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I Quantifying and propagating uncertainty in models e.g. Partial
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System Identification: Nonlinear ODE Oscillator Model
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Systems Identification - Posterior Inference



Mixing of Markov Chains

5

4

3

2

1

1                    2                    3                    4                    5



Illustrative Heat Conduction Problem

I Heat conduction problem governed by an elliptic partial differential
equation in the open and bounded domain Ω:

−∇ · (eu∇w) = 0 in Ω

−eu∇w · n = u Bi on ∂Ω/ ΓR

−eu∇w · n = −1 on ΓR

I Forward state is w and u the logarithm of distributed thermal conductivity
on Ω, n the unit outward normal on Ω, and Bi the Biot number.
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Illustrative Heat Conduction Problem
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Illustrative Heat Conduction Problem
I Take one finite element discretisation of domain and one observation at

leftmost boundary

I Consider induced bivariate posterior for varying forms of prior Gaussian
measure
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MCMC from Diffusions and Geodesics

 

I Riemann manifold Langevin and Hamiltonian Monte Carlo Methods
Girolami, M. & Calderhead, B.
J.R.Statist. Soc. B, with discussion, (2011), 73, 2, 123 - 214.

http://www2.warwick.ac.uk/mgirolami

http://www2.warwick.ac.uk/mgirolami
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I Motivation to improve MCMC capability for challenging problems

I Exploring differential geometric concepts in MCMC methodology

I Diffusions across Riemann manifold as basis for MCMC

I Geodesic flows on manifold form basis of MCMC methods

I Illustrative examples

I Further Work and Conclusions
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Motivation Simulation Based Inference

I Monte Carlo method employs samples from π(θ) to obtain estimate∫
φ(θ)π(θ)dθ =

1
N

∑
n
φ(θn) +O(N−

1
2 )

I Draw θn from ergodic Markov process with stationary distribution π(θ)

I Construct transition kernel as product of two components

I Propose a move θ → θ′ with probability pp(θ′|θ)

I accept or reject proposal with probability

pa(θ′|θ) = min
[

1,
π(θ′)pp(θ|θ′)
π(θ)pp(θ′|θ)

]

I Convergence rate and asymptotic variance dependent on pp(θ′|θ)

I Success of MCMC reliant upon appropriate proposal design
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Differential Geometric Concepts in MCMC

I Denote expected Fisher Information as G(θ) = cov(∇θL(θ))

I Rao, 1945 to first order

χ2(δθ) =

∫
|p(y;θ + δθ)− p(y;θ)|2

p(y;θ)
dy ≈ δθTG(θ)δθ

I Jeffreys, 1948 to first order

D(θ||δθ) =

∫
p(y;θ + δθ) log

p(y;θ + δθ)

p(y;θ)
dy ≈ δθTG(θ)δθ

I Expected Fisher Information G(θ) is metric tensor of a Riemann manifold
I Non-Euclidean geometry - invariants, connections, curvature, geodesics
I Asymptotic statistical analysis. e.g. Amari, 1981; Murray & Rice, 1993;

Critchley et al, 1993; Kass, 1989; Dawid, 1975; Lauritsen, 1989
I Statistical shape analysis Kent et al, 1996; Dryden & Mardia, 1998

I Can geometric structure be employed in Monte Carlo methodology?
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Manifolds

A manifold is a smooth, curved surface: A set embedded in Rd , that locally
looks like Rn (n < d).
Example: the unit sphere (2-sphere): d = 3, n = 2

S2 = {x ∈ R3 :
∑

i

x2
i = 1}

x ∈ Rd are the embedded coordinates



Manifolds

A manifold is a smooth, curved surface: A set embedded in Rd , that locally
looks like Rn (n < d).
Example: the unit sphere (2-sphere): d = 3, n = 2

S2 = {x ∈ R3 :
∑

i

x2
i = 1}

x ∈ Rd are the embedded coordinates



Coordinate systems and Riemannian metrics

Can parameterise the manifold with a coordinate system in q ∈ Rn

q1

q2

(sin q1 sin q2, cos q1 sin q2, cos q2), q1 ∈ [0, 2π], q2 ∈ [0, π]

The Euclidean metric ‖ · ‖ induces a Riemannian metric G in the coordinate
system:

‖dx‖2 =
∑

i,j

G(q)dqidqj
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M.C. Escher, Heaven and Hell, 1960



Geodesics

Geodesics are the paths of shortest distance.
I On a sphere, these are the great circles

q1

q2

Given an initial velocity v(0) ⊥ x(0), we have a nice explicit form

[
x(t) v(t)

