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Optimal Path
Brownian Motion

Free Diffusion      

2-Dimensional

Diffusion Under Constraints 

(interactions)

The microfluidic cell with two counter-

propagating flows that create a shear-flow 

with zero mean velocity in the central region.
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The concept of optimal paths

L Boltzmann (1904), 

L Onsager and S Machlup (1953)

The concept can be applied to non-equilibrium multi-dimensional systems

x

x0x1

U(x,t) – potential

x(t) – fluctuations

x(t)

xopt(t)

Different manifestations of fluctuations: 

diffusion and large fluctuations

activrelax tt 
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Optimal Path

Fluctuational paths in the state (phase) space 

Transition probability

Path

Path

Path

optxPath 
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The states 

xi and xf are 

attractors
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The most probable (optimal) path via the principle of the least action
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Optimal Path is a deterministic trajectory
Assume Langevin Description with White Gaussian Noise
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Since the exponential form, the most probable path has a minimal S=Smin
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problem
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Optimal Path

Wentzell-Freidlin (1970) small noise picture 0D

 txSpHS xt ,, Least-action paths are defined by the Hamiltonian
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with the boundary conditions, that the action is constant, 

that is the momenta are zero on sets (invariants) of a 

dynamical system:
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Hamiltonian gives an infinite 

number of extreme trajectories, 

the optimal  path (if it exists) 

has a minimal action

Double optimization

The pattern of 

extreme paths
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Extreme Paths

Wentzell-Freidlin (1970) small noise picture 0D

Fluctuational behaviour 

measured and calculated 

for an electronic model of 

the non-equilibrium system
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Optimal path

Wentzell-Freidlin (1970) small noise picture 0D

Noise-induced escape in Duffing oscillator
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Basin of attraction 

of the state (xs2,ys2)

Basin of attraction 

of the state (xs1,ys1)
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The optimal path connects the stable state and the 

saddle (boundary) state
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Activation part

Relaxation part
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Structural Stability (roughness) of models. An example

Mathematical Model is an idealization and a simplification 

An electrical circuit with a tunnel diode.
(see http://www.scholarpedia.org/article/Van_der_Pol_oscillator)
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Roughness: Small change (uncertainties) in parameters and in nonlinearities cause small 

change in the state space   

Li
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Structural Stability (roughness) of models. An example

Van der Pol oscillator. State (bifurcational) diagram 2( 0)1 xx x x  

0

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

 x 

 y
 x

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

 x 

 y
 



x

The limit cycle
The equilibrium state (fixed point)

0 Corresponds to the Andronov-Hopf bifurcation

The roughness is observed outside of a vicinity of the bifurcation

2-Dimensioal models are rough (structurally stable)
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Structural Stability (roughness)

“Mathematical” conclusion (so far, see for example Shilnikov L.P. et al Methods of Qualitative Theory in 

Nonlinear Dynamics. Part II. World Sci. 2001) 

Multi-dimensional rough systems are 

Morse-Smale systems which have the 

limiting sets in the form of  

equilibrium states and 

(quasi)periodic orbits (cycles, tori); 

such models may only have a finite 

number of them. 

Morse-Smale systems do NOT admit

homo (hetero)-clinic trajectories 

(tangencies of manifolds) of saddle sets

Homoclinic loop of a saddle-focus

Smale (1963) : Rough systems with 

dimension of the state space greater than 

two are not dense in the space of 

dynamical systems. 
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Sets of a Morse-Smale System

Saddle-node

Stable focus Cycle

Torus

Saddle Cycle

Homoclinic Loop
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Chaotic systems

http://www.scholarpedia.org/:  Chaos. There is currently no text in this page.

http://mathworld.wolfram.com/: "Chaos" is a tricky thing to define… 

The complicated aperiodic trajectory of low-dimensional (3-dimensional and higher) 

dynamical systems

http://en.wikipedia.org:  Dynamical systems that are highly sensitive to initial conditions

Edward Lorenz: When the present determines the future, but the approximate present 

does not approximately determine the future.

Positive Lyapunov exponents

http://www.scholarpedia.org/
http://mathworld.wolfram.com/
http://en.wikipedia.org/
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The Chaotic  Lorenz attractor

( )x y x y rx y x z z xy bz      

Butterfly effect

The Lorenz attractor 

demonstrates a sensitive 

dependence on initial 

conditions

The largest Lyapunov 

exponent is positive 

The attractor has no any 

stable set (points, cycles)

The attractor is fractal
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The Chaotic  Lorenz attractor
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Chaos and Noise

How investigate systems with noise?

