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Optimal Path

Brownian Motion

Free Diffusion

2-Dimensional

Diffusion Under Constraints
(interactions)

> . >

=

The microfluidic cell with two counter-
propagating flows that create a shear-flow
with zero mean velocity in the central region.



The concept of optimal paths

L Boltzmann (1904),
L Onsager and S Machlup (1953)

The concept can be applied to non-equilibrium multi-dimensional systems

U(x,t) — potential
&) — fluctuations

Different manifestations of fluctuations:

diffusion and large fluctuations

t

| “relax

<<t

activ




Optimal Path

Fluctuational paths in the state (phase) space

The states
State Fath x, x; and X, are
attractors
Xt
X State
>y,

Transition probability

Pt X, 8) =2 pIx() 12p[X ()]

The most probable (optimal) path via the principle of the least action



Optimal Path is a deterministic trajectory
Assume Langevin Description with White Gaussian Noise

X =K(x,)+&(),(&,) =0, (&, ()E,(s)) = DQS(t - )
The probability of fluctuational path pPIX(t) ;] is related to the probability pl&(t) ;]

of random force to have a realization &(1) ;

For Gaussian noise: pPlE();]1=C exp (—% _f@(t) j : dtj =C exp (— % S)

Since the exponential form, the most probable path has a minimal S=S.,,

Changing to dynamical variables:
X =K
Action S =S[&(t)] X=Kx+50) .+ S=[x(t)]
&(1) =x=K(x1)

SIX(t
Inthelimit D—0, po(X;;X;) =p(x(t)opt)=Const><exp(— [ I(D)OM]]
_ _ mi ., 2 Deterministic minimization
S = S|Xpe(t) | = min j dt(x— K (x,t)) roblem :




Optimal Path

Wentzell-Freidlin (1970) small noise picture D — 0

with the boundary conditions, that the action is constant,
that is the momenta are zero on sets (invariants) of a
dynamical system:

Initial state: x(t,)=x,, p(t,)=0,
Final state : x(tf):xf,p(tf)zo.

i, Action =10 -05 0o

The pattern of

extreme paths "~ Qs onen
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Gg=-U"(q) + Acoswt + £(t)

1., 1 T
Ulg) = —=¢* + —g". b 0 0.0
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0,S=H(p=8,5,%t)| Leastaction paths are defined by the Hamiltonian

1
H =§pr+pK(X,t);

gooH o __oH
opl T ox
85
T ox

Hamiltonian gives an infinite
number of extreme trajectories,
the optimal path (if it exists)
has a minimal action

Double optimization



Extreme Paths

Wentzell-Freidlin (1970) small noise picture D — 0

P(x,t)

Fluctuational behaviour
measured and calculated
for an electronic model of
the non-equilibrium system

qg=—-U'(q) + Acoswt + £(1),

1., 1
Ulg) = —=q° + —q".
(q) 54+



Optimal path
Wentzell-Freidlin (1970) small noise picture D — 0

Noise-induced escape in Duffing oscillator X +bX —aX+ X = v DE(t)

The optimal path connects the stable state and the ~ U(X) -
saddle (boundary) state sl The potentlal
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Structural Stability (roughness) of models. An example

Mathematical Model is an idealization and a simplification

A lumped model of the circuit is i = (V) =—aV+V° + SV + v+

N

i:¢(V_E0)+ l

(_¢(V)_iL)

i | =0 V)

i
1. 1

— fo: ------ - = g’r‘ Ct o

X

Vo

L J B
1 1 An electrical circuit with a tunnel diode.
Vv __(05 3NV ) "‘—V 0 (see http://www.scholarpedia.org/article/Van_der_Pol_oscillator)

Introduce /37 S L / —
aV «/

Van der Pol equation X —e(1—Xx*)X+x=0

Roughness: Small change (uncertainties) in parameters and in nonlinearities cause small
change in the state space
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Structural Stability (roughness) of models. An example

Van der Pol oscillator. State (bifurcational) diagram X—e(l—x)X+x=0
4 The limit cycle

