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…too many similar 
and repetitious 
simulations.

Consider a 
converging-diverging 
nanochannel:
• Channel height
• Density
• Forcing

Periodic boundary conditions (PBCs)



Hybrid method
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Macro 
domain

Micro 
subdomain

We split the macro 
domain into micro 
subdomains.

These individual 
periodic subdomains 
are simulated using 
molecular dynamics 
(MD).
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Mass conservation

Momentum conservation
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MD cannot support 
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simulations  
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Instead, we apply a 
larger body force.

MD subdomain 
simulations  
conserve mass.
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Newton’s 2nd law

Potential well depth

Distance to zero potential

Thompson and Troian (1997), Nature, 389:360:362

Lennard Jones potential

For argon:
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We’d like to use 
the existing 
information to 
make predictions.

We want to judge 
on-the-fly if a new 
simulation is 
required.

For this, we use a 
Gaussian process 
(GP).



GP regression for our multiscale system
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input output

Gaussian process

training points

posterior distribution – Bayes’ theorem
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function covariance –

squared exponential kernel

input difference



GP regression for our multiscale system
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function covariance

output covariance

hyperparameters



GP regression for our multiscale system
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posterior distribution at test points

posterior mean

posterior covariance
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Results – empty database, low uncertainty threshold
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Borg et al (2015), J. Fluid. Mech, 768:388-414



Results – empty database, varying uncertainty threshold
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Results – varying database, low uncertainty threshold
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Results – expanding a database: subdomains
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Results – expanding a database: forcing functions
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Conclusions
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• Near-optimal information efficiency.

• Potential for uncertainty quantification.

• Strong agreement with full MD solutions.

• Dramatically enhanced computational speed (when database is 

extensive).

• Uncertainty threshold is a trade-off between accuracy and efficiency.

• Constructing an initial database is likely beneficial.

• Future work includes making the subdomain selection “smarter” and 

applying our algorithm to more complex engineering problems.
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Thanks for listening


