimensional ambient space
- It relates 'dissimilarities' $d_{i j}$ between points i and j to Euclidean distances $\boldsymbol{\delta}_{i j}$ in the low-dimensional space
- Classical scaling is an isometric embedding

$$
\delta_{i j}=\left\|\boldsymbol{z}^{(i)}-\boldsymbol{z}^{(j)}\right\|=d_{i j}
$$

Dissimilarity matrix

$$
D=\left[d_{i j}\right]
$$

Isomap

- When dissimilarities are defined by Euclidean distance MDS is equivalent to PCA (easily seen from least-squares optimality of PCA)
- Method is also spectral: eigenvectors of a centred kernel matrix $K=-(1 / 2) H(D \circ D) H$
- Idea generalised by Tenenbaum et al. using geodesic distances for $d_{i j}$ (e.g. shortest path distance) - Isomap
- Can be considered equivalent to kPCA: Dissimilarity matrix defines distances between points in feature space and leads to a centred kernel matrix
- Coordinates obtained from a spectral decomposition same as before, provided the kernel matrix is p.s.d.

Isomap

- Kernel ISOMAP guarantees p.s.d. kernel matrices and therefore the existence of a feature space
- Can use same procedure as before on coefficients learned by ISOMAP
- Pre-image problem can be solved similarly by relating distances between points in the low-dimensional space to dissimilarities (= Euclidean distances for 'neighbours')

Example

Metal melting front: a square cavity containing solid and liquid submitted to a temperature difference between the left and right boundaries

$$
\begin{aligned}
& \rho_{0} \frac{\partial \mathbf{u}}{\partial t}+\rho_{0}(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p-\nabla \cdot \mu\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{T}\right)-\rho \mathbf{g}=0 \\
& \nabla \cdot \mathbf{u}=0 \\
& \rho C_{p} \frac{\partial T_{l}}{\partial t}+\rho C_{p} \mathbf{u} \cdot \nabla T_{l}-\nabla \cdot\left(k \nabla T_{l}\right)=0 \\
& \rho=\rho_{0} \beta\left(T_{l}-T_{f}\right) \\
& \rho C_{p} \frac{\partial T_{s}}{\partial t}-\nabla \cdot(k \nabla T)=0 \\
& \rho_{0} \Delta h_{f} \frac{\partial s}{\partial t}=\left(1+\left(\frac{\partial s}{\partial y}\right)^{2}\right)\left(k \frac{\partial T_{s}}{\partial y}-k \frac{\partial T_{l}}{\partial x}\right)
\end{aligned}
$$

Example: Training and Testing

- The model was solved in COMSOL Multiphysics 4.3 b
- Two input parameters varied: latent heat of fusion Δh_{f} and thermal conductivity k
- 50 numerical experiments were performed, with inputs selected using a Sobol sequence.
- For each set of parameters, 10 snapshots of the velocity field were recorded for $t=50,100, \ldots, 500 \mathrm{~s}$.
- For each simulation, magnitude of the velocity $|u|$ was recorded on regular 100×100 square spatial grid
- 400 samples reserved for testing

Example: Results

WARWICK
WCPM 19/2/2015

Emulating multiple fields

- We can emulate multiple fields or vector fields by combining data sets or separate emulation assuming independence
- Could lead to problems with scaling (e.g., temperature variations vs. velocity variations) or ignores correlations between outputs (e.g., electric potential and current)
- Multiple outputs types (fields) $\boldsymbol{y}_{j}^{(i)}, j=1, \ldots, J$
- Perform NDR for each output type and extract coefficients $z_{k, j}^{(i)}$ where k indexes the coefficient number, j indexes the output type and i indexes inputs
- For a fixed k, define $\boldsymbol{Z}_{k}^{(i)}=\left(z_{k, 1}^{(i)}, \ldots, z_{k, J}^{(i)}\right)^{T}$

Emulating multiple fields

- Use LMC to infer coefficients simultaneously for test inputs: a J-variate GP

$$
\mathcal{Z}_{k}(\cdot)=F_{k} \mathcal{W}_{k}(\cdot)
$$

- $\mathcal{W}_{k}=\left(\mathcal{W}_{1, k} \ldots, \mathcal{W}_{J, k}\right)^{T}$ where coordinates are independent GPs with zero mean and correlation functions $c_{i, k}\left(\cdot, \cdot, \boldsymbol{\theta}_{i, k}\right)$
$\mathcal{Z}_{k}(\cdot) \mid$ parameters, data $\sim \mathcal{G} \mathcal{P}\left(\mathcal{M}_{k}(\cdot), \mathcal{K}_{k}(\cdot, \cdot)\right)$
- Explicit formulae for mean function $\mathcal{M}_{k}(\boldsymbol{x})$ and variancecovariance matrix $\mathcal{K}_{k}(\boldsymbol{x}, \boldsymbol{x})$ are given
- Parameters determined via likelihood or MCMC
- Repeat for each k and solve pre-image problem

Other work

- Diffusion maps, with a new method for solving preimage problem based on an extended diffusion matrix and local interpolation
- Physics based approaches using NDR (direct approach?)
- Large scale problems (more complex data sets) including issues with DOE, number of samples and dimensionality of input space

References

1) M. Kennedy, A. O’Hagan, J. R. Stat. Soc. Ser. B Stat. Methodol. 63 (2001) 425-464
2) R. Paulo, G. Garcia-Donato, J. Palomo, Comput. Stat. Data Analysis 56 (2012) 3959-3974
3) H. Wackernagel, Multivariate Geostatistics, Springer, Berlin, 1995.
4) S. Conti, A. O’Hagan, J. Statistical Planning and Inference 140 (2010) 640-651
5) J. Rougier, J. Computational and Graphical Statistics 17 (2008) 827-843
6) D. Higdon et al., J. Am. Stat. Association 103 (482) (2008) 570-583
7) B. Scholkopf, A. Smola, K.-R. Muller, Neural Computation 10 (1998) 1299-1319
8) S. Mika et al., Advances in neural information processing systems II 11 (1999) 536-542
9) B. Ganapathysubramanian, N. Zabaras, J. Comput. Phys. 227 (2008) 6612-6637
10) X. Ma, N. Zabaras, J. Comput. Phys. 230 (2011) 7311-7331
11) J.B. Tenenbaum, V. De Silva, J.C. Langford, Science 290 (2000) 23192323 WCPM 19/2/2015