The equilibrium state (fixed point) y
, 3
2 e 2
1 Ve N 1
e (@ DR X o

3 2 1 0 1 2 3 33 3 1 0 1 2 3
X X

o >
0 €

e =0 Corresponds to the Andronov-Hopf bifurcation

The roughness is observed outside of a vicinity of the bifurcation

2-Dimensioal models are rough (structurally stable) 12



Structural Stability (roughness)

“Mathematical” conclusion (so far, see for example Shilnikov L.P. et al Methods of Qualitative Theory in
Nonlinear Dynamics. Part Il. World Sci. 2001)

Multi-dimensional rough systems are Morse-Smale systems do NOT admit
Morse-Smale systems which have the homo (hetero)-clinic trajectories
limiting sets in the form of (tangencies of manifolds) of saddle sets

equilibrium states and
(quasi)periodic orbits (cycles, tori);
such models may only have a finite
number of them.

Smale (1963) : Rough systems with
dimension of the state space greater than
two are not dense in the space of
dynamical systems.

Homoclinic loop of a saddle-focus
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Sets of a Morse-Smale System

Homoclinic Loop

T Saddle-node
Torus 14



Chaotic systems

http://www.scholarpedia.org/: Chaos. There is currently no text in this page.

http://mathworld.wolfram.com/: "Chaos"” is a tricky thing to define...

The complicated aperiodic trajectory of low-dimensional (3-dimensional and higher)
dynamical systems

http://en.wikipedia.org: Dynamical systems that are highly sensitive to initial conditions

Edward Lorenz: When the present determines the future, but the approximate present
does not approximately determine the future.

Positive Lyapunov exponents
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The Chaotic Lorenz attractor

lc=10 b=8/3 r=28

X=0o(y—X) y:rx—y—xz

z_xy bz

50

40

30

The Lorenz attractor
demonstrates a sensitive
dependence on initial
conditions

The largest Lyapunov
exponent is positive
A, =0.897

A,=0 A,=-1456

The attractor has no any
| stable set (points, cycles)

Often assumed;:

[x ()] o exp(At)

-30

The attractor is fractal

D. =2.05 16




The Chaotic Lorenz attractor

Lorenz system: 100 initial points in small sphere

o =10
r=28
b=8/3
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Chaos and Noise

How investigate systems with noise?

One possible programme of investigation was suggested by
L. Pontryagin, A. Andronov, and A. Vitt, Zh. Exp. Teor. Fiz. 3, 165 (1933)

The (slightly modified) programme
1. Classification all sets of dynamical systems and the bifurcations of
the sets (without fluctuations)

2. Checking set’s stability (robustness) in respect of fluctuations.
Consider noise-induced deviations

The results (so far) of the first step of the programme

The observation of new (in comparison with 2D case) sets: e.g. Smale Horseshoe and new
regime: Deterministic chaos; Statistical description of low-dimensional dynamics etc
Still open problems: Complete Description of sets and their bifurcations.

Shilnikov’s group results:
“...A complete description of dynamics and bifurcations of systems with homoclinic
tangencies is impossible in principle.”

S. Gonchenko, D. Turaev and L. Shilnikov, Nonlinearity (2007) 20, 241-275
18



Types of Chaos
Chaotic Attractors

@ Hyperbolic The distinct feature are

phase space is locally spanned by the same fixed number of stable and unstable
directions in each points of the set;

the existence of SRB probability measure;

the structural stability of the set and shadowing of trajectories.

@ Quasi-hyperbolic There is a localized non-hyperbolicity (“bad set”), away from this
set the system is hyperbolic and trajectory spends most of the time on a hyperbolic part

® Non-hyperbolic Tangencies of manifolds and dimension variability of manifolds
are dominated in phase space; the co-existence of a large number (often infinite) of
different sets; quasi-attractor

19



Types of Chaos

Types of chaotic systems in “real life”

@ Hyperbolic

There are not typical, in fact there is no (strictly proven) any example of
hyperbolic chaotic system described by ODE

@ Quasi-hyperbolic
There are rare, but real; the famous example is the Lorenz System

@ Non-hyperbolic

The majority of systems are non-hyperbolic

20
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Chaos and Noise

Our Aim: Dynamics of Large Fluctuations versus types of
chaotic attractors

Approach: starting with noise-free dynamics to noisy dynamics,
Is problematic, since we have no complete description of attractors.