One possible  programme of investigation was suggested by
L. Pontryagin, A. Andronov, and A. Vitt, Zh. Exp. Teor. Fiz. 3, 165 (1933)

The (slightly modified) programme

1. Classification all sets of dynamical systems and the bifurcations of 

the sets (without fluctuations)

2. Checking set’s stability (robustness) in respect of fluctuations. 

Consider noise-induced deviations

The results (so far) of the first step of the programme

The observation of new (in comparison with 2D case) sets: e.g. Smale Horseshoe and new 

regime:  Deterministic chaos; Statistical description of low-dimensional dynamics etc

Still open problems: Complete Description of sets and their bifurcations.

Shilnikov’s group results:

“…A complete description of dynamics and bifurcations of systems with homoclinic 

tangencies is impossible in principle.”

S. Gonchenko, D. Turaev and L. Shilnikov, Nonlinearity (2007) 20, 241-275
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Types of Chaos

Chaotic Attractors

☺ Hyperbolic    The distinct feature  are 

phase space is locally spanned by the same fixed number of stable and unstable 

directions in each points of the set;

the existence of SRB probability measure; 

the structural stability  of the set and  shadowing of trajectories. 

K Quasi-hyperbolic There is a localized non-hyperbolicity (“bad set”), away  from this 

set the system is hyperbolic and trajectory spends most of the time on a hyperbolic part

L Non-hyperbolic  Tangencies of manifolds and dimension variability of manifolds 

are dominated in phase space; the co-existence of a large number (often infinite) of 

different sets; quasi-attractor
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Types of Chaos

Types of  chaotic systems in “real life”

L Hyperbolic 

There are not typical, in fact there is no (strictly proven) any example of 

hyperbolic chaotic system described by ODE

K Quasi-hyperbolic 

There are rare,  but real; the famous example is the Lorenz System

J Non-hyperbolic

The majority of systems are non-hyperbolic
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Chaos and Noise

Our Aim: Dynamics of Large Fluctuations  versus types of  

chaotic attractors

Approach: starting with noise-free dynamics to noisy dynamics,

is problematic, since we have no complete description of attractors.

Another approach is based on simplification of initial task: 

We consider   noise-induced significant changes in dynamics only;

we analyse Large Fluctuations (deviation) from chaotic attractor;

The noise-induced deviations must exceed diffusion along trajectories

The optimal path concept (formalism) allows to solve an optimal control problem, since it 

defines both the optimal path and the optimal fluctuational force.
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Large Fluctuations and Optimal Control
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The variable q(t) corresponds to the optimal paths x(t)opt,

The variable p(t) defines the optimal fluctuational force x(t)opt and the 

energy-minimal function f(x,t).
New way to solve the deterministic control problem via analysis of large 
fluctuations and vice versa.

This form coincides with Hamiltonian formulation of deterministic optimal 
(energy-minimal) control problem: 



24

Quasi-hyperbolic attractor

Lorenz system
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Stable points 

Saddle cyclesChaotic 
Attractor

Consider noise-induced 

escape from the chaotic 

attractor to the stable 

point in the limit

The task is to 
determine the most 
probable (optimal) 
escape path

0D
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Quasi-hyperbolic attractor

25

Lorenz Attractor

Saddle point Separatrices

The saddle point and its 
separatrices belong to 
chaotic attractor and 
form “bad set” or non-
hyperbolic part of the 
attractor

Homoclinic 
loop  -> Horseshoe

13.92r 

Loops between separatrices G1 and G2 and stable 
manifolds of cycles L1 and L2 generate 
The Lorenz attractor – quasi-hyperbolic attractor

G1

G2

L1L2

24.06r 
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Large Fluctuations in Chaotic Systems

Hamilton formalism of Large Fluctuations: The problem of initial conditions
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The solution of the 
problem is the use of 
prehistory approach, i.e. 
analysis of real escape 
trajectories
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Prehistory approach

12 July 2007
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1. Select the regime
i.e. rare  large fluctuations

xf

0D

activrelax tt 

2. Record all trajectories 
xj(t) arrived to the final 
state and build the 
prehistory probability 
density ph(x,t)

The maximum of the density 
corresponds to the most 
probable (optimal) path
3. Simultaneously noise 
realizations x(t) are 
collected and give us the 
optimal fluctuational force

There is no any explicit initial states in the approach
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Escape from quasi-hyperbolic attractor

