Accelerating a multiscale continuum-particle fluid dynamics model with on-the-fly machine learning

(Part 1) Duncan Lockerby

University of Warwick, UK

David Stephenson Alex Patronis James Kermode University of Warwick, UK

Matthew Borg Jason Reese University of Edinburgh, UK

This work is financially supported in the UK by the EPSRC

with thanks to:

Marcos Rojas-Cárdenas, Irina Graur, Pierre Perrier, J. Gilbert Méolans

and

Nicholas Hadjiconstantinou

WARWICK

email enquiries to: d.lockerby@warwick.ac.uk

Micro and Nano Flows for Engineering w.micronanoflows.ac.uk

Rarefied flow in channel driven by thermal transpiration
What is the transient response?

M. Rojas-Cárdenas, I. Graur, P. Perrier, J. G. Méolans, Time-dependent experimental analysis of a thermal transpiration rarefied gas flow, Physics of Fluids 25 (2013).

The Modelling Challenge

- Beyond physical model of conventional CFD ...
- but a full DSMC (molecular-based) solution is too expensive
- A multiscale problem: high Kn number and high aspect ratio

Internal-flow Multiscale Method (IMM)

a variant of HMM (Ren & E (2005) J. Comp. Phys. 204, 1-26)

Borg, Lockerby & Reese (2015) J. Fluid. Mech. 768: 388-414 Patronis & Lockerby (2014) J. Comp. Phys. 270: 532-543

Internal-flow Multiscale Method (IMM)

a variant of HMM (Ren & E (2005) J. Comp. Phys. 204, 1-26)

Borg, Lockerby & Reese (2015) J. Fluid. Mech. 768: 388-414 Patronis & Lockerby (2014) J. Comp. Phys. 270: 532-543

Internal-flow Multiscale Method (IMM) a variant of HMM (Ren & E (2005) J. Comp. Phys. 204, 1-26)

Scale separation allows *local parallel-flow* assumption
How are the macro and micro descriptions coupled?

macro

 p_1

Borg, Lockerby & Reese (2015) J. Fluid. Mech. 768: 388-414 Patronis & Lockerby (2014) J. Comp. Phys. 270: 532-543

Application to the Knudsen pump

The modelling challenge (Part II)

- mean molecular collision period: $\approx 100 \, \mathrm{ns}$
- macro transient: $\approx 100 \, \mathrm{s}$

E, Ren, Vanden-Eijnden (2009) J. Comp. Phys. 228, 5437-5453 Lockerby, Duque-Daza, Borg, Reese (2013) J. Comp. Phys. 237, 344-365

E, Ren, Vanden-Eijnden (2009) J. Comp. Phys. 228, 5437-5453 Lockerby, Duque-Daza, Borg, Reese (2013) J. Comp. Phys. 237, 344-365

Application to the Knudsen pump Mass capillary high-temperature low-temperature conservation gas reservoir gas reservoir Continuity Equation LVDSMC

Application to the Knudsen pump capillary $T_{\rm macro} = 100 \ {\rm s}$ high-temperature low-temperature gas reservoir gas reservoir $T_{\rm meso} = 5 \, {\rm ms}$ $T_{\rm micro} = 10 \ \mu s$

Comparison with Experiment

M. Rojas-Cárdenas, I. Graur, P. Perrier, J. G. Méolans, Time-dependent experimental analysis of a thermal transpiration rarefied gas flow, Physics of Fluids 25 (2013).

Comparison with Experiment

Comparison with Experiment

- IMM allows ~300x fewer (deviational) particles
- Asynchronous coupling allows ~40,000 times fewer timesteps
- Overall ~10 million times faster than a full particle simulation

Hybrid model classification

Accelerating a multiscale continuum-particle fluid dynamics model with on-the-fly machine learning

(Part 1) Duncan Lockerby

University of Warwick, UK

David Stephenson Alex Patronis James Kermode University of Warwick, UK

Matthew Borg Jason Reese University of Edinburgh, UK

This work is financially supported in the UK by the EPSRC

with thanks to:

Marcos Rojas-Cárdenas, Irina Graur, Pierre Perrier, J. Gilbert Méolans

and

Nicholas Hadjiconstantinou

WARWICK

email enquiries to: d.lockerby@warwick.ac.uk

Micro and Nano Flows for Engineering w.micronanoflows.ac.uk