Another approach is based on simplification of initial task:

We consider noise-induced significant changes in dynamics only;
we analyse Large Fluctuations (deviation) from chaotic attractor;
The noise-induced deviations must exceed diffusion along trajectories

The optimal path concept (formalism) allows to solve an optimal control problem, since it
defines both the optimal path and the optimal fluctuational force.

22



Large Fluctuations and Optimal Control

X¢

State _ .
@m x. S i = S (0] = min [ (X~ K(x, )"

X=Kx0+5(), " problem can be formulated in the
(&.)=0, <§a (1S, (S)> =DQs(t—53) Hamiltonian form:

1 :
H=2PQP+PKAY:  hitial state: qft,)=x,, plt,)=0, t —>—oc;

_oH _oH Final state: q(tf):xf,p(tf):o, t, = oo
- op oq

q

isa Formally the deterministic minimization

This form coincides with Hamiltonian formulation of deterministic optimal

(energy-minimal) control problem: 1%,
J =inf [/ (x, 0t

The variable Q(t) corresponds to the optimal paths X (1) opy.
The variable P(t) defines the optimal fluctuational force &1)qp; and the

enerqgy-minimal function f(X,1).
New way to solve the deterministic control problem via analysis of large
fluctuations and vice versa.
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Quasi-hyperbolic attractor

Lorenz system

o} :G(% _ql)

g, =rq;, —q, —¢,4;
qs = 0,0, _bq3 +\/2D f(t)

Consider noise-induced
escape from the chaotic
attractor to the stable
point in the limit D0

The task is fo
determine the most
probable (optimal)
escape path

o=10, b=8/3, r=24.08

W o v Stablle OIS

B

20~ RN S IR\

L NS
Chaotic = =="_%addle cycles

IS Lo s s e e N

24



Quasi-hyperbolic attractor

Lorenz Attractor

r ~13.92 4 Homoclinic
Joop -> Horseshoe

The saddle point and its
separatrices belong to
chaotic attractor and
form "bad set” or non-
hyperbolic part of the
atfractor

30~ -
20~ AR, S e N L -
10~
0~ a i .
L - Saddle point -
q r ~24.06
2

Loops between separatrices I, and I, and stable
manifolds of cycles |, and |, generate
The Lorenz attractor - quasi-hyperbolic attractor
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Large Fluctuations in Chaotic Systems

Hamilton formalism of Large Fluctuations: The problem of initial conditions
X =K(x,t)+§(t),

(£,)=0,(£,(),(s)) = DQS(t -5)

40~

1
A= SR DRI 30+
g L __H

op oq 20

Initial state: 7

a(t)=x,p(t)=0, t ——oo;
Final state: The points P1 and P2

q(tf):Xf’p(tf):O’ t; >

10—+-

-20
The solution of the
problem is the use of
prehistory approach, i.e.

analysis of real escape
frajectories




Prehistory approach

-

X =K(X,t)+§(t),
(£,)=0,(&,(1)&,(s)) = DQS(t —s)

1. Select the regime D — 0
i.e. rare large fluctuations

t <<t

-

relax activ

-

2. Record all trajectories
xi(t) arrived to the final
state and build the
prehistory probability
density p,(x,t)

The maximum of the density
corresponds to the most
probable (optimal) path

3. Simultaneously noise
realizations &t) are
collected and give us the

optimal fluctuational force .
There is no any explicit initial states in the approach

Prehistory Probability Density




Escape from quasi-hyperbolic attractor

Escape trajectories

W is the stable manifold and

I} and I, are separatrices of the
saddle point O

L, and L, are saddle cycles

T, and T, are trajectories which are
tangent to Wq

........ Y

Noise-induced tail =555 s

of

The escape process is connected with the
non-hyperbolic structure of attractor:
stable and unstable manifolds of the
saddle point