]
=
[
x(0) v(0)

] [1
α−1

] [
cos(αt) − sin(αt)
sin(αt) cos(αt)

] [
1

α

]
where α = ‖v(0)‖.
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Geometric Concepts in MCMC

I Tangent space - local metric defined by δθTG(θ)δθ = gklδθkδθl

I Christoffel symbols - characterise Levi-Civita connection on manifold

Γi
kl =

1
2

∑
m

g im
(
∂gmk

∂θl +
∂gml

∂θk −
∂gkl

∂θm

)

I Geodesics - shortest path between two points on manifold

d2θi

dt2 +
∑
k,l

Γi
kl

dθk

dt
dθl

dt
= 0
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Fisher–Rao metric

A family of probability densities {p(· | θ) : θ ∈ Θ}, the Fisher information
forms a natural Riemannian metric, known as Fisher–Rao metric:

gij = EY |θ

[
− ∂2

∂θi∂θj
log p(Y | θ)

]

Examples:

N(µ, σ2)
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σ



Fisher–Rao metric

A family of probability densities {p(· | θ) : θ ∈ Θ}, the Fisher information
forms a natural Riemannian metric, known as Fisher–Rao metric:

gij = EY |θ

[
− ∂2

∂θi∂θj
log p(Y | θ)

]
Examples:

N(µ, σ2)

µ

σ



Fisher–Rao metric

A family of probability densities {p(· | θ) : θ ∈ Θ}, the Fisher information
forms a natural Riemannian metric, known as Fisher–Rao metric:

gij = EY |θ

[
− ∂2

∂θi∂θj
log p(Y | θ)

]
Examples:

N(µ, σ2)

µ

σ



Illustration of Geometric Concepts

I Consider Normal density p(x |µ, σ) = Nx (µ, σ)

I Local inner product on tangent space defined by metric tensor, i.e.
δθTG(θ)δθ, where θ = (µ, σ)T

I Metric is Expected Fisher Information

G(µ, σ) =

[
σ−2 0

0 2σ−2

]

I Components of connection ∂µG = 0 and ∂σG = − diag(2σ−3, 4σ−3)

I Metric on tangent space

δθTG(θ)δθ =
(δµ2 + 2δσ2)

σ2

I Metric tensor for univariate Normal defines a Hyperbolic Space
I Consider densities N (0, 1) & N (1, 1) and N (0, 2) & N (1, 2)
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Normal Density - Euclidean Parameter space

µ

σ

N (1, 2)

N (1, 1)N (0, 1)
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Normal Density - Riemannian Functional space
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Langevin Diffusion on Riemannian manifold
I Continuous Langevin diffusion with invariant measure π(θ) ≡ exp(L(θ))

dθ =
1
2

G−1(θ)∇θL(θ)−
D∑
i,j

G(θ)−1
ij Γij +

√
G−1(θ)dW

I Discretised Langevin diffusion on manifold defines proposal mechanism

θ′d = θd +
ε2

2

(
G−1(θ)∇θL(θ)

)
d
− ε2

D∑
i,j

G(θ)−1
ij Γd

ij + ε
(√

G−1(θ)z
)

d
I Manifold with constant curvature then proposal mechanism reduces to

θ′ = θ +
ε2

2
G−1(θ)∇θL(θ) + ε

√
G−1(θ)z

I MALA proposal with preconditioning

θ′ = θ +
ε2

2
M∇θL(θ) + ε

√
Mz

I Proposal and acceptance probability

pp(θ′|θ) = N (θ′|µ(θ, ε), ε2G−1(θ))

pa(θ′|θ) = min
[
1,
π(θ′)pp(θ|θ′)
π(θ)pp(θ′|θ)

]
I Proposal mechanism diffuses approximately along the manifold
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Second-Order Diffusions

I Define a second-order SDE on a Riemann manifold with the diffusion
defined on vector field v to obtain

dxt = vtdt

dvt = −γ(xt , vt )dt −G−1(xt )∇xtφ(xt )dt − vtdt +
√

2G−1(xt )dWt

I Vector function γ has components γk =
∑

i,j Γk
ij v

iv j

I Each Γk
i,j being the Christofell symbols of the Levi-Civita connection

corresponding to the metric tensor G(xt )

I Note dvt + γ(xt , vt )dt is the covariant time derivative of velocity and the
contravariant form of the potential gradient is simply G−1(xt )∇xtφ(xt )

I Physically defines acceleration of a particle across manifold under the
influence of potential field