12 July 2007

Escape trajectories

WS is the stable manifold and

G1 and G2 are separatrices of the 

saddle point O

L1 and L2 are saddle cycles

T1 and T2 are trajectories which are 

tangent to  WS

The escape process is connected with the 
non-hyperbolic structure of attractor: 
stable and unstable manifolds of the 
saddle point

Noise-induced tail  

q3

q2q1

The distribution of escape 
trajectories (exit distribution)
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Non-autonomous nonlinear oscillator
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Noise significantly changes (deforms) 

the probability density of the attractor
The escape corresponds to the noise-induced 

jumps between saddle cycles of chaotic sets
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Suppression of the noise-induced escape

Control force as  an inverse optimal fluctuational 
force in a particular time moment

Mean time between escapes as a 
function of noise intensity

Suppression of 

escapes

Saddle cycle 
of period 5

Saddle cycle 
of period 3

Saddle cycle 
of period 1

Stable
cycle

Optimal force

Optimal path

The optimal force and paths are used for suppressing the escape
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Large Fluctuations and Types of Chaos. Control problem

Summary

For a quasi-hyperbolic attractor, its non-hyperbolic part  plays an essential

role in the escape process. The saddle point and its manifolds form the non-

hyperbolic part. The fluctuations lead escape trajectory along stable and 

unstable manifolds. 

For a non-hyperbolic attractor, saddle cycles embedded in the attractor and 

basin of attraction are important. Escape from a non-hyperbolic attractor 

occurs in a sequence of jumps between saddle cycles.

The analysis of large fluctuation provides an alternative way to solve a non-

linear control problem. The optimal path and optimal fluctuational force, 

determined by using large fluctuations approach, corresponds to the 

solution of deterministic energy-minimal control problem.
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Potassium channel KcsA



MD simulations of KcsA

36

Main steps in line with the tutorial: http://www.ks.uiuc.edu/Research/smd_imd/kcsa/

1. Building the full protein using the information available from the x-ray structure from 

MacKinnon group, 2.0 A resolution, Y. Zhou, J. H. Morais-Cabral, A. Kaufman, and R. 

MacKinnon, “Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 

2.0 A resolution,” Nature, vol. 414, pp. 43–48, Nov. 2001.

2. Building a phospholipid bilayer;

3. Inserting the protein in the membrane;

4. Solvating of the entire system.

5. Relaxing the membrane to envelop the protein and to 

let it assume a natural conformation.

KcsA is a tetramer composed of 

four identical subunits

http://www.ks.uiuc.edu/Research/smd_imd/kcsa/
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MD simulations of KcsA

Empirical CHARMM Force Field,  VMD, NMAD

Is it a Morse-

Smale System?
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All-Atom Molecular Dynamics (MD)

Hamiltonian Equation: 
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From MD to Experiments via BD
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Overdamped Equilibrium Dynamics

One-Atom Brownian Dynamics (BD). 

( )tξ

)( iV x

Typical assumption (See B. Roux, M. Karplus,  J. of Chem. Phys., Vol 95, 4856, 1991)

Overdapmed Markovian diffusion:
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Potential of mean force (PMF)

Biased simulations  (Umbrella Sampling)

0( , ) ( , ) ( ) ( )bH H U V  r p r p z z

Biased 

Hamiltonian
Initial 

Hamiltonian

Biasing 

Potential
Resulting PMF

 Will the resulting PMF be 

a potential we are looking for?
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Potential of mean force (PMF)

Biased simulations  (Meta-Dynamics)

0( , ) ( , ) ( ) ( )bH H U V  r p r p z z

Biased 

Hamiltonian
Initial 

Hamiltonian

Biasing 

Potential
Resulting PMF

 Will the resulting PMF be 

a potential we are looking for?



Ion permeation and PMF
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Abstract. “… the heights of the kinetic barriers for potassium ions to move through the 

selectivity filter are, in nearly all cases, too high to predict conductances in line with 

experiment. This implies it is not currently feasible to predict the conductance of 

potassium ion channels, but other simpler channels may be more tractable.”

From

P.W. Fowler et al

J Chem Theory Comput

2013, 9, 5176-5189.
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Ions activation dynamics

Ions trajectories Power spectrum

1/ f
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Ions activation dynamics

Transition from  site to site
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Ions activation dynamics
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Ion permeation

Network of residues control the permeation
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Ion permeation

There is a conductive conformation.  



Lessons of KcsA channel

Advantage of MD technique

provide a bridge from the structure to functions

Pitfalls of MD technique

high degree of uncertainty in each step of the technique

“standard” approaches are not (always) reliable

require “experience” in the use of MD
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