NG

The distribution of escape
trajectories (exit distribution) 28




Non-hyperbolic attractor

Non-autonomous nonlinear oscillator '
The potential U(Qq)

. . oU(q,t :
Q+FQ+%=«/2D§(U is monostable
; p y :
U(g,t)=—20°+Z=g*+Lg* +qhsinQt .
@ p I T, The motion is underdamped o
=005 @,=0597 B=y=1 h=0.13 Q=0.95 Model of particle in
the cooling beam
. ! ' T T T
Paincare section 4 Stable cycle ——— —— — N |
e 1 ~ Saddle cycle ,
| e e N N -
- 0.4

=
& 2]
==
ey
=
[}
T

0 ]
0.2
-1 i
-2 - © q I 0.6F

Initial conditions are | ; ; 5 5
on the chaotic attractor L é i .= ,s




Deterministic pattern of noise-induced escape from a chaotic attractor

Noise significantly changes (deforms)
the probability density of the attractor

Fractal structure

-0.275

-0.95

0.4

-0.275

-0.95—

The escape corresponds to the noise-induced
jumps between saddle cycles of chaotic sets

3 Y _ 2oe)

Trajectories
corresponding to
the noise-induced
escape

Smooth structure

D=5-10"°

| Prehistory
probability of

¥ trajectories




Via Large Fluctuation to Energy-minimal Deterministic Control:
Migration between states
q g+1q+ 229D g

0.8

0.6

f (t) is a control function corresponding to the
optimal fluctuational force &,(t)

04

0.2

0

-0.2

The cost (energy) J :_mf J‘ f? (t)dt
of control 2 feF

-0.4
-0.6

-0.8

1 : : : :

Optimal force '1 | R .................... ................... ....... O

App. by asinatexp(~(a,-t)°a,) 5

App. by pulses 3 1) | E— ....... O ................... ................... ...................
Optimal force + LF perturbation

2 4
Feedback contro

5

o Energy J

control functions

> 1 2 3 4 5
Type of the control function
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Suppression of the noise-induced escape

The optimal force and paths are used for suppressing the escape

3 |
Optimal force

1F Optimal path

Saddle cycle
of period 5

of period 3

Saddle cycle
of period 1 ¢
: | 3§

Sont (8
0

)=t ()

Mean time between escapes as a
function of noise intensity

Stab

0 5

10 o ¢2n
Control force as an inverse optimal fluctuational g} i

force in a particular time moment

G+I'q+ _aua(q, )

= \/ﬁzj(t) _ gopt (t)5(t _tc) 1

cycle

[

le 7 4"

| sEEE R 1A RS
HE T

10

3

0k~ o without control
i LRI x with control

................................

fl'. P
ﬂ | L TRTT Vi T
g @l R

rrrrr
.....

l : D I H

' Suppression of g
10} escapes

e
Y faaiiaiiiapanss :"'!:f'.:.'::.'f;.'::.".:.'::.'::.'::. fiaiiaa:
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Large Fluctuations and Types of Chaos. Control problem

Summary

For a quasi-hyperbolic attractor, its non-hyperbolic part plays an essential
role in the escape process. The saddle point and its manifolds form the non-
hyperbolic part. The fluctuations lead escape trajectory along stable and
unstable manifolds.

For a non-hyperbolic attractor, saddle cycles embedded in the attractor and
basin of attraction are important. Escape from a non-hyperbolic attractor
occurs in a sequence of jumps between saddle cycles.

The analysis of large fluctuation provides an alternative way to solve a non-
linear control problem. The optimal path and optimal fluctuational force,
determined by using large fluctuations approach, corresponds to the
solution of deterministic energy-minimal control problem.
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Potassium channel KcsA
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MD simulations of KcsA

Main steps in line with the tutorial: http://www.ks.uiuc.edu/Research/smd _imd/kcsa/

1. Building the full protein using the information available from the x-ray structure from
MacKinnon group, 2.0 A resolution, Y. Zhou, J. H. Morais-Cabral, A. Kaufman, and R.

MacKinnon, “Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at
2.0 A resolution,” Nature, vol. 414, pp. 43—48, Nov. 2001.