I A unit friction or viscous force is included by the term v and the
fluctuating forcing is modelled by the Brownian motion

I What has this to do with MCMC?
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Second-Order Diffusions

I What is invariant measure of this diffusion?
I The Fokker-Planck equation for the diffusion follows as

dp
dt

= − va ∂p
∂xa +

∂

∂va

[(
Γa

bcvbv c + gab ∂φ

∂xb + va
)

p
]

+ gab ∂2p
∂va∂vb

I Some schoolboy algebra shows that for dp/dt = 0
dp
p

=

[
−1

2
∂gab

∂xc vavb +
∂

∂xc log
√
|g| − ∂φ

∂xx

]
dxc

I Therefore the above second-order SDE is satisfied by invariant densities
t →∞ of the form

p(x, v) ∝ det(G(x)) exp
(
−1

2
vTG(x)v− φ(x)

)
I So for φ(x) = − logπ(x) + 1

2 log det(G(x)) then it follows that marginally

p(x) = exp (−φ(x)) = π(x)

I Numerical integration forms basis of MCMC scheme..... however
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Second-Order Diffusions

I Transform the system of SDE’s from the configuration to phase space
such that transformed variable pt = G(xt )vt

dxt = vtdt

dvt = −γ(xt , vt )dt −G−1(xt )∇xtφ(xt )dt − vtdt +
√

2G−1(xt )dWt

I is transformed to

dxt = G−1(xt )ptdt

dpt = −ν(xt ,pt )dt −∇xtφ(xt )dt − ptdt +
√

2G(xt )dWt

I where vector function ν has elements −∂igabpapb

I Invariant measure with density

p(x,p) ∝ 1
det(G(x))

exp
(
−1

2
pTG−1(x)p− φ(x)

)

I Stochastic Hamiltonian on Manifold - Lie-Trotter Splitting of Hamiltonian
(deterministic and stochastic OU Process) and using symplectic
integrator - samples drawn from invariant measure via RMHMC

I Proposals follow local geodesics on manifold
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Second-Order Diffusions

I Stochastic Hamiltonian on Manifold driven by conditional
Ornstein-Uhlenbeck process

dxt = G−1(xt )ptdt

dpt = −ν(xt ,pt )dt −∇xtφ(xt )dt − ptdt +
√

2G(xt )dWt

I Employ symplectic integrator e.g. RMHMC for drift term

I Note that OU diffusion process corresponds to ad-hoc partial momentum
updating

I Solid theoretical basis amenable to analysis of algorithm performance

I Phase space defined on co-tangent bundle with symplectic forms in
place

I What of the configuration space?
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Second-Order Diffusions

I This SDE defined on co-tangent bundle - non-symplectic forms

dxt = vtdt

dvt = −γ(xt , vt )dt −G−1(xt )∇xtφ(xt )dt − vtdt +
√

2G−1(xt )dWt

I Drift function can be seen to describe Lagrangian dynamics

I OU diffusion driving overall process

I Construct explicit integrator for dynamics - with volume correction

I Preserves original Hamiltonian dynamics - high proposal acceptance
rates

I Speed improvement over implicit symplectic integrator between 2x to 10x
Though non-symplectic geometry limits sampling - see The Geometry
Foundations of Hamiltonian Monte Carlo
http://arxiv.org/pdf/1410.5110.pdf

I Markov chain Monte Carlo from Lagrangian Dynamics
Journal of Comp.Graph.Stats, 2014

http://arxiv.org/pdf/1410.5110.pdf


Second-Order Diffusions

I This SDE defined on co-tangent bundle - non-symplectic forms

dxt = vtdt

dvt = −γ(xt , vt )dt −G−1(xt )∇xtφ(xt )dt − vtdt +
√

2G−1(xt )dWt

I Drift function can be seen to describe Lagrangian dynamics

I OU diffusion driving overall process

I Construct explicit integrator for dynamics - with volume correction

I Preserves original Hamiltonian dynamics - high proposal acceptance
rates

I Speed improvement over implicit symplectic integrator between 2x to 10x
Though non-symplectic geometry limits sampling - see The Geometry
Foundations of Hamiltonian Monte Carlo
http://arxiv.org/pdf/1410.5110.pdf

