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Hybrid method

We split the macro
domain into micro
subdomains.

These individual
periodic subdomains

are simulated using Micro Macro
molecular dynamics subdomain domain
(MD).
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Hybrid method — macro model

Mass conservation
dp ~10q
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Hybrid method — micro model

MD subdomain
simulations
conserve mass.

MD cannot support
a pressure gradient.
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Hybrid method — micro model

MD subdomain
simulations
conserve mass.

Instead, we apply a
larger body force.

OTsy = OTsy P
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Hybrid method — micro model

Newton’s 29 |aw

N,
m;T; = Z —VU(rij) + Fy
J=1(i)

Lennard Jones potential
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Hybrid method — micro model

Newton’s 29 |aw

Distance to zero potential
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Hybrid method — micro model

For argon:
OCw_t=255x10""m
ew—f =0.33x 1072 J

Newton’s 29 |aw

Of_f = 3.4 % 10_10 m
€f_f = 1.65 x 10721 J

Thompson and Troian (1997), Nature, 389:360:362
Lennard Jones potential

e -2|(7) (%)

Distance to zero potential

D Stephenson J Kermode D Lockerby Accelerating hybrid fluid dynamics with on-the-fly machine learning



Hybrid methods — machine learning

We'd like to use
the existing
information to
make predictions.
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Hybrid methods — machine learning

We'd like to use
the existing
information to
make predictions.

We want to judge
on-the-fly if a new
simulation is
required.

For this, we use a

Gaussian process
(GP).
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GP regression for our multiscale system

input output
€xr;, = {h,,;, Qi s FZ} Yi — 4 O P;

(Gaussian process
f(xi) ~ GP(p(xi), K (xi,%;))

training points

_hl hQ hM-
X=1p1 po oo par| ¥ =Ly1) W2) - (Ym)]
P, Fy ... Fu

posterior distribution — Bayes' theorem

P(y)|X, f)P(f)
P((y)|X)

P(fl(y), X) =
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GP regression for our multiscale system

function covariance —
squared exponential kernel

d?.
_ 2 ()
K(xi,x;) = 0} exp (— %2)
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GP regression for our multiscale system

function covariance —
squared exponential kernel

d?.
2 ij
K(xi,x;) = 0} exp (— %2)

input difference
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GP regression for our multiscale system

function covariance

d?.
2 (¥
K(Xi,Xj) — erxp (262)

output covariance

C(X,X)=K(X,X)+o021

hyperparameters
On
’ q (ng/s) p (MPa)
|Uf/‘K T o, | 0.05 0.003
— &= o 1 1
¢ 1 1
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GP regression for our multiscale system

posterior distribution at test points

Y« X,y, X ~ N (¥,,cov(y,))

posterior mean

V. = u(X,) + K(X,, X)O(X, X) ™ ({y) — p(X))

posterior covariance

cov(ys) = K (X, X)) — K(X., X)O(X, X) 7 K (X, X.)

O

i / ¥ COV(Y*) < oy then = Y = Yx«
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Implementation procedure

GP regression

t=1
{h12 N> P1,2..N

t=1 t=1
Px12. N 7 P12..N
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Implementation procedure

P12 nv—— momentum balance
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Implementation procedure

~—

P12.. . n——momentum balance —— Fy;,

D Stephenson J Kermode D Lockerby Accelerating hybrid fluid dynamics with on-the-fly machine learning



Implementation procedure

GP regression

_ pt=1 t=1 t=1
.« = {h1,2,_.N7 P1,2...N> Fuio N

N

t=1
A1,

t—
..N> 9q.12. N
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Implementation procedure

GP regression

_ pt=1 t=1 t=1
.« = {h1,2,_.N7 P1,2...N> Fuio N

< o4, then ¢t} t=1

(
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Implementation procedure

GP regression

_ pt=1 t=1 t=1
.« = {h1,2,_.N7 P1,2...N> Fuio N

update
database

t=1
)

if o, > oy —— MD simulation —— ¢, ={(¢;~") ——
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Implementation procedure

. t=2 L 1,2...N
¢i 5.y —— mass conservation—— P12..n T oAT
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Results — empty database, low uncertainty threshold

mass flow rate, ¢ [ng/s|

Borg et al (2015), J. Fluid. Mech, 768:388-414

hybrid ‘ I -
full MD ‘

D 10 15
time, ¢ [ns]

D Stephenson J Kermode D Lockerby

20

Accelerating hybrid fluid dynamics with on-the-fly machine learning

or = 0.1 ng/s




Results — empty database, varying uncertainty threshold
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Results — empty database, varying uncertainty threshold
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Results — varying database, low uncertainty threshold

initial database size

— o0 —=—15 o 16 —a—31  —p 47
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Results — varying database, low uncertainty threshold

initial database size (computational speed-up)
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Results — expanding a database: subdomains

number of subdomains
—e— 40 —a—20

number of MD simulations
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Results — expanding a database: subdomains
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Results — expanding a database: subdomains

number of subdomains
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Results — expanding a database: forcing functions

mass flow rate, § [ng/s]
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Results — expanding a database: forcing functions
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Conclusions

* Near-optimal information efficiency.

* Potential for uncertainty quantification.

e Strong agreement with full MD solutions.

* Dramatically enhanced computational speed (when database is
extensive).

* Uncertainty threshold is a trade-off between accuracy and efficiency.

e Constructing an initial database is likely beneficial.

e Future work includes making the subdomain selection “smarter” and

applying our algorithm to more complex engineering problems.
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Thanks for listening
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