2. Building a phospholipid bilayer;

3. Inserting the protein in the membrane;

4. Solvating of the entire system.

5. Relaxing the membrane to envelop the protein and to
let it assume a natural conformation.

KcsA is a tetramer composed of
four identical subunits

36



http://www.ks.uiuc.edu/Research/smd_imd/kcsa/

MD simulations o KCSA

Molecular Dynamics is the solution of the classical (Newtonian) equations
of motion for a set of molecules.

Within the Born-Oppheneimer approximation, the Hamiltonian of a system
can be expressed as a function of the nuclear coordinates q; and momenta

P

For Cartesian coordinates:
Is it a Morse-
v =p;/m, Smale System?

p, = —VVi(r;)

Empirical CHARMM Force Field, VMD, NMAD

Z Ky(b— bu Z Kg(60 — to) Z Ky[1 + cos(nd — dg)] + Z ky (¥ — 1p)?

bonds angles dihedrals impropers

(Tss 12 (Tss 6 qij
el ] 5 e

Urey— Bradley
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From MD to Experiments via BD

(.
4

-

L
%
=

-

PP
H=) 2"k U(r,r,,...r
ISR

k

d, _oH _p, dp, _ oH

=—, =——2=-V U
dt op, m dt or. '
N ~10°—-10’
(\'f)jr{é_:,&tcﬂ))r;@rownian Dynamics (BD). Generalized Langevin Equation:
V() |
V(x) mi\'/i(t)=—aa—(')—j|\/l(t—r)vi(r)dz'+R(t)
f 0
y 1

M(t) = ——(R(0)R
MO (t) kBT< (OR()) )



Overdamped Equilibrium Dynamics

V(%)
One-Atom Brownian Dynamics (BD).

S()

Typical assumption (See 8. Roux, M. Karplus, J. of Chem. Phys., Vol 95, 4856, 1991)

Overdapmed Markovian diffusion:
1 ov(r) \/ 2k, T

my(r;) o m,y(r;)
y(r.) damping coefficient

ri (t) - @(’[)

&(t) white Gaussian noise
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Potential of mean force (PMF)

Biased simulations (Umbrella Sampling)

H,(r,p) =H,(r,p)+U(2) = V(2)

Biased Initial Biasing Resulting PMF
Hamiltonian  Hamiltonian Potential

()

T

o
5
T
“w}x

-

H

S

XN



Potential of mean force (PMF)

Biased simulations (Meta-Dynamics)

H,(r,p) =H,(r,p)+U(2) = V(2)

Biased Initial Biasing Resulting PMF
Hamiltonian ~ Hamiltonian Potential

e Will the resulting PMF be
a potential we are looking for?

Y
Faki
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¥
e
Hxy
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lon permeation and PMF

20 kcsa-11 (CMAP, Glu71H-Asp80) B
4 ' 4 | wwkKwK(K)  wKwKw(K) KwKwK
free energy 3 -
; ~ 10 (kcalimol) £
z;(A) T
< 4
>
>
6 - g
o
[0
o
8 -
40 - | A5 AGey A(" ‘
contours every 1 kcal/mol 0 4 | ]

T ‘ T I 0 5
2 0 2 4 2,0

From

P.W. Fowler et al

J Chem Theory Comput
2013, 9, 5176-5189.

Abstract. “... the heights of the kinetic barriers for potassium ions to move through the
selectivity filter are, in nearly all cases, too high to predict conductances in line with
experiment. This implies it is not currently feasible to predict the conductance of
potassium ion channels, but other simpler channels may be more tractable.”
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lons activation dynamics

lons trajectories Power spectrum
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Selectivity filter

— e ——— T

Transition from site to site
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lons activation dynamics
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lons activation dynamics
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lon permeation

Network of residues control the permeation

Network of residues

YBZ""“’!‘LB 1<>R64
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lon permeation

There is a conductive conformation.
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Lessons of KcsA channel

Advantage of MD technique

provide a bridge from the structure to functions

Pitfalls of MD technique
high degree of uncertainty in each step of the technique
“standard’ approaches are not (always) reliable

require “experience” in the use of MD
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