I Markov chain Monte Carlo from Lagrangian Dynamics
Journal of Comp.Graph.Stats, 2014

http://arxiv.org/pdf/1410.5110.pdf


Second-Order Diffusions

I This SDE defined on co-tangent bundle - non-symplectic forms

dxt = vtdt

dvt = −γ(xt , vt )dt −G−1(xt )∇xtφ(xt )dt − vtdt +
√

2G−1(xt )dWt

I Drift function can be seen to describe Lagrangian dynamics

I OU diffusion driving overall process

I Construct explicit integrator for dynamics - with volume correction

I Preserves original Hamiltonian dynamics - high proposal acceptance
rates

I Speed improvement over implicit symplectic integrator between 2x to 10x
Though non-symplectic geometry limits sampling - see The Geometry
Foundations of Hamiltonian Monte Carlo
http://arxiv.org/pdf/1410.5110.pdf

I Markov chain Monte Carlo from Lagrangian Dynamics
Journal of Comp.Graph.Stats, 2014

http://arxiv.org/pdf/1410.5110.pdf


Second-Order Diffusions

I This SDE defined on co-tangent bundle - non-symplectic forms

dxt = vtdt

dvt = −γ(xt , vt )dt −G−1(xt )∇xtφ(xt )dt − vtdt +
√

2G−1(xt )dWt

I Drift function can be seen to describe Lagrangian dynamics

I OU diffusion driving overall process

I Construct explicit integrator for dynamics - with volume correction

I Preserves original Hamiltonian dynamics - high proposal acceptance
rates

I Speed improvement over implicit symplectic integrator between 2x to 10x
Though non-symplectic geometry limits sampling - see The Geometry
Foundations of Hamiltonian Monte Carlo
http://arxiv.org/pdf/1410.5110.pdf

I Markov chain Monte Carlo from Lagrangian Dynamics
Journal of Comp.Graph.Stats, 2014

http://arxiv.org/pdf/1410.5110.pdf


Second-Order Diffusions

I This SDE defined on co-tangent bundle - non-symplectic forms

dxt = vtdt

dvt = −γ(xt , vt )dt −G−1(xt )∇xtφ(xt )dt − vtdt +
√

2G−1(xt )dWt

I Drift function can be seen to describe Lagrangian dynamics

I OU diffusion driving overall process

I Construct explicit integrator for dynamics - with volume correction

I Preserves original Hamiltonian dynamics - high proposal acceptance
rates

I Speed improvement over implicit symplectic integrator between 2x to 10x
Though non-symplectic geometry limits sampling - see The Geometry
Foundations of Hamiltonian Monte Carlo
http://arxiv.org/pdf/1410.5110.pdf

I Markov chain Monte Carlo from Lagrangian Dynamics
Journal of Comp.Graph.Stats, 2014

http://arxiv.org/pdf/1410.5110.pdf


Second-Order Diffusions

I This SDE defined on co-tangent bundle - non-symplectic forms

dxt = vtdt

dvt = −γ(xt , vt )dt −G−1(xt )∇xtφ(xt )dt − vtdt +
√

2G−1(xt )dWt

I Drift function can be seen to describe Lagrangian dynamics

I OU diffusion driving overall process

I Construct explicit integrator for dynamics - with volume correction

I Preserves original Hamiltonian dynamics - high proposal acceptance
rates

I Speed improvement over implicit symplectic integrator between 2x to 10x
Though non-symplectic geometry limits sampling - see The Geometry
Foundations of Hamiltonian Monte Carlo
http://arxiv.org/pdf/1410.5110.pdf

I Markov chain Monte Carlo from Lagrangian Dynamics
Journal of Comp.Graph.Stats, 2014

http://arxiv.org/pdf/1410.5110.pdf


Second-Order Diffusions

I This SDE defined on co-tangent bundle - non-symplectic forms

dxt = vtdt

dvt = −γ(xt , vt )dt −G−1(xt )∇xtφ(xt )dt − vtdt +
√

2G−1(xt )dWt

I Drift function can be seen to describe Lagrangian dynamics

I OU diffusion driving overall process

I Construct explicit integrator for dynamics - with volume correction

I Preserves original Hamiltonian dynamics - high proposal acceptance
rates

I Speed improvement over implicit symplectic integrator between 2x to 10x
Though non-symplectic geometry limits sampling - see The Geometry
Foundations of Hamiltonian Monte Carlo
http://arxiv.org/pdf/1410.5110.pdf

I Markov chain Monte Carlo from Lagrangian Dynamics
Journal of Comp.Graph.Stats, 2014

http://arxiv.org/pdf/1410.5110.pdf


Second-Order Diffusions

I This SDE defined on co-tangent bundle - non-symplectic forms

dxt = vtdt

dvt = −γ(xt , vt )dt −G−1(xt )∇xtφ(xt )dt − vtdt +
√

2G−1(xt )dWt

I Drift function can be seen to describe Lagrangian dynamics

I OU diffusion driving overall process

I Construct explicit integrator for dynamics - with volume correction

I Preserves original Hamiltonian dynamics - high proposal acceptance
rates

I Speed improvement over implicit symplectic integrator between 2x to 10x

Though non-symplectic geometry limits sampling - see The Geometry
Foundations of Hamiltonian Monte Carlo
http://arxiv.org/pdf/1410.5110.pdf

I Markov chain Monte Carlo from Lagrangian Dynamics
Journal of Comp.Graph.Stats, 2014

http://arxiv.org/pdf/1410.5110.pdf


Second-Order Diffusions

I This SDE defined on co-tangent bundle - non-symplectic forms

dxt = vtdt

dvt = −γ(xt , vt )dt −G−1(xt )∇xtφ(xt )dt − vtdt +
√

2G−1(xt )dWt

I Drift function can be seen to describe Lagrangian dynamics

I OU diffusion driving overall process

I Construct explicit integrator for dynamics - with volume correction

I Preserves original Hamiltonian dynamics - high proposal acceptance
rates

I Speed improvement over implicit symplectic integrator between 2x to 10x
Though non-symplectic geometry limits sampling - see The Geometry
Foundations of Hamiltonian Monte Carlo
http://arxiv.org/pdf/1410.5110.pdf

I Markov chain Monte Carlo from Lagrangian Dynamics
Journal of Comp.Graph.Stats, 2014

http://arxiv.org/pdf/1410.5110.pdf


Second-Order Diffusions

I This SDE defined on co-tangent bundle - non-symplectic forms

dxt = vtdt

dvt = −γ(xt , vt )dt −G−1(xt )∇xtφ(xt )dt − vtdt +
√

2G−1(xt )dWt

I Drift function can be seen to describe Lagrangian dynamics

I OU diffusion driving overall process

I Construct explicit integrator for dynamics - with volume correction

I Preserves original Hamiltonian dynamics - high proposal acceptance
rates

I Speed improvement over implicit symplectic integrator between 2x to 10x
Though non-symplectic geometry limits sampling - see The Geometry
Foundations of Hamiltonian Monte Carlo
http://arxiv.org/pdf/1410.5110.pdf

I Markov chain Monte Carlo from Lagrangian Dynamics
Journal of Comp.Graph.Stats, 2014

http://arxiv.org/pdf/1410.5110.pdf


Gaussian Mixture Model

I Univariate finite mixture model

p(x |µ, σ2) = 0.7×N (x |0, σ2) + 0.3×N (x |µ, σ2)
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Figure : Arrows correspond to the gradients and ellipses to the inverse metric
tensor. Dashed lines are isocontours of the joint log density
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Log-Gaussian Cox Point Process with Latent Field

I The joint density for Poisson counts and latent Gaussian field

p(y, x|µ, σ, β) ∝
∏64

i,j
exp{yi,jxi,j−m exp(xi,j )} exp(−(x−µ1)TΣ−1

θ (x−µ1)/2)

I Metric tensors

G(θ)i,j =
1
2

trace
(
Σ−1

θ

∂Σθ

∂θi
Σ−1

θ

∂Σθ

∂θj

)
G(x) = Λ + Σ−1

θ

where Λ is diagonal with elements m exp(µ+ (Σθ)i,i )

I Latent field metric tensor defining flat manifold is 4096× 4096, O(N3)
obtained from parameter conditional

I MALA requires transformation of latent field to sample - with separate
tuning in transient and stationary phases of Markov chain
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RMHMC for Log-Gaussian Cox Point Processes

20 40 60

10

20

30

40

50

60

20 40 60

10

20

30

40

50

60

20 40 60

10

20

30

40

50

60

20 40 60

10

20

30

40

50

60

20 40 60

10

20

30

40

50

60

20 40 60

10

20

30

40

50

60

20 40 60

10

20

30

40

50

60

20 40 60

10

20

30

40

50

60

Figure : Data, Latent Field, Poisson Mean Field



RMHMC for Log-Gaussian Cox Point Processes

Table : Sampling the latent variables of a Log-Gaussian Cox Process - Comparison of
sampling methods

Method Time ESS (Min, Med, Max) s/Min ESS Rel. Speed
MALA (Transient) 31,577 (3, 8, 50) 10,605 ×1
MALA (Stationary) 31,118 (4, 16, 80) 7836 ×1.35

mMALA 634 (26, 84, 174) 24.1 ×440
RMHMC 2936 (1951, 4545, 5000) 1.5 ×7070



Illustrative Heat Conduction Problem

I Heat conduction problem governed by an elliptic partial differential
equation in the open and bounded domain Ω:

−∇ · (eu∇w) = 0 in Ω

−eu∇w · n = u Bi on ∂Ω/ ΓR

−eu∇w · n = −1 on ΓR

I Forward state is w and u the logarithm of distributed thermal conductivity
on Ω, n the unit outward normal on Ω, and Bi the Biot number.
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Illustrative Heat Conduction Problem
I Take one finite element discretisation of domain and one observation at

leftmost boundary

I Consider induced bivariate posterior for varying forms of prior Gaussian
measure
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Hamiltonian on Riemann Manifold

The dynamics for k -th component of u is given by Hamiltons equations

duk

dt
=
∂H
∂pk

=
(

G(u)−1p
)

k

dpk

dt
= − ∂H

∂uk
= −∇k J (u)− 1

2
Tr
[

G(u)−1 ∂G(u)

∂uk

]
+

1
2

pT G(u)−1 ∂G(u)

∂uk
G(u)−1p



Gradient

Gradient

〈∇J (u) , ũ〉 =

∫
Ω

ũeu∇w · ∇λ dΩ,

First Order Forward∫
Ω

eu∇w · ∇λ̂ dΩ +

∫
∂Ω\ΓR

Bi w λ̂ ds =

∫
ΓR

λ̂ ds,

First Order Adjoint

∫
Ω

eu∇λ · ∇ŵ dΩ +

∫
∂Ω\ΓR

Bi λŵ ds = − 1
σ2

K∑
j=1

(w (xj )− dj ) ŵ (xj ) ,
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Hessian/Fisher Information Matrix

Fisher Matrix-Vector Product〈
〈G (u) , ũ〉 , u2

〉
=

∫
Ω

ũeu∇w · ∇λ̃2 dΩ,

Second Order Forward∫
Ω

eu∇w2 · ∇λ̂ dΩ +

∫
∂Ω\ΓR

Bi w2λ̂ ds = −
∫

Ω

u2eu∇w · ∇λ̂ dΩ,

Second Order Adjoint

∫
Ω

eu∇λ̃2 · ∇ŵ dΩ +

∫
∂Ω\ΓR

Bi λ̃2ŵ ds = − 1
σ2

K∑
j=1

w2 (xj ) ŵ (xj ) .
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Derivative of Fisher Information Matrix

Derivative of Fisher Matrix-Matrix product

〈〈
〈T (u) , ũ〉 , u2

〉
, u3
〉

:=
〈
∇
〈
〈G (u) , ũ〉 , u2

〉
, u3
〉

=

∫
Ω

ũu3eu∇w · ∇λ̃2 dΩ +

∫
Ω

ũeu∇w3 · ∇λ̃2 dΩ +

∫
Ω

ũeu∇w · ∇λ2,3 dΩ

Third Order Forward∫
Ω

eu∇w3 · ∇λ̂ dΩ +

∫
∂Ω\ΓR

Bi w3
λ̂ ds = −

∫
Ω

u3eu∇w · ∇λ̂ dΩ.

Third Order Adjoint

∫
Ω

eu∇λ2,3 · ∇ŵ dΩ +

∫
∂Ω\ΓR

Bi λ2,3ŵ ds = −
1

σ2

K∑
j=1

w2,3
(

xj

)
ŵ
(

xj

)

−
∫

Ω
u3eu∇λ̃2 · ∇ŵ dΩ,



Two-parameter Case
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1025-parameter Case
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1025-parameter Case
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Conclusion and Discussion

I Geometry of statistical models harnessed in Monte Carlo methods

I Diffusions that respect structure and curvature of space - Manifold MALA

I Geodesic flows on model manifold - RMHMC - generalisation of HMC

I Assessed on correlated & high-dimensional latent variable models

I Promising capability of methodology

I Ongoing development

I Theoretical analysis of convergence

I Geodesic Monte Carlo on Embedded Manifolds
http://arxiv.org/pdf/1301.6064.pdf

I Investigate alternative manifold structures

I Design and effect of metric and connection

I Optimality of Hamiltonian flows as local geodesics

I Surrogate geometries based on emulators for PDEs

I No silver bullet or cure all - new powerful methodology for MC toolkit

http://arxiv.org/pdf/1301.6064.pdf
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